• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 27
  • 18
  • 7
  • 6
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 163
  • 163
  • 32
  • 31
  • 30
  • 29
  • 24
  • 20
  • 19
  • 17
  • 16
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Development and Validation of Analytical Models for Diffuse Fluorescence Spectroscopy/Imaging in Regular Geometries

Ayyalasomayajula, Kalyan Ram January 2013 (has links) (PDF)
New advances in computational modeling and instrumentation in the past decade has enabled the use of electromagnetic radiation for non-invasive monitoring of the physio-logical state of biological tissues. The near infrared (NIR) light having the wavelength range of 600 nm -1000 nm has been the main contender in these emerging molecular imaging modalities. Assessment of accurate pathological condition of the tissue under investigation relies on the contrast in the molecular images, where the endogenous contrast may not be sufficient in these scenarios. The fluorescence (exogenous) contrast agents have been deployed to overcome these difficulties, where the preferential uptake by the tumor vasculature leads to high contrast,making this modality one of the biggest contenders in small-animal and soft-tissue molecular imaging modalities. In Fluorescence diffuse optical spectroscopy/imaging, this exogenous drug is excited by NIR laser light causing the emission of the fluorescence light. The emitted fluorescence light is typically dependent on the life time and concentration of the exogenous drug coupled with physiology associated with the tissue under investigation. As there is an excitation and emission of the light,the underlying physics of the problem is described by a coupled diffusion equations. These coupled diffusion equations are typically solved by advanced numerical methods, which tend to be computationally demanding. In this work, analytical solutions for these coupled partial differential equations (PDEs) for the regular geometries for both time-domain and frequency-domain cases were developed. Till now, the existing literature has not dealt with all regular geometries and derived analytical solutions were only for couple of geometries. Here a universally acceptable generic solution was developed based on Green’s function approach that is applicable to any regular geometry. Using this, the analytical solutions for the regular geometries that is encountered in diffuse fluorescence spectroscopy/imaging were obtained. These solutions can play an important role in determining the bulk fluorescence properties of the tissue, which could act as good initial guesses for the advanced image reconstruction techniques and/or can also facilitate the calibration of experimental fluorescence data by removing biases and source-detector variations. In the second part of this work, the developed analytical models for regular geometries were validated through comparison with the established numerical models that are traditionally used in the diffuse fluorescence spectroscopy/imaging. This comparison not only validated the developed analytical models, but also showed that analytical models are capable of providing bulk fluorescence properties with at least one order of magnitude less computational cost compared to the highly optimized traditional numerical models.
162

Synthese molekularer Bildgebungssonden für die molekulare Magnetresonanztomographie / Funktionalisierung von superparamagnetischen Eisenoxidnanopartikeln

Figge, Lena 01 July 2014 (has links)
Zweck der molekularen Bildgebung ist es, biologische Prozesse auf zellulärer und molekularer Ebene zu messen und zu charakterisieren, um so die Ursachen von Krankheiten und Veränderungen im Organismus zu diagnostizieren. Sie basiert auf dem Einsatz molekularer Bildgebungssonden, welche einen spezifischen biologischen Vorgang darstellen oder sich spezifisch in dem zu untersuchenden Gewebe anreichern oder aktiviert werden. Ziel dieser Arbeit war die Entwicklung und Analyse neuer Bildgebungssonden für die spezifische in-vivo-Bildgebung der Apoptose und von Enzymaktivitäten mittels Magnetresonanztomographie (MRT) auf der Grundlage sehr kleiner Eisenoxidnanopartikel (very small iron oxide particles, VSOP). VSOP sind superparamagnetisch und durch ihre negativ geladene Citrathülle elektrostatisch stabilisiert. Für die Apoptose-Bildgebung sollte durch Bindung des Proteins Annexin A5 (AnxA5) an die Citrathülle der VSOP eine zielgerichtete Sonde hergestellt werden (AnxA5-VSOP). Für die Bildgebung von Enzymaktivitäten sollte eine durch die Matrixmetalloproteinase-9 (MMP-9) aktivierbare Sonde hergestellt werden (Protease-spezifische Eisenoxidpartikel, PSOP). / The goal of molecular imaging is to characterize and measure biological processes at cellular and molecular levels for the purpose of diagnosing the cause of diseases and molecular abnormalities. Molecular imaging is based on the use of probes with a high affinity to the target tissue and / or which are specifically activated. The aim of this study was to develop and analyze new molecular imaging probes for the in vivo imaging of apoptosis and enzyme activity using magnetic resonance imaging (MRI), based on very small iron oxide particles (VSOP). VSOP are superparamagnetic and electrostatically stabilized due to their negatively charged citrate surface. For the imaging of apoptosis the protein annexin A5 (AnxA5) was coupled to the citrate surface (AnxA5-VSOP). For the imaging of enzyme activities an activatable imaging probe with a cleavage site for the matrix metalloproteinase 9 (MMP-9) was synthesized (protease-specific iron oxide particles, PSOP).
163

Évaluation de l'innocuité et de l'efficacité d'un dérivé synthétique marqué de l'adrénomédulline dans l'imagerie moléculaire pulmonaire chez l'humain

Levac, Xavier 08 1900 (has links)
No description available.

Page generated in 0.0609 seconds