• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 17
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Zkoumání úlohy univerzálního sémantického značkování pomocí neuronových sítí, řešením jiných úloh a vícejazyčným učením / Zkoumání úlohy univerzálního sémantického značkování pomocí neuronových sítí, řešením jiných úloh a vícejazyčným učením

Abdou, Mostafa January 2018 (has links)
July 19, 2018 In this thesis we present an investigation of multi-task and transfer learning using the recently introduced task of semantic tagging. First we employ a number of natural language processing tasks as auxiliaries for semantic tag- ging. Secondly, going in the other direction, we employ seman- tic tagging as an auxiliary task for three di erent NLP tasks: Part-of-Speech Tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where neg- ative transfer between tasks is less likely. Fi- nally, we investigate multi-lingual learning framed as a special case of multi-task learning. Our ndings show considerable improvements for most experiments, demonstrating a variety of cases where multi-task and transfer learning methods are bene cial. 1 References 2
32

Multi-Task Convolutional Learning for Flame Characterization

Ur Rehman, Obaid January 2020 (has links)
This thesis explores multi-task learning for combustion flame characterization i.e to learn different characteristics of the combustion flame. We propose a multi-task convolutional neural network for two tasks i.e. PFR (Pilot fuel ratio) and fuel type classification based on the images of stable combustion. We utilize transfer learning and adopt VGG16 to develop a multi-task convolutional neural network to jointly learn the aforementioned tasks. We also compare the performance of the individual CNN model for two tasks with multi-task CNN which learns these two tasks jointly by sharing visual knowledge among the tasks. We share the effectiveness of our proposed approach to a private company’s dataset. To the best of our knowledge, this is the first work being done for jointly learning different characteristics of the combustion flame. / <p>This wrok as done with Siemens, and we have applied for a patent which is still pending.</p>
33

Uncovering Structure in High-Dimensions: Networks and Multi-task Learning Problems

Kolar, Mladen 01 July 2013 (has links)
Extracting knowledge and providing insights into complex mechanisms underlying noisy high-dimensional data sets is of utmost importance in many scientific domains. Statistical modeling has become ubiquitous in the analysis of high dimensional functional data in search of better understanding of cognition mechanisms, in the exploration of large-scale gene regulatory networks in hope of developing drugs for lethal diseases, and in prediction of volatility in stock market in hope of beating the market. Statistical analysis in these high-dimensional data sets is possible only if an estimation procedure exploits hidden structures underlying data. This thesis develops flexible estimation procedures with provable theoretical guarantees for uncovering unknown hidden structures underlying data generating process. Of particular interest are procedures that can be used on high dimensional data sets where the number of samples n is much smaller than the ambient dimension p. Learning in high-dimensions is difficult due to the curse of dimensionality, however, the special problem structure makes inference possible. Due to its importance for scientific discovery, we put emphasis on consistent structure recovery throughout the thesis. Particular focus is given to two important problems, semi-parametric estimation of networks and feature selection in multi-task learning.
34

Deep Learning Studies for Vision-based Condition Assessment and Attribute Estimation of Civil Infrastructure Systems

Fu-Chen Chen (7484339) 14 January 2021 (has links)
Structural health monitoring and building assessment are crucial to acquire structures’ states and maintain their conditions. Besides human-labor surveys that are subjective, time-consuming, and expensive, autonomous image and video analysis is a faster, more efficient, and non-destructive way. This thesis focuses on crack detection from videos, crack segmentation from images, and building assessment from street view images. For crack detection from videos, three approaches are proposed based on local binary pattern (LBP) and support vector machine (SVM), deep convolution neural network (DCNN), and fully-connected network (FCN). A parametric Naïve Bayes data fusion scheme is introduced that registers video frames in a spatiotemporal coordinate system and fuses information based on Bayesian probability to increase detection precision. For crack segmentation from images, the rotation-invariant property of crack is utilized to enhance the segmentation accuracy. The architectures of several approximately rotation-invariant DCNNs are discussed and compared using several crack datasets. For building assessment from street view images, a framework of multiple DCNNs is proposed to detect buildings and predict their attributes that are crucial for flood risk estimation, including founding heights, foundation types (pier, slab, mobile home, or others), building types (commercial, residential, or mobile home), and building stories. A feature fusion scheme is proposed that combines image feature with meta information to improve the predictions, and a task relation encoding network (TREncNet) is introduced that encodes task relations as network connections to enhance multi-task learning.
35

User Attribute Inference via Mining User-Generated Data

Ding, Shichang 01 December 2020 (has links)
No description available.
36

Can Wizards be Polyglots: Towards a Multilingual Knowledge-grounded Dialogue System

