Spelling suggestions: "subject:"moelle minière."" "subject:"noelle minière.""
31 |
Contrôle des réseaux spinaux de la lamina II de la moelle épinière par les fibres C-LTMRs : approches optogénétique et pharmacologique / Control of spinal networks within the lamina II of the spinal cord by C-LTMRs fibers : optogenetic and pharmacological approachesKambrun, Charline 11 December 2017 (has links)
La perception de la douleur résulte de l'intégration dans la moelle épinière des informations sensorielles et nociceptives transmises par les afférences primaires. Parmi celles-ci, les Mechanorécepteurs C à bas seuil (C-LTMR), exprimant la chimiokine TAFA4, ont été identifiés comme des modulateurs de la douleur. Cependant, les mécanismes sous-jacents au contrôle de l'intégration sensori-nociceptive par TAFA4 restent mal compris. Grâce aux enregistrements obtenus in vitro par patch clamp chez des souris naïves, nous montrons que l'application exogène de TAFA4 induit une diminution de la fréquence des courants post-synaptiques excitateurs spontanés (CPSE). A l’inverse nous observons une augmentation de la fréquence des événements synaptiques inhibiteurs spontanés (CPSI). Cette modulation de l'activité synaptique est préservée avec TTX, indiquant que TAFA4 modifie la transmission synaptique par des mécanismes présynaptiques. En stimulant les fibres nociceptives à haut seuil d’activation, nous démontrons que TAFA4 induit une augmentation du ratio des réponses synaptiques des interneurones évoquées par des stimulations d’impulsions pairées. Par conséquent, TAFA4 renforce l'inhibition présynaptique des fibres nociceptives. Nous démontrons également que les effets de TAFA4 sur la transmission excitatrice spontanée et évoquée sont bloqués par des antagonistes des récepteurs GABA, indiquant que les C-LTMRs interagissent principalement avec les neurones GABAergiques. De plus, des expériences de microscopie électronique ont révélé la présence de contacts synaptiques directs entre les C-LTMRs et les terminaisons GABAergiques dans la lamina IIi. Pour aller plus loin dans la caractérisation des effets de TAFA4 sur la transmission de la douleur, nous avons induit une inflammation de la patte arrière des souris (modèle CFA). Chez ces souris, l'effet de TAFA4 sur la fréquence EPSC et IPSC est conservé. Nous constatons que chez les souris CFA, TAFA4 diminue la décharge neuronale enregistrée in vivo suite à une stimulation mécanique nociceptive de la patte inflammée. Cet effet est bloqué par une injection d'antagonistes des récepteurs GABA. En effectuant le test Von Frey sur des souris inflammées, nous montrons que l’action anti-allodynique induite par l'injection intrathécale de TAFA4 est bloquée par les antagonistes des récepteurs GABA. Nous avançons l’hypothèse que les C-LTMRs contactent directement les interneurones GABAergiques de la corne dorsale et, via la libération de TAFA4, renforcent l'activité synaptique inhibitrice participant à l’effet anti-nociceptif de TAFA4. En outre, TAFA4 favorise la rétraction microgliale chez les animaux inflammés, ainsi qu'une augmentation du nombre de synapses inhibitrices sur les somas des neurones de la lamina IIi. En conclusion, ces résultats identifient les interneurones GABAergiques comme premier relais d'intégration pour les C-LTMRs et mettent en évidence une nouvelle interaction entre les neurones sensoriels, les cellules microgliales et les interneurones de la moelle épinière, permettant une modulation fine de l'activité inhibitrice et de la transmission nociceptive en situation pathologique. / Pain elaboration results from the integration within dorsal spinal cord of sensory and nociceptive information conveyed by primary afferents. Among these, C low-threshold Mechano Receptors (C-LTMR), expressing the chemokine TAFA4, were identified as modulators of pain. However, mechanisms underlying the control of sensori-nociceptive integration by TAFA4 remains poorly understood. Using in vitro patch clamp recording on spinal cord slices of naïve mice we show that, bath application of TAFA4 induces a decrease in frequency of spontaneous excitatory post synaptic currents (EPSCs). This effect is mirrored by an increase in frequency of spontaneous inhibitory synaptic events (IPSCs). This modulation of synaptic activity is preserved with TTX, indicating that TAFA4 alters synaptic transmission through presynaptic mechanisms. By recruiting high threshold nociceptive fibers, we demonstrate that TAFA4 induces an increase in the paired pulse ratio of evoked synaptic responses in interneurons, and thus, reinforces presynaptic inhibition of nociceptive fibers. We also demonstrate that the effects of TAFA4 on spontaneous and evoked excitatory transmission are blocked by antagonists of GABA receptors, indicating that -C-LTMRs mainly interact with GABAergic neurons. Moreover, Electron Microscopy provides evidence of direct synaptic contacts between C-LTMRs and GABAergic terminals in lamina IIi. To further characterize the effects of TAFA4 on pain transmission, we inflamed mice using Complete Freund Adjuvant (CFA). In CFA mice, the effect of TAFA4 on EPSC and IPSC frequency is preserved. We find that in CFA mice, TAFA4 decreases the neuronal discharge recorded in vivo following a nociceptive mechanical stimulation in inflamed hindpaw. This effect is blocked by an injection of GABA receptors antagonists. By performing Von Frey test on inflamed mice, we show that intrathecal injection of TAFA4 provides anti-allodynic effects blocked by GABA receptors antagonists. We propose that C-LTMR directly contact GABAergic interneurons in dorsal horn, and, through the liberation of TAFA4 reinforce inhibitory synaptic activity which may in turn promote their anti-nociceptive activity. Furthermore, TAFA4 promotes microglial retraction in CFA inflamed animals, together with an increase in the number of inhibitory synapses on lamina IIi somata. Altogether, these results identify GABAergic interneurons as the first integration relay for C-LTMRs and highlight a novel interplay between sensory neurons, microglial cells and spinal interneurons leading to a fine tuning of inhibitory activity and nociceptive transmission in pathological conditions.
