• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • Tagged with
  • 19
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Localisation d'une flotte de véhicules communicants par approche de type SLAM visuel décentralisé / Location of a fleet of communicating vehicles using a decentralized visual SLAM approach

Bresson, Guillaume 21 February 2014 (has links)
La localisation d’un véhicule via les techniques de SLAM (Simultaneous Localization And Mapping pour cartographie et localisation simultanées) a connu un essor important durant les 20 dernières années. Pourtant, peu d’approches ont tenté d’étendre ces algorithmes à une flotte de véhicules malgré les nombreuses applications potentielles. C’est ici l’objectif de cette thèse. Pour ce faire, une approche de SLAM monoculaire pour un seul véhicule a d’abord été développée. Celle-ci propose de coupler un filtre de Kalman étendu avec une représentation cartésienne des amers afin de produire des cartes de faible densité mais de qualité. En effet, l’extension à plusieurs véhicules nécessite des échanges permanents par l’intermédiaire de communications sans fil. Avec peu d’amers dans les cartes, notre approche s’accommode bien du nombre de véhicules de la flotte. Des capteurs peu onéreux ont aussi été privilégiés (une unique caméra et un odomètre) afin de réduire le coût d’une extension multivéhicule. Des correctifs ont été proposés afin d’éviter les problèmes de divergence induits par les choix précédents. Des expérimentations ont montré que la solution de SLAM produite était légère et rapide tout en fournissant une localisation de qualité. La dérive, inhérente à tout algorithme de SLAM, a également fait l’objet d’une analyse. Celle-ci a été intégrée au SLAM par l’intermédiaire d’une architecture dédiée et d’un modèle dynamique. Le but est de pouvoir rendre consistante la localisation fournie par le SLAM, même en l’absence d’estimation de la dérive. Cela permet d’effectuer des fermetures de boucle ou encore d’intégrer des informations géo-référencées de manière naturelle tout en conservant l’intégrité de la solution. En multivéhicule, cet aspect est un point clef puisque chaque véhicule dérive différemment des autres. Il est donc important de le prendre en compte. Enfin, le SLAM a été étendu à plusieurs véhicules. Une structure générique a été prévue afin que notre approche monoculaire puisse être remplacée par n’importe quel algorithme de SLAM. Notre architecture décentralisée évite la consanguinité des données (le fait de compter deux fois une même information) et gère les défaillances réseau, que cela soit des ruptures de communication ou encore des latences dans la réception des données. La partie statique du modèle de dérive permet également de prendre en compte le fait que les positions initiales des véhicules d’une flotte puissent être inconnues. L’intégrité est ainsi maintenue en permanence. Enfin, notre approche étant entièrement décentralisée, elle a pu être testée et validée en simulation et avec des expérimentations réelles dans diverses configurations (convoi en colonne ou en ligne, avec 2 ou 3 véhicules). / The localization of a vehicle with the use of SLAM techniques (Simultaneous Localization And Mapping) has been extensively studied during the last 20 years. However, only a few approaches have tried to extend these algorithms to a fleet of vehicles despite the many potential applications. It is the objective of this thesis. First of all, a monocular SLAM for a single vehicle has been developed. This one proposes to pair an Extended Kalman Filter with a Cartesian representation for landmarks so as to produce accurate low density maps. Indeed, the extension of SLAM to several vehicles requires permanent communications inside the fleet. With only a few landmarks mapped, our approach scales nicely with the number of vehicles. Cheap sensors have been favored (a single camera and an odometer) in order to spread more easily the use of multi-vehicle applications. Correctives have been proposed in order to avoid the divergence problems induced by such a scheme. The experiments showed that our SLAM is able to furnish good localization results while being light and fast.The drift affecting every SLAM algorithm has also been studied. Its integration inside the SLAM process, thanks to a dedicated architecture and a dynamic model, allows to ensure consistency even without an estimation of it. Loop closures or the integration of geo-referenced information becomes straightforward. They naturally correct all the past positions while still maintaining consistency. In a multi-vehicle scenario, it is a key aspect as each vehicle drifts differently from one another. It is consequently important to take it into account. Our SLAM algorithm has then been extended to several vehicles. A generic structure has been used so as to allow any SLAM algorithm to replace our monocular SLAM. The multi-vehicle architecture avoids data incest (double-counting information) and handles network failures, be they communication breakdowns or latencies when receiving data. The static part of the drift model allows to take into account the fact that the initial positions of the different vehicles composing the fleet might be unknown. Consistency is thus permanently preserved. Our approach has been successfully tested using simulations and real experiments with various settings (row or column convoy with 2 or 3 vehicles) in a fully decentralized way.
12

