• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 33
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 205
  • 205
  • 75
  • 44
  • 35
  • 35
  • 30
  • 25
  • 17
  • 17
  • 16
  • 16
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Entwicklung von rechnergestützten Ansätzen für strukturelle Klassifikation, Analyse und Vorhersage von molekularen Erkennungsregionen in Proteinen / Development of computational approaches for structural classification, analysis and prediction of molecular recognition regions in proteins

Teyra i Canaleta, Joan 18 November 2010 (has links) (PDF)
The vast and growing volume of 3D protein structural data stored in the PDB contains abundant information about macromolecular complexes, and hence, data about protein interfaces. Non-covalent contacts between amino acids are the basis of protein interactions, and they are responsible for binding afinity and specificity in biological processes. In addition, water networks in protein interfaces can also complement direct interactions contributing significantly to molecular recognition, although their exact role is still not well understood. It is estimated that protein complexes in the PDB are substantially underrepresented due to their crystallization dificulties. Methods for automatic classifification and description of the protein complexes are essential to study protein interfaces, and to propose putative binding regions. Due to this strong need, several protein-protein interaction databases have been developed. However, most of them do not take into account either protein-peptide complexes, solvent information or a proper classification of the binding regions, which are fundamental components to provide an accurate description of protein interfaces. In the firest stage of my thesis, I developed the SCOWLP platform, a database and web application that structurally classifies protein binding regions at family level and defines accurately protein interfaces at atomic detail. The analysis of the results showed that protein-peptide complexes are substantially represented in the PDB, and are the only source of interacting information for several families. By clustering the family binding regions, I could identify 9,334 binding regions and 79,803 protein interfaces in the PDB. Interestingly, I observed that 65% of protein families interact to other molecules through more than one region and in 22% of the cases the same region recognizes different protein families. The database and web application are open to the research community (www.scowlp.org) and can tremendously facilitate high-throughput comparative analysis of protein binding regions, as well as, individual analysis of protein interfaces. SCOWLP and the other databases collect and classify the protein binding regions at family level, where sequence and structure homology exist. Interestingly, it has been observed that many protein families also present structural resemblances within each other, mostly across folds. Likewise, structurally similar interacting motifs (binding regions) have been identified among proteins with different folds and functions. For these reasons, I decided to explore the possibility to infer protein binding regions independently of their fold classification. Thus, I performed the firest systematic analysis of binding region conservation within all protein families that are structurally similar, calculated using non-sequential structural alignment methods. My results indicate there is a substantial molecular recognition information that could be potentially inferred among proteins beyond family level. I obtained a 6 to 8 fold enrichment of binding regions, and identified putative binding regions for 728 protein families that lack binding information. Within the results, I found out protein complexes from different folds that present similar interfaces, confirming the predictive usage of the methodology. The data obtained with my approach may complement the SCOWLP family binding regions suggesting alternative binding regions, and can be used to assist protein-protein docking experiments and facilitate rational ligand design. In the last part of my thesis, I used the interacting information contained in the SCOWLP database to help understand the role that water plays in protein interactions in terms of affinity and specificity. I carried out one of the firest high-throughput analysis of solvent in protein interfaces for a curated dataset of transient and obligate protein complexes. Surprisingly, the results highlight the abundance of water-bridged residues in protein interfaces (40.1% of the interfacial residues) that reinforces the importance of including solvent in protein interaction studies (14.5% extra residues interacting only water- mediated). Interestingly, I also observed that obligate and transient interfaces present a comparable amount of solvent, which contrasts the old thoughts saying that obligate protein complexes are expected to exhibit similarities to protein cores having a dry and hydrophobic interfaces. I characterized novel features of water-bridged residues in terms of secondary structure, temperature factors, residue composition, and pairing preferences that differed from direct residue-residue interactions. The results also showed relevant aspects in the mobility and energetics of water-bridged interfacial residues. Collectively, my doctoral thesis work can be summarized in the following points: 1. I developed SCOWLP, an improved framework that identiffies protein interfaces and classifies protein binding regions at family level. 2. I developed a novel methodology to predict alternative binding regions among structurally similar protein families independently of the fold they belong to. 3. I performed a high-throughput analysis of water-bridged interactions contained in SCOWLP to study the role of solvent in protein interfaces. These three components of my thesis represent novel methods for exploiting existing structural information to gain insights into protein- protein interactions, key mechanisms to understand biological processes.
182