|
32 |
Neuronal populations underlying locomotion in zebrafish / Neurones sous-tendant la locomotion chez le poisson zèbreSternberg, Jenna 20 September 2016 (has links)
Les circuits neuronaux sous-tendant la locomotion requièrent d'intégrer à la fois des stimuli sensoriels et l'état physiologique. Cependant, la manière dont ces circuits fonctionnent pendant la locomotion active reste peu comprise. La larve de poisson zèbre est un organisme vertébré idéal pour étudier cette question de part son répertoire locomoteur simple et son accessibilité à la manipulation génétique. Dans le Chapitre 1, je décris le logiciel que nous avons développé afin de nous permettre de traquer les comportements et caractériser automatiquement les modules locomoteurs à haut débit. Les interneurones V2a sont des neurones excitateurs de la moelle épinière et du cerveau postérieur caractérisés par l'expression du facteur de transcription chx10. Afin de tester leur implication dans la locomotion, j'ai, dans le Chapitre 2, validé l'utilisation d'une toxine génétiquement encodée dans le but d'inhiber la population chx10 positive in vivo. Par analyse comportementale, enregistrements de locomotion fictive et imagerie calcique, nous avons montré que les V2as sont impliqués différemment dans la locomotion lente et rapide. Les neurones contactant le liquide céphalorachidien (NcLCRs) relaient des informations sensorielles aux circuits moteurs. Par ciblage génétique, imagerie calcique, pharmacologie et électrophysiologie, j'ai, dans le Chapitre 3, investigué le rôle de l'activité spontanée dans les NcLCRs. J'ai montré que l'ouverture de canaux PKD2L1 représentait une source intrinsèque d'activité spontanée dans les NcLCRs. Ces résultats offrent une meilleure compréhension de la manière dont les interactions dynamiques structurent les sorties locomotrices in vivo. / The neural networks that underlie locomotion are complex and require integration of sensory input and physiological state. However, how these networks function during active locomotion to incorporate sensory input from the environment and the internal state of the animal remains poorly understand. The zebrafish larva is an ideal vertebrate to study these questions thanks to its simple locomotor repertoire, transparency, and amenability to genetic manipulation. In Chapter 1, I describe a program to track behavior at high speeds and automatically characterize locomotor patterns in a high-throughput manner. V2a interneurons are excitatory interneurons in the spinal cord and hindbrain identified by the chx10 transcription factor. In Chapter 2, I validated the use of a genetically-encoded botulinum toxin to silence the chx10 population in vivo. Using fictive locomotor recordings and calcium imaging, I demonstrated that silencing V2as leads to decreased activity in primary motor neurons during fast swimming, corresponding to a lower swimming frequency in V2a-silenced larvae. Cerebrospinal fluid-contacting neurons (CSF-cNs) are intraspinal neurons that relay sensory information to motor circuits. CSF-cNs in diverse species express GABA and the transient receptor potential channel PKD2L1. In Chapter 3, I used genetic targeting, calcium imaging, pharmacology, and electrophysiology to investigate the role of spontaneous activity in CSF-cNs. I showed that single channel opening of PKD2L1 represents an intrinsic source of spontaneous activity in CSF-cNs. These tools and results will allow a more complete picture of how dynamic interactions shape locomotor output in vivo.