Recherche linéaire et fusion de données par ajustement de faisceaux : application à la localisation par vision / Linear research and data fusion by beam adjustment : application to vision localization

Michot, Julien 09 December 2010 (has links)
Les travaux présentés dans ce manuscrit concernent le domaine de la localisation et la reconstruction 3D par vision artificielle. Dans ce contexte, la trajectoire d’une caméra et la structure3D de la scène filmée sont initialement estimées par des algorithmes linéaires puis optimisées par un algorithme non-linéaire, l’ajustement de faisceaux. Cette thèse présente tout d’abord une technique de recherche de l’amplitude de déplacement (recherche linéaire), ou line search pour les algorithmes de minimisation itérative. La technique proposée est non itérative et peut être rapidement implantée dans un ajustement de faisceaux traditionnel. Cette technique appelée recherche linéaire algébrique globale (G-ALS), ainsi que sa variante à deux dimensions (Two way-ALS), accélèrent la convergence de l’algorithme d’ajustement de faisceaux. L’approximation de l’erreur de reprojection par une distance algébrique rend possible le calcul analytique d’une amplitude de déplacement efficace (ou de deux pour la variante Two way-ALS), par la résolution d’un polynôme de degré 3 (G-ALS) ou 5 (Two way-ALS). Nos expérimentations sur des données simulées et réelles montrent que cette amplitude, optimale en distance algébrique, est performante en distance euclidienne, et permet de réduire le temps de convergence des minimisations. Une difficulté des algorithmes de localisation en temps réel par la vision (SLAM monoculaire) est que la trajectoire estimée est souvent affectée par des dérives : dérives d’orientation, de position et d’échelle. Puisque ces algorithmes sont incrémentaux, les erreurs et approximations sont cumulées tout au long de la trajectoire, et une dérive se forme sur la localisation globale. De plus, un système de localisation par vision peut toujours être ébloui ou utilisé dans des conditions qui ne permettent plus temporairement de calculer la localisation du système. Pour résoudre ces problèmes, nous proposons d’utiliser un capteur supplémentaire mesurant les déplacements de la caméra. Le type de capteur utilisé varie suivant l’application ciblée (un odomètre pour la localisation d’un véhicule, une centrale inertielle légère ou un système de navigation à guidage inertiel pour localiser une personne). Notre approche consiste à intégrer ces informations complémentaires directement dans l’ajustement de faisceaux, en ajoutant un terme de contrainte pondéré dans la fonction de coût. Nous évaluons trois méthodes permettant de sélectionner dynamiquement le coefficient de pondération et montrons que ces méthodes peuvent être employées dans un SLAM multi-capteur temps réel, avec différents types de contrainte, sur l’orientation ou sur la norme du déplacement de la caméra. La méthode est applicable pour tout autre terme de moindres carrés. Les expérimentations menées sur des séquences vidéo réelles montrent que cette technique d’ajustement de faisceaux contraint réduit les dérives observées avec les algorithmes de vision classiques. Ils améliorent ainsi la précision de la localisation globale du système. / The works presented in this manuscript are in the field of computer vision, and tackle the problem of real-time vision based localization and 3D reconstruction. In this context, the trajectory of a camera and the 3D structure of the filmed scene are initially estimated by linear algorithms and then optimized by a nonlinear algorithm, bundle adjustment. The thesis first presents a new technique of line search, dedicated to the nonlinear minimization algorithms used in Structure-from-Motion. The proposed technique is not iterative and can be quickly installed in traditional bundle adjustment frameworks. This technique, called Global Algebraic Line Search (G-ALS), and its two-dimensional variant (Two way-ALS), accelerate the convergence of the bundle adjustment algorithm. The approximation of the reprojection error by an algebraic distance enables the analytical calculation of an effective displacement amplitude (or two amplitudes for the Two way-ALS variant) by solving a degree 3 (G-ALS) or 5 (Two way-ALS) polynomial. Our experiments, conducted on simulated and real data, show that this amplitude, which is optimal for the algebraic distance, is also efficient for the Euclidean distance and reduces the convergence time of minimizations. One difficulty of real-time tracking algorithms (monocular SLAM) is that the estimated trajectory is often affected by drifts : on the absolute orientation, position and scale. Since these algorithms are incremental, errors and approximations are accumulated throughout the trajectory and cause global drifts. In addition, a tracking vision system can always be dazzled or used under conditions which prevented temporarily to calculate the location of the system. To solve these problems, we propose to use an additional sensor measuring the displacement of the camera. The type of sensor used will vary depending on the targeted application (an odometer for a vehicle, a lightweight inertial navigation system for a person). We propose to integrate this additional information directly into an extended bundle adjustment, by adding a constraint term in the weighted cost function. We evaluate three methods (based on machine learning or regularization) that dynamically select the weight associated to the constraint and show that these methods can be used in a real time multi-sensor SLAM, and validate them with different types of constraint on the orientation or on the scale. Experiments conducted on real video sequences show that this technique of constrained bundle adjustment reduces the drifts observed with the classical vision algorithms and improves the global accuracy of the positioning system.
13