Liu, Evelyn Kai Yan January 2022 (has links)
The research of open-domain, knowledge-grounded dialogue systems has been advancing rapidly due to the paradigm shift introduced by large language models (LLMs). While the strides have improved the performance of the dialogue systems, the scope is mostly monolingual and English-centric. The lack of multilingual in-task dialogue data further discourages research in this direction. This thesis explores the use of transfer learning techniques to extend the English-centric dialogue systems to multiple languages. In particular, this work focuses on five typologically diverse languages, of which well-performing models could generalize to the languages that are part of the language family as the target languages, hence widening the accessibility of the systems to speakers of various languages. I propose two approaches: Multilingual Retrieval-Augmented Dialogue Model (xRAD) and Multilingual Generative Dialogue Model (xGenD). xRAD is adopted from a pre-trained multilingual question answering (QA) system and comprises a neural retriever and a multilingual generation model. Prior to the response generation, the retriever fetches relevant knowledge and conditions the retrievals to the generator as part of the dialogue context. This approach can incorporate knowledge into conversational agents, thus improving the factual accuracy of a dialogue model. In addition, xRAD has advantages over xGenD because of its modularity, which allows the fusion of QA and dialogue systems so long as appropriate pre-trained models are employed. On the other hand, xGenD takes advantage of an existing English dialogue model and performs a zero-shot cross-lingual transfer by training sequentially on English dialogue and multilingual QA datasets. Both automated and human evaluation were carried out to measure the models' performance against the machine translation baseline. The result showed that xRAD outperformed xGenD significantly and surpassed the baseline in most metrics, particularly in terms of relevance and engagingness. Whilst xRAD performance was promising to some extent, a detailed analysis revealed that the generated responses were not actually grounded in the retrieved paragraphs. Suggestions were offered to mitigate the issue, which hopefully could lead to significant progress of multilingual knowledge-grounded dialogue systems in the future.
37

Exploration de données pour l'optimisation de trajectoires aériennes / Data analysis for aircraft trajectory optimization

Rommel, Cédric 26 October 2018 (has links)
Cette thèse porte sur l'utilisation de données de vols pour l'optimisation de trajectoires de montée vis-à-vis de la consommation de carburant.Dans un premier temps nous nous sommes intéressé au problème d'identification de modèles de la dynamique de l'avion dans le but de les utiliser pour poser le problème d'optimisation de trajectoire à résoudre. Nous commençont par proposer une formulation statique du problème d'identification de la dynamique. Nous l'interpretons comme un problème de régression multi-tâche à structure latente, pour lequel nous proposons un modèle paramétrique. L'estimation des paramètres est faite par l'application de quelques variations de la méthode du maximum de vraisemblance.Nous suggérons également dans ce contexte d'employer des méthodes de sélection de variable pour construire une structure de modèle de régression polynomiale dépendant des données. L'approche proposée est une extension à un contexte multi-tâche structuré du bootstrap Lasso. Elle nous permet en effet de sélectionner les variables du modèle dans un contexte à fortes corrélations, tout en conservant la structure du problème inhérente à nos connaissances métier.Dans un deuxième temps, nous traitons la caractérisation des solutions du problème d'optimisation de trajectoire relativement au domaine de validité des modèles identifiés. Dans cette optique, nous proposons un critère probabiliste pour quantifier la proximité entre une courbe arbitraire et un ensemble de trajectoires échantillonnées à partir d'un même processus stochastique. Nous proposons une classe d'estimateurs de cette quantitée et nous étudions de façon plus pratique une implémentation nonparamétrique basé sur des estimateurs à noyau, et une implémentation paramétrique faisant intervenir des mélanges Gaussiens. Ce dernier est introduit comme pénalité dans le critère d'optimisation de trajectoire dans l'objectif l'intention d'obtenir directement des trajectoires consommant peu sans trop s'éloigner des régions de validité. / This thesis deals with the use of flight data for the optimization of climb trajectories with relation to fuel consumption.We first focus on methods for identifying the aircraft dynamics, in order to plug it in the trajectory optimization problem. We suggest a static formulation of the identification problem, which we interpret as a structured multi-task regression problem. In this framework, we propose parametric models and use different maximum likelihood approaches to learn the unknown parameters.Furthermore, polynomial models are considered and an extension to the structured multi-task setting of the bootstrap Lasso is used to make a consistent selection of the monomials despite the high correlations among them.Next, we consider the problem of assessing the optimized trajectories relatively to the validity region of the identified models. For this, we propose a probabilistic criterion for quantifying the closeness between an arbitrary curve and a set of trajectories sampled from the same stochastic process. We propose a class of estimators of this quantity and prove their consistency in some sense. A nonparemetric implementation based on kernel density estimators, as well as a parametric implementation based on Gaussian mixtures are presented. We introduce the later as a penalty term in the trajectory optimization problem, which allows us to control the trade-off between trajectory acceptability and consumption reduction.
38