|
33 |
Modulation of premotor circuits controlling locomotor activity by spinal GABAergic sensory neurons in zebrafish : connectivity mapping of an intraspinal sensory feedback circuit / Modulation des circuits spinaux pré-moteurs contrôlant l'activité locomotrice par des neurones sensoriels GABAergiques chez le poisson zèbreFidelin, Kevin 30 September 2016 (has links)
Comprendre les mécanismes mis en place au sein du système nerveux pour générer des répertoires locomoteurs complexes reste l'un des grands défis des neurosciences systémiques. Le travail présenté dans ce manuscrit vise à comprendre comment les neurones de la moelle épinière contribuent à la production et à la modulation de l'activité locomotrice. Pour répondre à ce problème, nous utilisons le poisson-zèbre comme organisme modèle et avons développé de nouvelles approches génétiques et optiques afin de disséquer l'architecture du circuit formé par une classe de neurones sensoriels de la moelle et qui est conservée chez tous les vertébrés. Ces neurones sont appelés les neurones au contact du liquide céphalo-rachidien (Nc-LCR) et nous proposons de sonder leur(s) fonction(s) in vivo. Ces neurones sensoriels forment une interface unique entre le liquide céphalo-rachidien et le réseau de neurones impliqué dans le contrôle du mouvement dans la moelle épinière. Cependant, leur diagramme de connectivité demeure complètement inconnu. Afin de comprendre comment ces " Nc-LCR ou CSF-cNs " modulent la locomotion chez les vertébrés, nous avons développé un projet combinant des approches génétiques, électrophysiologiques, d'imagerie, et d'analyse du comportement, afin de cartographier le circuit qu'elles forment avec les neurones de la moelle épinière. Nos résultats montrent que les CSF-cNs projettent sur de nombreux éléments du centre générateur de rythme de la moelle. Notre approche révèle également la capacité des CSF-cNs à moduler la locomotion selon l'état dans lequel se trouve l'animal, une propriété caractéristique des circuits proprioceptifs dans la moelle épinière. / Understanding how the central nervous system generates motor sequences, coordinates limbs and body orientation in an ever-changing environment, while adapting to sensory cues remains a central question in the field of systems neuroscience. The work presented here aims to understand how local sensory neurons in the spinal cord contribute to the production and/ or the modulation of locomotor activity. We focused our work on a conserved class of spinal sensory neurons termed cerebrospinal fluid contacting neurons (CSF-cNs). These neurons lie at the interface between the CSF and spinal interneurons controlling motor output and represent an interesting yet poorly understood sensorimotor loop in the vertebrate spinal cord. However, the connectivity of CSF-cNs remains completely uncharacterized. To understand how CSF-cNs modulate locomotion in vertebrates, we combined genetics, imaging, optogenetics, electrophysiology, and behavior analysis to map the functional connectivity of these sensory neurons and test their function in the zebrafish larva. Our results demonstrate that CSF-cNs target several elements thought to be part of the locomotor central pattern generator in zebrafish, including glutamatergic spinal neurons involved in slow and fast swimming. We show that CSF-cNs can modulate the duration and occurrence of spontaneous locomotor events in a state dependent manner and tune the frequency of evoked fast escape responses. Altogether our work dissecting sensorimotor integration in the spinal cord bridged single cell function in vivo to behavior in zebrafish and should contribute to a better understanding of the role of sensory feedback during locomotion in vertebrates.
|
34 |
α-subunit dependent regulation of GlyR function and dynamics by IL-1β and PKA in spinal cord neurons / La régulation de GlyR dépend de la sous-unité alpha fonction et dynamique de IL-1β et PKA dans les neurones de la moelle épinièrePatrizio, Angela 23 September 2016 (has links)
Différentes études précédentes ont démontré que IL-1β et PKA peuvent réduire la transmission synaptique inhibitrice dans la LAMINA II de la moelle épinière, en contribuent de cette manière au développement de douleur chronique de tipe inflammatoire. Au niveau des sites post-synaptiques, les changements dans la transmission synaptique (par exemple suivant le relâchement de IL-1β ou après l’activation de PKA), reflètent donc des changements dans les propriétés et/ou dans le nombre des molécules présentes au niveau de la synapse. Au cours de mon doctorat, j’ai pu profiter des techniques basés sur l’imagerie des molécules uniques afin d’étudier les effets de PKA et IL-1β sur la dynamiques et le nombre absolu de GlyR dans les synapses de la moelle épinière. Mes résultats ont montré que PKA et Il-1β peuvent déplacer les GlyR des sites inhibitoires post-synaptiques ciblent différentes sous-unités α du récepteur de la glycine. Comme les sous-unités GlyRα ne se lient pas directement à la géphyrine, ces effets sont vraisemblablement le résultat d’un changement de conformation du GlyR dépendant de la sous-unité. Pendant mon projet, j’ai utilisé la technique de microscopie de super-résolution PALM pour développer une méthode pour déterminer la stœchiométrie des GlyR et le nombre absolu de récepteurs et des molécules d’échafaudage au niveau des synapse de la moelle épinière. Mes résultats décrivent que les GlyR se composent de 3 sous-unités α et