Evitement d'obstacles par invariants visuels

Nègre, Amaury 05 March 2009 (has links) (PDF)
Dans un contexte de navigation visuelle en environnement ouvert et dynamique, la détection d'obstacles constitue un élément indispensable. Dans cette thèse, nous nous intéressons à la caractérisation des obstacles par le temps avant collision (TTC). Ayant montré que ce TTC peut être calculé directement dans une image à l'aide de l'échelle intrinsèque, nous avons mis au point un détecteur ainsi qu'un algorithme de suivi invariant au changement d'échelle et adapté à un environnement urbain. Ce détecteur permet d'extraire des régions d'intérêt appelées segments de crête correspondant à des formes contrastées et rectilignes dans l'image. Le suivi de ces régions d'intérêt est fondé sur un filtre à particules et permet de mesurer la variation d'échelles afin d'estimer le TTC. Enfin, nous avons étudié deux applications de navigation visuelle d'un véhicule telles que l'arrêt du véhicule avant collision et un système d'évitement réactif d'obstacles bayésien.
14

Modèle du corps humain pour le suivi de gestes en monoculaire

Noriega, Philippe 11 October 2007 (has links) (PDF)
L'estimation de la pose du corps humain ou son suivi grâce à la vision par ordinateur se heurte à la diffi culté d'explorer un espace de grande dimension. Les approches par apprentissage et particulièrement celles qui font appel aux régressions vers des espaces de dimension réduits comme les LLE [RS00] ou les GPLVM [Law03] permettent de résoudre cette diffi culté dans le cas de gestes cycliques [UFF06] sans parvenir à généraliser le suivi pour des poses quelconques. D'autres techniques procèdent directement par la comparaison de l'image test avec une base d'apprentissage. Dans cet esprit, le PSH [SVD03] permet d'identi fier rapidement un ensemble de poses similaires dans une grande base de données. Cependant, même en intégrant des techniques d'extrapolation qui permettent de générer d'autres poses à partir de celles apprises, les approches uniquement basées sur l'apprentissage ne parviennent généralement pas à couvrir de façon assez dense l'espace des poses [TSDD06]. D'autres voies consistent à mettre en oeuvre une méthode déterministe ou stochastique. Les méthodes déterministes [PF03] fournissent souvent une solution sous-optimale en restant piégées sur un optimum local du fait des ambiguïtés issues de la vision monoculaire. Les approches stochastiques tentent d'explorer la probabilité a posteriori mais là encore, la grande dimension de l'espace des poses, notamment dans le cas des méthodes à base de simulation par échantillonnage, exige de multiplier le nombre des tirages a n d'avoir une chance d'explorer le mode dominant. Une solution intéressante consiste à utiliser un modèle de corps à membres indépendants [SBR+04] pour restreindre l'exploration aux sous espaces dé nis par les paramètres de chacun des membres. L'infl uence d'un membre sur les autres s'exprime grâce à la propagation des croyances [KFL01] pour fournir une solution cohérente. Dans ce travail de thèse, cette dernière solution est retenue en l'associant au fi ltre à particules pour générer un espace discret où s'e ectue la propagation des croyances [BCMC06]. Ce procédé est préférable à la modélisation paramétrique des messages par un échantillonneur de Gibbs, un procédé coûteux en ressources dérivé de l'algorithme PAMPAS [Isa03]. Parallèlement à cette solution, le développement d'un suivi robuste du haut du corps, même en 2D [NB07b], exige une fusion de plusieurs indices extraits de l'image. La vraisemblance des