Ion selectivity in carrier-mediated dialysis and electrodialysis

Hansen, Steven Paul 02 May 2012 (has links)
Membrane transport processes underlie many purification technologies. The efficiency of a membrane separation process depends upon material throughput (flux), and the degree to which the membrane discriminates amongst species in the feed stock (selectivity). In a supported liquid membrane, flux may be enhanced by carrier molecules, which act as catalysts of translocation. Carrier molecules also confer selectivity, via differential molecular recognition of the substances in the feed stock. The effect of electrical potential on the flux and selectivity of carrier-containing supported liquid membranes is not well documented. We elected to study the effect of electrical potential on supported liquid membranes containing valinomycin, a potassium ionophore, and a calixarene ester, a sodium ionophore. In these systems, the open circuit membrane potential could be made positive or negative by the choice of anion. With both of these carriers, we observed that selectivity for potassium or sodium salts was dependent on the open circuit membrane potential. To confirm that electrical potential was responsible for the observed selectivity variance, we applied a potential across the membrane using a potentiostat. The applied potential created conditions for carrier-mediated electrodialysis, where oxidation and reduction reactions on either side of the membrane act as the driving force for transmembrane flux of charged species. In chronoamperometry experiments, we found that selectivity for potassium or sodium ion was dependent on the applied electrical potential. Subject to some constraints, selectivity and flux could be controlled by the application of positive or negative electrical potentials. Linear sweep voltammetry experiments allowed for the rapid prediction of the potential that must be applied to achieve optimal selectivity. We also found that membrane potential measurements, as well as the magnitude of current that flows in chronoamperometry experiments, could be interpreted to predict Eisenman and Hofmeister sequences. These results are novel, and await a convincing theoretical justification. The results also suggest that a separation technology could be developed around the idea of modulating selectivity with electrical potential. In this regard, carrier-mediated electrodialysis may be suitable for the sequestration of toxic or radioactive heavy metals, and a large number of carrier molecules for metal ions are currently known. The technique may also be suitable for separating organic molecules, such as high-value chiral pharmaceuticals. Supported liquid membranes are a useful research tool, but industrial applications may require a more stable membrane architecture. / Graduate
183

Etude des phénomènes de reconnaissance moléculaire spécifique aux interfaces biologiques par AFM : investigation de l'influence de la multivalence sur les interactions sucre-lectine / Study of specific molecular recognition phenomena at biological interfaces by atomic force microscopy : probing the multivalency effect of new glycosylated ligands specific for lectins with force spectroscopy

Mastouri, Amira 25 October 2013 (has links)
Le présent projet vise à analyser l'influence de la multivalence dans les interactions sucres-lectines. En collaboration avec des équipes externes, une étude par microscopie à force atomique (AFM) de l'interaction entre des ligands synthétiques de différentes valences et leurs lectines spécifiques a été entreprise. Dans le cadre de cette étude, une première caractérisation fondamentale de l'interaction sucre-lectine a été menée. Cette caractérisation concerne plus particulièrement l'influence de la multivalence sur les forces d'adhésion et la dynamique de l'interaction entre les ligands synthétiques multivalents et une lectine modèle, la lectine d'arachide PNA. Une seconde caractérisation, d'aspect plus appliqué, concerne l'utilisation des ligands synthétiques multivalents dans une approche thérapeutique antiadhésive pour le traitement des infections urinaires chroniques dues à Escherichia coli uropathogène (UPEC). Le caractère innovant des ligands (obtenus par une synthèse chimique rationnelle) ainsi que l'approche utilisée pour caractériser leurs interactions avec les lectines à l'échelle moléculaire par AFM témoigne de l'originalité du projet. / This project aims to analyze the influence of multivalency in sugar-lectin interactions. In collaboration with external teams, a study by atomic force microscopy (AFM) of the ineraction between synthetic ligands of different valences and their specific lectins was conducted. In this study, a first fundamental characterization of sugar-lectin interaction was investigated. This characterization concerns more particularly the influence of multivalency on the adhesion forces and the dynamics of interaction between multivalent ligands and synthetic model lectin, peanut lectin PNA. A second characterization, of a more applied aspect, concerns the use of synthetic multivalent ligands in a new therapeutic approach, based on anti-adhesion, for the treatment of chronic urinary infections caused by uropathogenic Escherichia coli (UPEC). The innovative nature of the ligands (obtained by rational chemical synthesis) and the approach used to characterize their interactions with lectins at the molecular level by AFM reflects the originality of the project.
184