de 2 sous-unités β, et proposent qu’une synapse de la moelle épinière contient en moyenne 80 GlyR et 250 molécules de géphyrine. Ces résultats sont essentiels pour mettre en relation l’ampleur des mécanismes de régulation et de plasticité agissant sur la transmission synaptique, avec les changements en nombre de molécules présentes dans les synapses de la moelle épinière. Sur la base de mes découvertes on pourra maintenant étudier les mécanismes structuraux impliqués dans la régulation de la fonction et la dynamique des GlyR dépendantes des sous-unités α que j’ai démontré. / IL-1β and PKA impair glycine receptor-mediated synaptic transmission in the lamina II of the spinal cord, contributing to the development of inflammatory types of chronic pain. At post-synaptic sites, the strength of synaptic transmission depends on the biophysical properties and on the absolute number of receptors expressed. Consequently, changes in synaptic transmission (i.e. following the release of IL-1β or the activation of PKA), reflect changes in the properties and/or number of molecules present at the synapse. During my PhD I have taken advantage of single-molecule based imaging techniques to study the effects of IL-1β and PKA on the dynamics and absolute numbers of GlyRs at spinal cord synapses.My results show for the first time that both Il-1β and PKA displace GlyRs from inhibitory post-synaptic sites, targeting different α-subunit of GlyRs. Specifically, IL-1β reduces GlyR α-containing receptors at spinal cord synapse, whereas PKA affects GlyR α3L subunit. Given that the GlyR α subunits do not bind to the gephyrin scaffold, these effects likely reflect an α-subunit dependent change in GlyR conformation that decreases the affinity of the GlyR subunits for gephryrin. Glycine receptors are composed of α- and β- subunits that assemble into heteropentameric complexes with an unclear stoichiometry. Using super resolution PALM microscopy I have developed a single-molecule counting approach to determine the stoichiometry of GlyRs and the absolute number of receptor and scaffold molecules at spinal cord synapses. According to my results GlyRs is composed by 3 α and 2 β-subunits, and an average spinal cord synapse contains around 80 GlyRs and 250 scaffold molecules. These data are fundamental to relate the magnitude of regulatory and plasticity mechanisms acting on glycinergic transmission, with quantitative changes in molecule numbers at spinal cord synapses. My research has shown how absolute quantitative approaches can help achieve a more detailed insight into the organization of complex molecular assemblies and their dynamic regulation.
|
35 |
Sensorimotor integration in the moving spinal cord / Intégration sensorimotrice dans la moelle épinière en mouvementKnafo, Steven 29 September 2015 (has links)
Certaines observations suggèrent que les afférences méchano-sensorielles peuvent moduler l’activité des générateurs centraux du rythme locomoteur (ou Central Pattern Generators, CPGs). Cependant, il est impossible d’explorer les circuits neuronaux sous-jacents chez l’animal en mouvement à l’aide d’enregistrements électrophysiologiques lors d’expériences de locomotion dite « fictive ». Dans cette étude, nous avons enregistré de façon sélective et non-invasive les neurones moteurs et sensoriels dans la moelle épinière pendant la locomotion active en ciblant génétiquement le senseur bioluminescent GFP-Aequorin chez la larve de poisson zèbre. En utilisant l’imagerie calcique à l’échelle des neurones individuels, nous confirmons que les signaux de bioluminescence reflètent bien le recrutement différentiel des groupes de motoneurones spinaux durant la locomotion active. La diminution importante de ces signaux chez des animaux paralysés ou des mutants immobiles démontre que le retour méchano-sensoriel augmente le recrutement des motoneurones spinaux pendant la locomotion active. En accord avec cette observation, nous montrons que les neurones méchano-sensoriels spinaux sont en effet recrutés chez les animaux en mouvement, et que leur inhibition affecte les réflexes d’échappement chez des larves nageant librement. L’ensemble de ces résultats met en lumière la contribution du retour méchano-sensoriel sur la production locomotrice et les différences qui en résultent entre les locomotions active et fictive. / There is converging evidence that mechanosensory feedback modulates the activity of spinal central pattern generators underlying vertebrate locomotion. However, probing the underlying circuits in behaving animals is not possible in “fictive” locomotion electrophysiological recordings. Here, we achieve selective and non-invasive monitoring of spinal motor and sensory neurons during active locomotion by genetically targeting the bioluminescent sensor GFP-Aequorin in larval zebrafish. Using GCaMP imaging of individual neurons, we confirm that bioluminescence signals reflect the differential recruitment of motor pools during motion. Their significant reduction in paralyzed animals and immotile mutants demonstrates that mechanosensory feedback enhances the recruitment of spinal motor neurons during active locomotion. Accordingly, we show that spinal mechanosensory neurons are recruited in moving animals and that their silencing impairs escapes in freely behaving larvae. Altogether, these results shed light on the contribution of mechanosensory feedback to motor output and the resulting differences between active and fictive locomotion.