hypothèses émises vis-à-vis de l'image est évaluée à partir d'indices tirés des gradients et de la couleur combinés avec une soustraction de fond [NB06] et une détection du mouvement. L'interprétation de la profondeur pour le passage en 3D constitue une di fficulté majeure du suivi monoculaire. La fusion d'indices évoquée précédemment devient insu sante pour contraindre la pose. Cependant, du fait des contraintes articulaires, l'espace réel des poses occupe un sous-espace très réduit dans l'espace théorique. Le codage de ces contraintes dans l'étape de propagation des croyances associé à la fusion d'indices permet alors d'aboutir à de bonnes performances, même dans les cas d'environnements non contraints (lumière, vêtements...) [NB07a]. Une meilleure gestion des occultations est mise en oeuvre en ajoutant un terme de compatibilité des hypothèses basé sur l'apprentissage. Avec le modèle utilisé [SBR+04], ce sont des membres indépendants plutôt que des poses complètes qui sont stockées dans la base d'apprentissage. Ceci permet d'obtenir une couverture satisfaisante de l'espace des poses avec un nombre raisonnable d'exemples appris. La propagation des croyances assure un assemblage cohérent des membres pour arriver au résultat et le processus de sélection des exemples dans la base peut-être accéléré grâce au PSH [SVD03].
15

Détection et suivi d'objets mobiles perçus depuis un capteur visuel embarqué

Almanza-Ojeda, Dora Luz 07 January 2011 (has links) (PDF)
Cette thèse traite de la détection et du suivi d'objets mobiles dans un environnement dynamique, en utilisant une caméra embarquée sur un robot mobile. Ce sujet représente encore un défi important car on exploite uniquement la vision mono-caméra pour le résoudre. Nous devons détecter les objets mobiles dans la scène par une analyse de leurs déplacements apparents dans les images, en excluant le mouvement propre de la caméra. Dans une première étape, nous proposons une analyse spatio-temporelle de la séquence d'images, sur la base du flot optique épars. La méthode de clustering a contrario permet le groupement des points dynamiques, sans information a priori sur le nombre de groupes à former et sans réglage de paramètres. La réussite de cette méthode réside dans une accumulation suffisante des données pour bien caractériser la position et la vitesse des points. Nous appelons temps de pistage, le temps nécessaire pour acquérir les images analysées pour bien caractériser les points. Nous avons développé une carte probabiliste afin de trouver les zones dans l'image qui ont les probabilités la plus grandes de contenir un objet mobile. Cette carte permet la sélection active de nouveaux points près des régions détectées précédemment en permettant d'élargir la taille de ces régions. Dans la deuxième étape nous mettons en oeuvre une approche itérative pour exécuter détection, clustering et suivi sur des séquences d'images acquises depuis une caméra fixe en intérieur et en extérieur. Un objet est représenté par un contour actif qui est mis à jour de sorte que le modèle initial reste à l'intérieur du contour. Finalement nous présentons des résultats expérimentaux sur des images acquises depuis une caméra embarquée sur un robot mobile se déplaçant dans un environnement extérieur avec des objets mobiles rigides et nonrigides. Nous montrons que la méthode est utilisable pour détecter des obstacles pendant la navigation dans un environnement inconnu a priori, d'abord pour des faibles vitesses, puis pour des vitesses plus réalistes après compensation du mouvement propre du robot dans les images.
16