Tectonique moléculaire : conception et formation de polymères de coordination chiraux / Molecular tectonics : design and formation of chiral coordination polymers

Larpent, Patrick 20 December 2013 (has links)
La formation de polymères de coordination poreux et chiraux ainsi que leur utilisation pour des processus énantiosélectifs est actuellement un des domaines de grand intérêt en chimie. La formation de ces matériaux est rendue possible par le biais des concepts développés dans le domaine de la tectonique moléculaire. Les travaux présentés dans cette thèse s’inscriventdirectement dans cette thématique. Les synthèses de tectons organiques chiraux sont présentées. Leur combinaison avec divers centres métalliques, via différentes méthodes de cristallisation, a permis l’obtention de monocristaux qui ont été étudiés par diffraction des rayons X sur monocristal. Dans un premier temps, des polymères de coordination homochiraux, obtenus par l’utilisation de tectons dotés de sites coordinants neutres sont présentés. Des réseaux de type cuboïde présentant des canaux monodimensionnels au sein de leur architecture sont notamment décrits. Par la suite, des édifices mono- et bi-dimensionnels de géométries diverses sont discutés. Pour certains de ces cristaux, des interactions de plus faible énergie que la liaison de coordination permettent la formation de réseaux moléculaires de plus haute dimensionnalité. Enfin, dans une dernière partie, l’utilisation de tectons dotés de sites coordinants chargés est discutée. Des réseaux tridimensionnels homochiraux poreux et robustes sont décrits. Ces derniers sont des candidats de choix pour des procédés énantiosélectifs de séparation. Leur propension à encapsuler des gaz (N2 et CO2) est présentée. / The synthesis and the use of porous chiral coordination polymers for enantioselective processes are of current interest and prime importance in chemistry. These crystalline materials are mainly obtained by combinations of well-designed organic tectons and properly chosen metallic components. This thesis deals with the synthesis of organic chiral building blocks and their combinations with a variety of metallic salts leading to chiral coordination networks. In a first part, the use of tectons bearing neutral coordinating sites is described. Homochiral cuboid architectures displaying monodimensional channels are presented. In the second part, mono- and bi-dimensional networks of various geometries are described. In some cases, within crystals, interactions lower in energy than the coordination bond are observed and are responsible for the formation of molecular networks of higher dimensionality. Finally, the use of organic tectons displaying charged interaction sites is presented. Their combination with metallatectons under thermal treatments affords robust tridimensional homochiralarchitectures displaying cavities. These materials are interesting candidates for enantioselective recognition and separation. Their gas adsorption propensity (N2 and CO2) is briefly discussed.
185

Calix[6]arènes présentant une chiralité inhérente / Calix[6]arenes with inherent chirality