|
36 |
Déséquilibre excitation/inhibition dans la moelle épinière dorsale en situation de douleurs chroniques : rôle des molécules d’adhérence neuroligines / Imbalance excitation/ inhibition in the spinal dorsal horn in chronic pain conditions : the role of adhesion molecules neuroliginsDolique, Tiphaine 08 July 2011 (has links)
En état de douleur chronique, la sensibilisation centrale s’accompagne d’une modification de l’équilibre excitation/inhibition en faveur d’une excitation accrue de la corne dorsale de la moelle épinière. Cet équilibre implique des molécules d’adhérence telles que les neuroligines postsynaptiques (NLs). Dans une première partie de notre travail de thèse, nous avons étudié la régulation éventuelle de ces protéines dans un modèle de douleur neuropathique (Spinal Nerve Ligation, SNL) chez le rat. Nos données ont montré une surexpression inattendue de la NL2, généralement associée à l’inhibition, alors que l’expression de la NL1, généralement associée à l’excitation, ne change pas. Le blocage de l’expression de NL2 in vivo par application intrathécale de siRNA, a produit des effets anti-nociceptifs réversant de façon significative l’allodynie mécanique observée chez les rats SNL. L’étude ultérieure des partenaires pré- et postsynaptiques de NL2, a démontré une co-variation spécifique avec PSD95, une protéine d’échafaudage des synapses excitatrices. De plus, une approche par co-immunoprécipitation a mis en évidence une augmentation significative des interactions protéiques NL2 /PSD95 chez les rats SNL. Enfin, cette association inhabituelle en condition neuropathique, est apparue liée à la surexpression spécifique de NL2(-), un variant d’épissage de NL2 normalement minoritaire en condition physiologique. La surexpression, l’augmentation d’association avec PSD95, et l’effet pro-nociceptif inattendu de la NL2 « inhibitrice » en condition de douleur neuropathique, indiquent une permutation fonctionnelle de la NL2 de l’inhibition vers l’excitation modifiant le rapport synaptique en faveur d’une excitation globale plus élevée dans la corne dorsale.Dans une deuxième partie du travail, nous avons exploré le rôle des molécules d’adhérence NLs dans la sensibilisation spinale associée à un autre type de douleur chronique, à savoir la douleur cancéreuse, sur un modèle de cancer de l’os chez le rat. L’étude de l’expression des NLs et de leurs partenaires, a montré une augmentation d’expression spécifique de la NL1 et de S-SCAM, une autre protéine d’échafaudage des synapses excitatrices. D’autre part, d’après la littérature, ce modèle se caractérise par une importante activation gliale dans les cornes dorsales de la moelle épinière, se traduisant notamment par une astrogliose massive. Cependant, nous avons montré que dans le modèle utilisé, il n’y avait aucune variation ni de marqueurs classiques de l’activation astrocytaire (GFAP, S100β), ni des marqueurs microgliaux (OX-42 et Iba1). Au contraire, tous ces paramètres étaient effectivement augmentés dans la corne dorsale ipsilatérale d’animaux neuropathiques. Ces résultats suggèrent que, contrairement à ce qui a été décrit précédemment, la douleur cancéreuse d’origine osseuse n’est pas nécessairement corrélée à une surexpression spinale des marqueurs de la glie réactive, tandis que la douleur neuropathique l’est.En conclusion, nos résultats obtenus dans le modèle de douleur cancéreuse montrent un phénotype concernant des molécules impliquées dans la formation, la spécification et la modulation des synapses, bien différent de celui que nous avons mis en évidence dans le modèle de douleur neuropathique. Nous montrons notamment dans les deux modèles, une implication bien distincte des molécules d’adhérence NLs et de la glie confortant les données de la littérature indiquant que ces deux grandes catégories de douleur chronique ont chacune une signature propre. De plus, nos résultats ouvrent la perspective d’identifier de nouveaux diagnostics et/ou de nouvelles possibilités thérapeutiques, en ciblant spécifiquement les NLs. / In chronic pain states, central sensitization is associated with a modification in the excitation/inhibition balance toward increased excitation in the spinal dorsal horn. This balance involves adhesion molecules such as the postsynaptic Neuroligins (NLs). In a first part of our thesis work, we investigated the putative regulation of these proteins in the Spinal Nerve Ligation (SNL) model of neuropathy in the rat. Our data showed an unexpected upregulation of NL2, usually associated to inhibition, whereas expression of NL1, usually associated to excitation, did not change. The in vivo expression