Localisation, reconstruction et mosaïque appliquées aux peintures sur cylindres généralisés à axe droit en vision monoculaire

Perret, Stéphane 03 September 1997 (has links)
Ces travaux concernent la localisation et la reconstruction de surfaces cylindriques sur lesquelles sont projetées ou plaquées des scènes que le capteur perçoit comme des images. Du fait d'une étude limitée à la vision monoculaire, l'utilisation de connaissances a priori est nécessaire. On se propose d'approfondir des méthodes intégrant des contours contenus dans l'image, qui sont supposés être des projections de sections de Cylindres Généralisés Homogènes à axe Droit (CGHD). Les résultats sont appliqués principalement au domaine des oeuvres d'art comme les peintures sur voutes ou les fresques sur colonnes. Compte tenu de la limitation du champ d'observation des capteurs, nous sommes aussi amenés à aborder le problème de mosaïque de surfaces. Dans un premier temps nous présentons un ensemble de définitions concernant le modèle d'une caméra et les surfaces cylindriques généralisées, nous développons les connaissances a priori utilisées et le contexte d'application reliant le traitement d'images et les oeuvres d'art. Nous décrivons alors des mèthodes de localisation de Cylindres Généralisés Uniformes à axe Droit (CGUD) dans le repère de la caméra. Nous présentons deux mèthodes de détection de la projection de l'axe d'un CGUD, puis nous décrivons comment obtenir un deuxième axe dans l'image. Nous interprétons alors la signification de ces deux axes. Nous décrivons ensuite une méthode de reconstruction 3D de CGUD pouvant être étendue aux CGHD de sections fermées circulaires ou elliptiques, ou de sections ouvertes paraboliques ou elliptiques. Dans un premier temps, nous démontrons que l'évolution des courbures des ellipses dans l'image, projections de sections du CGUD de sections circulaires, est fonction linéaire de l'altitude de la section dans l'espace 3D. Nous étendons ces travaux aux problèmes de mosaïques de surfaces cylindriques. Nous analysons les distorsions dues à la projection perspective sur le plan image d'une scène issue d'une surface cylindrique. Nous présentons aussi une estimation du nombre de vues d'un CGUD nécessaire pour obtenir une scène complète. Tout au long de ces travaux, des résultats issus d'images synthètiques ou de peintures illustrent les méthodes développées.
17

Localisation et cartographie simultanées par ajustement de faisceaux local : propagation d'erreurs et réduction de la dérive à l'aide d'un odomètre / Simultaneous localization and mapping by local beam adjustment : error propagation and drift reduction using an odometer