Menard, Nicolas 06 November 2012 (has links)
La chiralité inhérente, provenant d’une structure concave associée à une substitution dissymétrique, est la forme de chiralité la plus répandue et est une des bases fondamentales de la reconnaissance enzymatique : outre le fait que les briques constitutives des protéines présentent un carbone asymétrique, leur repliement définit la chiralité inhérente de la poche du site actif, et est responsable de l’étonnante sélectivité des réactions enzymatiques. De façon générale, les calixarènes ont été notamment utilisés afin de modéliser les processus enzymatiques complexes. Ils sont ainsi à la base de la construction de nombreux récepteurs moléculaires artificiels, capables de reconnaître des cations, des anions ou des molécules neutres par des interactions spécifiques. L’objectif de cette thèse est la synthèse de calix[6]arènes présentant une chiralité inhérente, en leur introduisant différentes fonctionnalités différentes en l’absence de carbone asymétrique, ainsi que l’étude de leurs propriétés de reconnaissance de molécules chirales. Cet objectif est indissociable du challenge classique de la chimie organique qu’est la monofonctionnalisation de molécules possédant plusieurs fonctions réactives équivalentes. Dans un premier temps, nous avons utilisé une stratégie biomimétique et supramoléculaire pour monofonctionnaliser très sélectivement un complexe zincique de calix[6]arène portant trois bras imidazole ou un chapeau Tris(2-aminoÉthyl)AmiNe. En tirant profit de la nature réceptrice de ces complexes, différents substrats ont pu être greffés à la structure sur un seul des trois sites équivalents du grand col. Les limites de cette réaction « monoclick » biomimétique ont été quantifiées. Les complexes monofonctionnalisés sont de nouveaux objets aux propriétés réceptrices considérablement différentes des « complexes entonnoirs » décrits par notre équipe. Le contrôle de l’accès de la cavité des complexes de Zn(II), Cu(I) et Cu(II) pour des ligands exogènes a été étudiés en présence de différents ligands compétiteurs. Par ailleurs, nous avons montré que dans le cas des complexes de cuivre, l’accès à la cavité pouvait être contrôlé par un switch électrochimique. Nous avons également développé deux stratégies de synthèse de calix[6]arènes chiraux de façon inhérente à partir de précurseurs monofonctionnalisés, et nous avons synthétisé le premier »complexe entonnoir » présentant cette propriété. Sa chiralité a été mise en évidence par l’inclusion de ligands achiraux et achiraux. Nous avons également prouvé que ces phénomènes complexes pouvaient être étudiés simplement grâce à la technique RMN 19F. / Inherent chiralty, which arises from a concave structure associated with asymetric substitution, is the most common form of chiralty and is fundamental in enzymatic recognition : although aminoacids have an asymetric center, the folding of proteins creates the inherently chiral active site of enzymes and is responsible for the extraordinary selectivity of enzymatic reactions. Calix[6]arenes have been used as a tool to study complex enzymatic processes. They have also been used to build artificial molecular receptors for cations, anions or neutral molecules through very specific interactions. The goal of this thesis is the synthesis of inherently chiral calix[6]arenes by introducing different functionalities devoid of asymetric centers, and the study of the recognition of chiral molecules. First, we developped a biomimetic and supramolecular strategy to monofunctionalize a zinc calix[6]arene complex bearin three imidazole arms or a tris(2-aminoethyl)amine cap, with high selectivity. By using the recognition abilities of theses substrates, several molecules were liked only one of the three equivalent sites of the big rim of the calixarene. The limits of the biomimetic « monoclick » reaction were also quantified. The monofunctionalized complexes are new objects whose abilities as molecular receptors greatly differ from the previous « funnel complexes » described by our team. The control of the access of the cavity of Zn(II), Cu(II) and Cu(I) complexes to exogenous ligands was thoroughly studied with different competitive ligands. Also, we proved that the access to the cavity could be controled with an electrochemical switch. We also developed strategies to synthesize inherently chiral calix[6]arenes from monofunctionalized complexes and we synthesized the first inherently chiral funnel complex. Its chirality was evidenced by the inclusion of chiral and achiral guests. We also provided the proof of concept that these particular phenomena could be simply studied with 19F NMR spectroscopy.
186

Orchestration de l'auto-assemblage et des mouvements moléculaires de pseudo-rotaxanes helicoïdaux / Orchestration of the self-assembly and molecular motion of helical pseudorotaxanes