blockade of NL2 by intrathecal injection of siRNAs, produced specific antinociceptive effects, significantly reversing the SNL-induced mechanical allodynia. Subsequent study of pre- and postsynaptic NL2 partners, demonstrated a specific co-variation with PSD95, a scaffolding protein of excitatory synapses. Moreover, a co-immunoprecipitation approach showed a significant increase of NL2/PSD95 protein interactions in SNL rats. Finally, this unusual association in neuropathic conditions, appeared to be linked to specific over-expression of NL2(-), a NL2 splice variant usually a minority in physiological conditions. Over-expression, increased association with PSD95, and unexpected pronociceptive effect of the “inhibitory” NL2 in neuropathic pain condition, suggest a functional shift of NL2 from inhibition to excitation changing the synaptic ratio toward higher overall excitation in the dorsal horn.In a second part of our work, we investigated the role of the NLs adhesion molecules in spinal sensitization associated with another type of chronic pain, namely cancer pain, using a rat model of bone cancer. The study of the expression of NLs and partners, showed a specific increase in the expression of NL1 and S-SCAM, another postsynaptic scaffolding protein at excitatory synapses. Moreover, according to the literature, this model is characterized by a strong glial activation in the spinal dorsal horn, identified especially by a massive astrogliosis. However, we showed that in the bone cancer model used, there was no variation, neither in the classical markers of astrocyte activation (GFAP, S100β), nor in microglial markers (OX-42 et Iba1). On the contrary, all these parameters did actually increase in the ipsilateral dorsal horn of SNL neuropathic rats. These results suggest that, at odd with what was previously described, bone cancer pain is not necessarily correlated with a spinal overexpression of markers of reactive glia, whereas neuropathic pain is.In conclusion, our results obtained with the cancer pain model, show that the molecules involved in the formation, specification and modulation of synapses, yield a phenotypes clearly different to the one evidenced in the model of neuropathic pain. More particularly, we show in the two models, a well distinct involvement of the NL adhesion molecules and of glia, reinforcing reports from the literature, which indicate that the two important categories of chronic pain, cancer and neuropathic, each have a peculiar signature. Moreover, our results raise the possibility that new diagnosis and/or new therapeutic possibilities may emerge from targeting NL expression
|
37 |
Guidage axonal commissural : mécanismes de sensibilisation au signal de la ligne médiane Sémaphorine 3B / Commissural axon guidance : mechanism underlying the gain of sensitivity the midline signal Semaphorin 3BNawabi, Homaira 11 December 2009 (has links)
Les mouvements locomoteurs rythmiques nécessitent l’intervention de circuits neuronaux qui coordonnent l’activité motrice des deux parties du corps. Ces circuits sont formés majoritairement par les projections des interneurones commissuraux de la moelle épinière. Des facteurs de guidage comme la Nétrine, les Slits jouent un rôle fondamental dans la mise en place de ces projections. Une étude a également montré qu’une signalisation impliquant le récepteur Neuropiline2 (Nrp2) des signaux Sémaphorines de la classe 3 (Sema3), participe au guidage de ces projections et cela uniquement après la traversée de la ligne médiane (Zou et al. 2000). Ma thèse porte sur l’étude fonctionnelle d’un ligand de la Nrp2, la Sema3B dans le développement de ce système de projections. J’ai analysé une souris invalidée pour Sema3B et observé de nombreuses erreurs de trajectoires après la traversée de la ligne médiane. Je me suis ensuite intéressée aux mécanismes sous-jacents au gain de réponse : par une approche pharmacologique et biochimique j’ai pu montrer que le signal de la plaque du plancher inhibe une activité de dégradation dépendante de la calpaine1. L’inhibition de cette voie conduit à la stabilisation d’un co-récepteur de la Nrp2, la Plexine A1 dont l’expression est très faible dans les axones n’ayant pas encore traversé la ligne médiane. Cette régulation permet alors l’assemblage d’un complexe récepteur fonctionnel de Sema3B, comprenant cette Plexine associée à la Nrp2 au niveau des cônes de croissance. J’ai identifié la molécule d’adhérence NrCAM, et le facteur neurotrophique GDNF comme étant les facteurs de la plaque du plancher déclencheurs de la réponse / Rhythmic locomotor movements require neuronal circuits ensuring left-right