Eudes, Alexandre 14 March 2011 (has links)
Les travaux présentés ici concernent le domaine de la localisation de véhicule par vision artificielle. Dans ce contexte, la trajectoire d’une caméra et la structure3D de la scène filmée sont estimées par une méthode d’odométrie visuelle monoculaire basée sur l’ajustement de faisceaux local. Les contributions de cette thèse sont plusieurs améliorations de cette méthode. L’incertitude associée à la position estimée n’est pas fournie par la méthode d’ajustement de faisceaux local. C’est pourtant une information indispensable pour pouvoir utiliser cette position, notamment dans un système de fusion multi-sensoriel. Une étude de la propagation d’incertitude pour cette méthode d’odométrie visuelle a donc été effectuée pour obtenir un calcul d’incertitude temps réel et représentant l’erreur de manière absolue (dans le repère du début de la trajectoire). Sur de longues séquences (plusieurs kilomètres), les méthodes monoculaires de localisation sont connues pour présenter des dérives importantes dues principalement à la dérive du facteur d’échelle (non observable). Pour réduire cette dérive et améliorer la qualité de la position fournie, deux méthodes de fusion ont été développées. Ces deux améliorations permettent de rendre cette méthode monoculaire exploitable dans le cadre automobile sur de grandes distances tout en conservant les critères de temps réel nécessaire dans ce type d’application. De plus, notre approche montre l’intérêt de disposer des incertitudes et ainsi de tirer parti de l’information fournie par d’autres capteurs. / The present work is about localisation of vehicle using computer vision methods. In this context, the camera trajectory and the 3D structure of the scene is estimated by a monocular visual odometry method based on local bundle adjustment. This thesis contributions are some improvements of this method. The uncertainty of the estimated position was not provided by the local bundle adjustment method. Indeed, this uncertainty is crucial in a multi-sensorial fusion system to use optimally the estimated position. A study of the uncertainty propagation in this visual odometry method has been done and an uncertainty calculus method has been designed to comply with real time performance. By the way, monocular visual localisation methods are known to have serious drift issues on long trajectories (some kilometers). This error mainly comes from bad propagation of the scale factor. To limit this drift and improve the quality of the given position, we proposed two data fusion methods between an odometer and the visual method. Finally, the two improvements presented here allow us to use visual localisation method in real urban environment on long trajectories under real time constraints.
18

Robust Learning of a depth map for obstacle avoidance with a monocular stabilized flying camera / Apprentissage robuste d'une carte de profondeur pour l'évitement d'obstacle dans le cas des cameras volantes, monoculaires et stabilisées

Pinard, Clément 24 June 2019 (has links)
Le drone orienté grand public est principalement une caméra volante, stabilisée et de bonne qualité. Ceux-ci ont démocratisé la prise de vue aérienne, mais avec leur succès grandissant, la notion de sécurité est devenue prépondérante.Ce travail s'intéresse à l'évitement d'obstacle, tout en conservant un vol fluide pour l'utilisateur.Dans ce contexte technologique, nous utilisons seulement une camera stabilisée, par contrainte de poids et de coût.Pour leur efficacité connue en vision par ordinateur et leur performance avérée dans la résolution de tâches complexes, nous utilisons des réseaux de neurones convolutionnels (CNN). Notre stratégie repose sur un systeme de plusieurs niveaux de complexité dont les premieres étapes sont de mesurer une carte de profondeur depuis la caméra. Cette thèse étudie les capacités d'un CNN à effectuer cette tâche.La carte de profondeur, étant particulièrement liée au flot optique dans le cas d'images stabilisées, nous adaptons un réseau connu pour cette tâche, FlowNet, afin qu'il calcule directement la carte de profondeur à partir de deux images stabilisées. Ce réseau est appelé DepthNet.Cette méthode fonctionne en simulateur avec un entraînement supervisé, mais n'est pas assez robuste pour des vidéos réelles. Nous étudions alors les possibilites d'auto-apprentissage basées sur la reprojection différentiable d'images. Cette technique est particulièrement nouvelle sur les CNNs et nécessite une étude détaillée afin de ne pas dépendre de paramètres heuristiques.Finalement, nous développons un algorithme de fusion de cartes de profondeurs pour utiliser DepthNet sur des vidéos réelles. Plusieurs paires différentes sont données à DepthNet afin d'avoir une grande plage de profondeurs mesurées. / Customer unmanned aerial vehicles (UAVs) are mainly flying cameras. They democratized aerial footage, but with thei success came security concerns.This works aims at improving UAVs security with obstacle avoidance, while keeping a smooth flight. In this context, we use only one stabilized camera, because of weight and cost incentives.For their robustness in computer vision and thei capacity to solve complex tasks, we chose to use convolutional neural networks (CNN). Our strategy is based on incrementally learning tasks with increasing complexity which first steps are to construct a depth map from the stabilized camera. This thesis is focused on studying ability of CNNs to train for this task.In the case of stabilized footage, the depth map is closely linked to optical flow. We thus adapt FlowNet, a CNN known for optical flow, to output directly depth from two stabilized frames. This network is called DepthNet.This experiment succeeded with synthetic footage, but is not robust enough to be used directly on real videos. Consequently, we consider self supervised training with real videos, based on differentiably reproject images. This training method for CNNs being rather novel in literature, a thorough study is needed in order not to depend too moch on heuristics.Finally, we developed a depth fusion algorithm to use DepthNet efficiently on real videos. Multiple frame pairs are fed to DepthNet to get a great depth sensing range.
19