Wang, Xiang 28 June 2016 (has links)
L’orchestration des mouvements directionnels d’architectures supramoléculaires s’avère cruciale pour la préparation de machines moléculaires artificielles. Les oligomères d’amides aromatiques (i.e. foldamères) peuvent adopter des conformations stables capables de se complexer à des tiges moléculaires pour former des (pseudo)-rotaxanes. Un contrôle fin des cinétiques d’association et de dissociation de l’hélice autour de la tige permet à l’oligomère hélicoïdal de glisser le long de celle-ci sans dissociation. Des études RMN et cristallographiques ont montré que des tiges moléculaires possédant plusieurs sites de reconnaissance pour des hélices permettaient l’élaboration d’architectures supramoléculaires hélicoïdales chirales avec une haute-fidélité. Chaque station possédant une longueur et une chiralité définie peut induire la complexation de foldamères de taille et d’hélicité concordante. Le glissement directionnel d’une double hélice le long d’une tige possédant plusieurs stations a également été investigué. Insérer un espaceur encombrant (i.e. plus large que la cavité de l’hélice) sur le chemin du foldamère le force à se déplier et se replier pour atteindre le site le plus favorable thermodynamiquement. Un oligomère asymétrique montrant de hautes affinités et de fortes sélectivités pour des tiges asymétriques a été préparé. L’enfilement de cet oligomère sur des tiges asymétriques a été étudié. Des données cinétiques (RMN) indiquent que l’enfilement de celui-ci s’effectue de façon polarisée en fonction de la nature de la tige. / The directional motion orchestration of supramolecular architectures is crucial for the construction of artificial molecular machines. Aromatic amide oligomers (i.e. foldamers) can adopt stable helical conformations able to wind around dumbbell-like guests to form (pseudo)-rotaxanes. A fine control of the association-dissociation kinetics allows the oligomers to slide along the rods without dissociation. In this thesis, based on the segregation of the kinetics of association-dissociation and sliding, helical oligomer motions were orchestrated to form complex self-assemblies and to perform directional motion. NMR and crystallographic studies showed that multistation rod guests can template the formation of well-defined multi-helical supramolecular polymers with high fidelity. Each station possessing a defined length and chirality can induce the complexation of oligomers presenting matching length and chirality. Directional sliding of a double helical oligomer along linear multistation rod guests was investigated. Placing a bulky spacer on the rod prohibits the sliding process, forcing the oligomer to dissociate and reassociate onto the thermodynamically favored station. An asymmetrical oligomer was prepared showing highly selective binding toward asymmetrical rod guests. The threading of this oligomer onto linear asymmetrical guests was investigated. Kinetic data indicated that the threading orientation of this asymmetrical oligomer was polarized by its passage along guest molecules.
187

Biocatalytic Production, Preparation and Characterization of Large-ring Cyclodextrins

Mokhtar, Mohd Noriznan 26 January 2009 (has links)
Cyclodextrins (CD) are cyclic oligosaccharides composed of six to more than sixty glucose units. Large-ring cyclodextrins (LR-CD) are novel CD comprised of more than eight glucose units with cavity structures and sizes different from that of commercially available CD<sub>6</sub> – CD<sub>8</sub>. LR-CD may offer unique molecular recognition properties and can be produced biocatalytically from starch using cyclodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) in a short reaction time. LR-CD were isolated from glucose, CD<sub>6</sub> – CD<sub>8</sub> and other compounds by complexation of CD<sub>6</sub> – CD<sub>8</sub> as well as precipitation techniques. The yield of LR-CD (degree of polymerization from 9 to 21) was optimized using central composite design. Addition of polar organic solvents to the synthesis resulted in higher yields of LR-CD. LR-CD composed of 9 to 21 glucose units were successfully separated using reversed-phase of ODS-AQ chromatography and normal-phase of polyamine II chromatography. Maintaining optimized reaction conditions aided in a high yield of CD<sub>9</sub>; it could be separated with reasonable yield using a single step of polyamine II chromatography. A co-grinding method helped to obtain higher solubilization levels of glibenclamide, vitamin A acetate and vitamin D<sub>3</sub> in CD<sub>13</sub>, CD<sub>10</sub> and CD<sub>11</sub>, respectively when compared to other CD. Vitamin K<sub>1</sub> was solubilized in distilled water with CD<sub>6</sub> – CD<sub>13</sub> using a co-precipitation method. When compared with other CD, CD<sub>9</sub> was seen to be the best solubilizer. The analysis of complexes using ESI MS showed spironolactone and glibenclamide complexed with CD<sub>9</sub> and CD<sub>13</sub>, respectively.
188