coordination. Spinal commissural projections participate to left-right coordination of limb movements by mediating reciprocal inhibition in synchrony. Extensive research of the mechanisms governing the formation of commissural pathways focused on dorsally-located spinal commissural neurons, establishing a fundamental role for multiple guidance cues derived for the midline and surrounding tissues, including Netrins, Slits and various morphogens. Semaphorin (Sema2)/Neuropilin-2 (Nrp2) signaling has been proposed to contribute to the guidance of commissural projections in the spinal cord at the post- but not pre-crossing stage (Zou et al, 2000). My PhD project aimed at analyzing the role of a Nrp2 ligand, Sema3B, in the guidance of spinal commissural projections, whose expression is dynamic and restricted to some territories, including the floor plate in which axons cross the midline. Analysis of Sema3B null mice showed that the loss of Sema3B induces a range of guidance defects of post-crossing commissural pathways. I investigated the underlying mechanisms and found that the floor plate signal induces through blockade of a calpain 1-dependant pathway the stabilization of the Nrp2 co-receptor Plexin-A1, and enable the assembly of Nrp2/Plexin-A1 sub-units into functional complexes for Sema3B in post-crossing commissural growth cones. I identified the cell adhesion molecule NrCAM and the neurotrophic factor GDNF as being the floor-platederived signals triggering the gain of response
|
38 |
Régulations par la microglie de la dynamique des récepteurs aux neurotransmetteurs inhibiteurs dans les synapses de moelle épinière / Regulations of receptors to inhibitory neurotransmitters dynamics by microglia in spinal cord synapsesCantaut-Belarif, Yasmine 22 January 2015 (has links)
Alors que les synapses sont des structures relativement stables, les éléments qui la composent sont, eux, en permanent échange dans le temps et dans l'espace. Les composants des densités postsynaptiques sont renouvelés avec des cinétiques caractéristiques de chaque molécule et de chaque sous compartiment synaptique. La compatibilité entre le comportement dynamique des composants de la synapse et son maintien structural et fonctionnel à long terme implique une conception de ces assemblages multimoléculaires en équilibre dynamique. De nombreux paramètres peuvent influencer la dynamique des récepteurs aux neurotransmetteurs (RNT) dans les synapses, y compris l'activité synaptique et les protéines de la matrice extracellulaire. Cependant, le rôle des cellules gliales dans ce mécanisme est inconnu. Mon travail de thèse a porté sur l'exploration d'une possible contribution de la microglie, les cellules immunitaires du système nerveux central, à la stabilité des RNT et à l'efficacité des synapses inhibitrices de la moelle épinière. Mon travail de thèse démontre pour la première fois comment et en quoi la microglie est un partenaire clé de l'équilibre dynamique qui régit la structure et la fonction de la synapse inhibitrice dans la moelle. Par conséquent, il donne un éclairage nouveau sur la façon de concevoir l'efficacité synaptique et sa régulation de façon non neurone autonome. / Whereas synapses are relatively stable structures, their molecular constituents are continuously recycled and exchanged in time and space. Each of the molecules that contribute to build synaptic structures is renewed with specific kinetics, depending on their organisation in the postsynaptic densities. The compatibility between a dynamic behaviour and a long-term maintenance of synapses implies to think synapses as multi-molecular assemblies in a dynamic equilibrium. Several parameters can influence the dynamics of receptors to neurotransmitters(RNT) at synaptic sites, including neuronal activity and extracellular matrix proteins. However,the role of glial cells in this mechanism is unknown. During my thesis work, I explored the roleof microglia, the resident immune cells of the central nervous system, on the lateral diffusion ofRNT and synaptic efficacy at spinal cord inhibitory postsynaptic densities. My work demonstrates for the first time a partnership between microglia and synapses. It shows that immune cells can take part to the regulation of synaptic strength very rapidly but also at basal state, by regulating RNT dynamics. Furthermore it identifies microglia as a key partner for a heterocellular stabilization of synaptic receptors. This work raises the intriguing possibility that the general regulation of network activity may also be explained by a fine modulation of receptors stability at the synapse controlled by microglia.