Localisation d'une flotte de véhicules communicants par approche de type SLAM visuel décentralisé

Bresson, Guillaume 21 February 2014 (has links) (PDF)
La localisation d'un véhicule via les techniques de SLAM (Simultaneous Localization And Mapping pour cartographie et localisation simultanées) a connu un essor important durant les 20 dernières années. Pourtant, peu d'approches ont tenté d'étendre ces algorithmes à une flotte de véhicules malgré les nombreuses applications potentielles. C'est ici l'objectif de cette thèse. Pour ce faire, une approche de SLAM monoculaire pour un seul véhicule a d'abord été développée. Celle-ci propose de coupler un filtre de Kalman étendu avec une représentation cartésienne des amers afin de produire des cartes de faible densité mais de qualité. En effet, l'extension à plusieurs véhicules nécessite des échanges permanents par l'intermédiaire de communications sans fil. Avec peu d'amers dans les cartes, notre approche s'accommode bien du nombre de véhicules de la flotte. Des capteurs peu onéreux ont aussi été privilégiés (une unique caméra et un odomètre) afin de réduire le coût d'une extension multivéhicule. Des correctifs ont été proposés afin d'éviter les problèmes de divergence induits par les choix précédents. Des expérimentations ont montré que la solution de SLAM produite était légère et rapide tout en fournissant une localisation de qualité. La dérive, inhérente à tout algorithme de SLAM, a également fait l'objet d'une analyse. Celle-ci a été intégrée au SLAM par l'intermédiaire d'une architecture dédiée et d'un modèle dynamique. Le but est de pouvoir rendre consistante la localisation fournie par le SLAM, même en l'absence d'estimation de la dérive. Cela permet d'effectuer des fermetures de boucle ou encore d'intégrer des informations géo-référencées de manière naturelle tout en conservant l'intégrité de la solution. En multivéhicule, cet aspect est un point clef puisque chaque véhicule dérive différemment des autres. Il est donc important de le prendre en compte. Enfin, le SLAM a été étendu à plusieurs véhicules. Une structure générique a été prévue afin que notre approche monoculaire puisse être remplacée par n'importe quel algorithme de SLAM. Notre architecture décentralisée évite la consanguinité des données (le fait de compter deux fois une même information) et gère les défaillances réseau, que cela soit des ruptures de communication ou encore des latences dans la réception des données. La partie statique du modèle de dérive permet également de prendre en compte le fait que les positions initiales des véhicules d'une flotte puissent être inconnues. L'intégrité est ainsi maintenue en permanence. Enfin, notre approche étant entièrement décentralisée, elle a pu être testée et validée en simulation et avec des expérimentations réelles dans diverses configurations (convoi en colonne ou en ligne, avec 2 ou 3 véhicules).

Page generated in 0.047 seconds