Entwicklung von rechnergestützten Ansätzen für strukturelle Klassifikation, Analyse und Vorhersage von molekularen Erkennungsregionen in Proteinen / Development of computational approaches for structural classification, analysis and prediction of molecular recognition regions in proteins

Teyra i Canaleta, Joan 02 November 2010 (has links)
The vast and growing volume of 3D protein structural data stored in the PDB contains abundant information about macromolecular complexes, and hence, data about protein interfaces. Non-covalent contacts between amino acids are the basis of protein interactions, and they are responsible for binding afinity and specificity in biological processes. In addition, water networks in protein interfaces can also complement direct interactions contributing significantly to molecular recognition, although their exact role is still not well understood. It is estimated that protein complexes in the PDB are substantially underrepresented due to their crystallization dificulties. Methods for automatic classifification and description of the protein complexes are essential to study protein interfaces, and to propose putative binding regions. Due to this strong need, several protein-protein interaction databases have been developed. However, most of them do not take into account either protein-peptide complexes, solvent information or a proper classification of the binding regions, which are fundamental components to provide an accurate description of protein interfaces. In the firest stage of my thesis, I developed the SCOWLP platform, a database and web application that structurally classifies protein binding regions at family level and defines accurately protein interfaces at atomic detail. The analysis of the results showed that protein-peptide complexes are substantially represented in the PDB, and are the only source of interacting information for several families. By clustering the family binding regions, I could identify 9,334 binding regions and 79,803 protein interfaces in the PDB. Interestingly, I observed that 65% of protein families interact to other molecules through more than one region and in 22% of the cases the same region recognizes different protein families. The database and web application are open to the research community (www.scowlp.org) and can tremendously facilitate high-throughput comparative analysis of protein binding regions, as well as, individual analysis of protein interfaces. SCOWLP and the other databases collect and classify the protein binding regions at family level, where sequence and structure homology exist. Interestingly, it has been observed that many protein families also present structural resemblances within each other, mostly across folds. Likewise, structurally similar interacting motifs (binding regions) have been identified among proteins with different folds and functions. For these reasons, I decided to explore the possibility to infer protein binding regions independently of their fold classification. Thus, I performed the firest systematic analysis of binding region conservation within all protein families that are structurally similar, calculated using non-sequential structural alignment methods. My results indicate there is a substantial molecular recognition information that could be potentially inferred among proteins beyond family level. I obtained a 6 to 8 fold enrichment of binding regions, and identified putative binding regions for 728 protein families that lack binding information. Within the results, I found out protein complexes from different folds that present similar interfaces, confirming the predictive usage of the methodology. The data obtained with my approach may complement the SCOWLP family binding regions suggesting alternative binding regions, and can be used to assist protein-protein docking experiments and facilitate rational ligand design. In the last part of my thesis, I used the interacting information contained in the SCOWLP database to help understand the role that water plays in protein interactions in terms of affinity and specificity. I carried out one of the firest high-throughput analysis of solvent in protein interfaces for a curated dataset of transient and obligate protein complexes. Surprisingly, the results highlight the abundance of water-bridged residues in protein interfaces (40.1% of the interfacial residues) that reinforces the importance of including solvent in protein interaction studies (14.5% extra residues interacting only water- mediated). Interestingly, I also observed that obligate and transient interfaces present a comparable amount of solvent, which contrasts the old thoughts saying that obligate protein complexes are expected to exhibit similarities to protein cores having a dry and hydrophobic interfaces. I characterized novel features of water-bridged residues in terms of secondary structure, temperature factors, residue composition, and pairing preferences that differed from direct residue-residue interactions. The results also showed relevant aspects in the mobility and energetics of water-bridged interfacial residues. Collectively, my doctoral thesis work can be summarized in the following points: 1. I developed SCOWLP, an improved framework that identiffies protein interfaces and classifies protein binding regions at family level. 2. I developed a novel methodology to predict alternative binding regions among structurally similar protein families independently of the fold they belong to. 3. I performed a high-throughput analysis of water-bridged interactions contained in SCOWLP to study the role of solvent in protein interfaces. These three components of my thesis represent novel methods for exploiting existing structural information to gain insights into protein- protein interactions, key mechanisms to understand biological processes.
189