|
39 |
Mécanismes spinaux et supraspinaux impliqués dans le couplage entre les réseaux locomoteurs et posturaux / Mécanismes spinaux et supraspinaux impliqués dans le couplage entre les réseaux locomoteurs et posturauxBeliez, Lauriane 05 December 2014 (has links)
Les fonctions locomotrices et posturales sont contrôlées par un ensemble de réseaux neuronaux qui doivent interagir afin de produire un comportement locomoteur optimal, adaptable aux contraintes internes et externes de l’organisme. Le maintien d’un équilibre dynamique au cours de la locomotion repose sur des processus internes de coordination entre les réseaux nerveux spinaux et supraspinaux qui commandent les différents segments du corps (membres, tête et tronc). C’est dans ce contexte que nous nous sommes intéressés aux interactions entre la fonction locomotrice et la fonction posturale, sur des préparations réduites de tronc cérébral-moelle épinière de rats nouveau-nés, au sein desquelles les CPGs locomoteurs spinaux et les noyaux vestibulaires sont intacts. Des approches combinées électrophysiologiques, pharmacologiques, neuroanatomique et lésionnelles nous ont permis de mettre en évidence une partie des mécanismes à l’origine du couplage entre les différents réseaux neuronaux étudiés. Dans cette étude nous avons montré que les réseaux locomoteurs lombaires contrôlent l’activité des réseaux thoraciques axiaux, de manière à produire une activation coordonnée des réseaux moteurs des membres et du tronc. Cette coordination est sous influence des entrées supraspinales. Les amines induisent une organisation temporelle spécifique de l’activité des réseaux thoraco-lombo-sacrés, et les informations en provenance des noyaux vestibulaires influencent le rythme locomoteur. Ces données apportent des éléments nouveaux concernant les processus neuronaux à l’origine de la coordination des réseaux moteurs et posturaux. / Locomotor and postural functions are controlled by a set of neural networks that must interact to produce optimal locomotor behavior, adaptable to internal and external constraints of the body. Maintaining a dynamic balance during locomotion is based on internal coordination processes between spinal and supraspinal neuronal networks controlling different parts of the body (limbs, head and trunk). In this context, we have interested in the interactions between locomotor and postural functions, in spinal and supraspinal networks. The experiments were conducted on isolated brainstem-spinal cord preparations from neonatal rats, in which the spinal locomotor CPGs and the vestibular nuclei are intact. Electrophysiological, pharmacological, and neuroanatomical approaches allowed us to highlight some of the mechanisms involved in the coupling of the different neural networks. In this study we showed that the lumbar locomotor networks control the activity of axial thoracic networks, in order to produce a coordinated activation of motors networks of limbs and trunk. This coordination is modulated by amines and information from the vestibular nuclei. These data provide new evidence for spinal mechanisms involved in the coordination of motor and postural networks.
|
40 |
Embryogenèse de la moelle épinière : de la dynamique collective observable à une proposition de modèle comportemental à l'échelle cellulaire / Developing spinal cord : from observable collective dynamics to a behavioral model at cell scaleAzaïs, Manon 10 December 2018 (has links)
Nous proposons un modèle de l'embryogenèse de la moelle épinière considérée comme un système dynamique constitué d'unités comportementales (les cellules). Pour que cet organe soit fonctionnel, il faut que les neurones des différents types soient mis en place au cours de l'embryogenèse, avec le bon nombre de neurones du bon type au bon endroit. Cette mise en place résulte d'un processus dynamique au cours duquel les progéniteurs neuronaux prolifèrent dans les proportions adéquates avant de se différencier en neurones spécialisés. Les données expérimentales disponibles donnent l'évolution des populations de progéniteurs et de neurones, et la balance globale entre prolifération et différenciation. Un premier modèle est énoncé à l'échelle collective pour rendre compte de la dynamique observée sur toute la durée du processus, avec une évolution de la balance prolifération / différenciation ajustée sur les données expérimentales. Un second modèle introduit une différenciation comportementale des progéniteurs sous la forme d'une perte de leur capacité proliférative. Ce changement comportemental, de type tout-ou-rien à l'échelle cellulaire, se traduit à l'échelle collective par une transition continue de la balance prolifération / différenciation telle qu'observée expérimentalement. Enfin, nous explorons un raffinement de ce modèle où ce changement comportemental est gouverné par l'état du système (rétro-contrôle). Nous examinons les différentes possibilités de rétro-contrôles et nous retenons celle qui rend le mieux compte de la dynamique collective observée. En perspective, nous proposons des pistes pour intégrer la dimension spatiale du phénomène, et pour la prolongation de ce travail vers la modélisation du développement du cortex cérébral. / We consider the developing spinal cord as a dynamical system made of behavioral units (cells). For the adult spinal cord to be functional, different neurons must be of the right kind at the right place. They are issued from a dynamical process of proliferative and differenciating neural progenitors, with a fine control of the balance between proliferation and differentiation. Some experimental data are available for the evolution of progenitors and neurons population and for how the balance progresses with time. Based on these data, we propose a first model at the collective scale to account for these dynamics all along the process. A second model is proposed at the cell scale which includes a loss of proliferative capacity that progressively concerns more and more progenitors. This behavioural switch at cell scale is reflected by a continous progression of the balance proliferation / differentiation at population scale, as it is experimentally observed. Finally, we introduce a feedback control process so that this progression is under the control of the progenitors and neurons populations. Among the multiple possibilities for this feedback, we point out to the most relevant process. We discuss these findings, and how they can be extended to spatialized dynamics and neocortex development.
|
Page generated in 0.0994 seconds