Remembering how to walk - Using Active Dendrite Networks to Drive Physical Animations / Att minnas att gå - användning av Active Dendrite Nätverk för att driva fysiska animeringar

Henriksson, Klas January 2023 (has links)
Creating embodied agents capable of performing a wide range of tasks in different types of environments has been a longstanding challenge in deep reinforcement learning. A novel network architecture introduced in 2021 called the Active Dendrite Network [A. Iyer et al., “Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments”] designed to create sparse subnetworks for different tasks showed promising multi-tasking performance on the Meta-World [T. Yu et al., “Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning”] multi-tasking benchmark. This thesis further explores the performance of this novel architecture in a multi-tasking environment focused on physical animations and locomotion. Specifically we implement and compare the architecture to the commonly used Multi-Layer Perceptron (MLP) architecture on a multi-task reinforcement learning problem in a video-game setting consisting of training a hexapedal agent on a set of locomotion tasks involving moving at different speeds, turning and standing still. The evaluation focused on two areas: (1) Assessing the average overall performance of the Active Dendrite Network relative to the MLP on a set of locomotive scenarios featuring our behaviour sets and environments. (2) Assessing the relative impact Active Dendrite networks have on transfer learning between related tasks by comparing their performance on novel behaviours shortly after training a related behaviour. Our findings suggest that the novel Active Dendrite Network can make better use of limited network capacity compared to the MLP - the Active Dendrite Network outperformed the MLP by ∼18% on our benchmark using limited network capacity. When both networks have sufficient capacity however, there is not much difference between the two. We further find that Active Dendrite Networks have very similar transfer-learning capabilities compared to the MLP in our benchmarks.
39

Cross-Lingual and Genre-Supervised Parsing and Tagging for Low-Resource Spoken Data

Fosteri, Iliana January 2023 (has links)
Dealing with low-resource languages is a challenging task, because of the absence of sufficient data to train machine-learning models to make predictions on these languages. One way to deal with this problem is to use data from higher-resource languages, which enables the transfer of learning from these languages to the low-resource target ones. The present study focuses on dependency parsing and part-of-speech tagging of low-resource languages belonging to the spoken genre, i.e., languages whose treebank data is transcribed speech. These are the following: Beja, Chukchi, Komi-Zyrian, Frisian-Dutch, and Cantonese. Our approach involves investigating different types of transfer languages, employing MACHAMP, a state-of-the-art parser and tagger that uses contextualized word embeddings, mBERT, and XLM-R in particular. The main idea is to explore how the genre, the language similarity, none of the two, or the combination of those affect the model performance in the aforementioned downstream tasks for our selected target treebanks. Our findings suggest that in order to capture speech-specific dependency relations, we need to incorporate at least a few genre-matching source data, while language similarity-matching source data are a better candidate when the task at hand is part-of-speech tagging. We also explore the impact of multi-task learning in one of our proposed methods, but we observe minor differences in the model performance.
40

Survivability Prediction and Analysis using Interpretable Machine Learning : A Study on Protecting Ships in Naval Electronic Warfare

Rydström, Sidney January 2022 (has links)
Computer simulation is a commonly applied technique for studying electronic warfare duels. This thesis aims to apply machine learning techniques to convert simulation output data into knowledge and insights regarding defensive actions for a ship facing multiple hostile missiles. The analysis may support tactical decision-making, hence the interpretability aspect of predictions is necessary to allow for human evaluation and understanding of impacts from the explanatory variables. The final distance for the threats to the target and the probability of the threats hitting the target was modeled using a multi-layer perceptron model with a multi-task approach, including custom loss functions. The results generated in this study show that the selected methodology is more successful than a baseline using regression models. Modeling the outcome with artificial neural networks results in a black box for decision making. Therefore the concept of interpretable machine learning was applied using a post-hoc approach. Given the learned model, the features considered, and the multiple threats, the feature contributions to the model were interpreted using Kernel SHapley Additive exPlanations (SHAP). The method consists of local linear surrogate models for approximating Shapley values. The analysis primarily showed that an increased seeker activation distance was important, and the increased time for defensive actions improved the outcomes. Further, predicting the final distance to the ship at the beginning of a simulation is important and, in general, a guidance of the actual outcome. The action of firing chaff grenades in the tracking gate also had importance. More chaff grenades influenced the missiles' tracking and provided a preferable outcome from the defended ship's point of view.

Page generated in 0.4161 seconds