Selbstorganisation von Kohlenstoffnanoröhren zu Feldeffekttransistoren

Taeger, Sebastian 16 January 2008 (has links)
Kohlenstoffnanoröhren (engl. carbon nanotubes, CNT) verfügen über eine Vielzahl von herausragenden und möglicherweise nutzbringenden Eigenschaften. Die kontrollierte Integration von CNT in technische Systeme stellt noch immer eine große Herausforderung dar. Im Rahmen der vorliegenden Arbeit wurden neue Methoden für den Aufbau von Strukturen und Bauelementen aus CNT entwickelt, die auf Selbstorganisation bzw. bottom-up assembly basieren. Dabei kamen sowohl biochemische als auch physikalische Verfahren zum Einsatz. Einzelsträngige DNA wurde verwendet um CNT in wässrigen Medien zu suspendieren und zu vereinzeln. Beides sind wichtige Voraussetzungen, um die günstigen elektronischen Eigenschaften der CNT zugänglich zu machen. DNA-CNT-Suspensionen wurden sowohl spektroskopisch in ihrer Gesamtheit als auch kraftmikroskopisch auf molekularer Ebene untersucht. So konnten wesentliche Parameter des Herstellungsprozesses optimiert werden, um Suspensionen mit einem hohen Gehalt an langen, sauberen, vereinzelten CNT zu erhalten. Durch die Verwendung von funktionalisierten DNA-Molekülen ist es gelungen, Halbleiterquantenpunkte und Goldkolloide an CNT anzubinden. Im Fall der Quantenpunkte gelang dies mit Hilfe der Biotin-Streptavidin Bindung unter Anwendung des Prinzips der molekularen Erkennung. Die Anbindung dieser Nanopartikel kann als Prototyp für den DNA-vermittelten Strukturaufbau aus CNT angesehen werden. Zur Deposition von CNT in Elektrodenstrukturen wurde ein auf Dielektrophorese beruhendes Verfahren eingesetzt. Dabei ist es gelungen, die wesentlichen Parameter zu identifizieren, die für die Morphologie der abgeschiedenen CNT entscheidend sind. So konnte die Dichte der CNT-Verbindungen zwischen Elektroden von einzelnen Verbindungen über wenige bis hin zu sehr vielen parallel assemblierten CNT eingestellt werden. Durch ein sich selbst steuerndes Hintereinanderlagern von CNT war es möglich auch Elektroden zu verbinden, deren Abstand größer war als die Länge der verwendeten CNT. Durch gezieltes Eliminieren metallischer CNT-Strompfade nach der Deposition ist es gelungen, CNT-Feldeffekttransistoren (CNT-FETs) mit Schaltverhältnissen von bis zu sieben Dekaden herzustellen. Auch dieses Verfahren ist skalierbar und unkompliziert, da es sich selbst steuert. Es ist skalierbar und deshalb auch für technische Anwendungen geeignet. An Hand des Beispiels der Detektion von Ethanoldampf konnte gezeigt werden, dass die über Dielektrophorese aufgebauten CNT-FETs auch als Sensoren eingesetzt werden können. Durch eine Kombination der dielektrophoretischen Deposition von CNT und dem dielektrophoretisch gesteuerten Wachstum metallischer Nanodrähte konnte eine neuartige Hybridstruktur aus CNT und Palladium-Nanodrähten erzeugt werden. Ein solches Verfahren ist eine Voraussetzung für den Aufbau integrierter nanoskaliger Schaltkreise. Die vorliegenden Ergebnisse zeigen zahlreiche Möglichkeiten auf, verschiedenartige nanoskopische Objekte miteinander integrieren, um neue Anwendungen zu ermöglichen.
190

Molecular Recognition of Ligands in G Protein-Coupled Receptors, Guanine in GTP-Binding Proteins, and SARS-CoV-2 Spike Proteins by ACE2

Bhatta, Pawan January 2022 (has links)
No description available.

Page generated in 0.8912 seconds