• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 9
  • 8
  • 6
  • 2
  • 1
  • Tagged with
  • 189
  • 189
  • 180
  • 111
  • 85
  • 29
  • 29
  • 27
  • 25
  • 23
  • 23
  • 21
  • 19
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos / Multidisciplinary design optimization of flexible wings using metamodels

Caixeta Júnior, Paulo Roberto 11 August 2011 (has links)
A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto. / The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.
172

OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões / OMPP for conceptual design of aircraft based on evolutionary heuristics and decision making

Abdalla, Alvaro Martins 30 October 2009 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de otimização multidisciplinar de projeto conceitual de aeronaves. O conceito de aeronave otimizada tem como base o estudo evolutivo de características das categorias imediatas àquela que se propõe. Como estudo de caso, foi otimizada uma aeronave de treinamento militar que faça a correta transição entre as fases de treinamento básico e avançado. Para o estabelecimento dos parâmetros conceituais esse trabalho integra técnicas de entropia estatística, desdobramento da função de qualidade (QFD), aritmética fuzzy e algoritmo genético (GA) à aplicação de otimização multidisciplinar ponderada de projeto (OMPP) como metodologia de projeto conceitual de aeronaves. Essa metodologia reduz o tempo e o custo de projeto quando comparada com as técnicas tradicionais existentes. / This work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
173

Methods for parameterizing and exploring Pareto frontiers using barycentric coordinates

Daskilewicz, Matthew John 08 April 2013 (has links)
The research objective of this dissertation is to create and demonstrate methods for parameterizing the Pareto frontiers of continuous multi-attribute design problems using barycentric coordinates, and in doing so, to enable intuitive exploration of optimal trade spaces. This work is enabled by two observations about Pareto frontiers that have not been previously addressed in the engineering design literature. First, the observation that the mapping between non-dominated designs and Pareto efficient response vectors is a bijection almost everywhere suggests that points on the Pareto frontier can be inverted to find their corresponding design variable vectors. Second, the observation that certain common classes of Pareto frontiers are topologically equivalent to simplices suggests that a barycentric coordinate system will be more useful for parameterizing the frontier than the Cartesian coordinate systems typically used to parameterize the design and objective spaces. By defining such a coordinate system, the design problem may be reformulated from y = f(x) to (y,x) = g(p) where x is a vector of design variables, y is a vector of attributes and p is a vector of barycentric coordinates. Exploration of the design problem using p as the independent variables has the following desirable properties: 1) Every vector p corresponds to a particular Pareto efficient design, and every Pareto efficient design corresponds to a particular vector p. 2) The number of p-coordinates is equal to the number of attributes regardless of the number of design variables. 3) Each attribute y_i has a corresponding coordinate p_i such that increasing the value of p_i corresponds to a motion along the Pareto frontier that improves y_i monotonically. The primary contribution of this work is the development of three methods for forming a barycentric coordinate system on the Pareto frontier, two of which are entirely original. The first method, named "non-domination level coordinates," constructs a coordinate system based on the (k-1)-attribute non-domination levels of a discretely sampled Pareto frontier. The second method is based on a modification to an existing "normal boundary intersection" multi-objective optimizer that adaptively redistributes its search basepoints in order to sample from the entire frontier uniformly. The weights associated with each basepoint can then serve as a coordinate system on the frontier. The third method, named "Pareto simplex self-organizing maps" uses a modified a self-organizing map training algorithm with a barycentric-grid node topology to iteratively conform a coordinate grid to the sampled Pareto frontier.
174

A Framework for the Determination of Weak Pareto Frontier Solutions under Probabilistic Constraints

Ran, Hongjun 09 April 2007 (has links)
A framework is proposed that combines separately developed multidisciplinary optimization, multi-objective optimization, and joint probability assessment methods together but in a decoupled way, to solve joint probabilistic constraint, multi-objective, multidisciplinary optimization problems that are representative of realistic conceptual design problems of design alternative generation and selection. The intent here is to find the Weak Pareto Frontier (WPF) solutions that include additional compromised solutions besides the ones identified by a conventional Pareto frontier. This framework starts with constructing fast and accurate surrogate models of different disciplinary analyses. A new hybrid method is formed that consists of the second order Response Surface Methodology (RSM) and the Support Vector Regression (SVR) method. The three parameters needed by SVR to be pre-specified are automatically selected using a modified information criterion based on model fitting error, predicting error, and model complexity information. The model predicting error is estimated inexpensively with a new method called Random Cross Validation. This modified information criterion is also used to select the best surrogate model for a given problem out of the RSM, SVR, and the hybrid methods. A new neighborhood search method based on Monte Carlo simulation is proposed to find valid designs that satisfy the deterministic constraints and are consistent for the coupling variables featured in a multidisciplinary design problem, and at the same time decouple the three loops required by the multidisciplinary, multi-objective, and probabilistic features. Two schemes have been developed. One scheme finds the WPF by finding a large enough number of valid design solutions such that some WPF solutions are included in those valid solutions. Another scheme finds the WPF by directly finding the WPF of each consistent design zone. Then the probabilities of the PCs are estimated, and the WPF and corresponding design solutions are found. Various examples demonstrate the feasibility of this framework.
175

Towards multidisciplinary design optimization capability of horizontal axis wind turbines

McWilliam, Michael Kenneth 13 August 2015 (has links)
Research into advanced wind turbine design has shown that load alleviation strategies like bend-twist coupled blades and coned rotors could reduce costs. However these strategies are based on nonlinear aero-structural dynamics providing additional benefits to components beyond the blades. These innovations will require Multi-disciplinary Design Optimization (MDO) to realize the full benefits. This research expands the MDO capabilities of Horizontal Axis Wind Turbines. The early research explored the numerical stability properties of Blade Element Momentum (BEM) models. Then developed a provincial scale wind farm siting models to help engineers determine the optimal design parameters. The main focus of this research was to incorporate advanced analysis tools into an aero-elastic optimization framework. To adequately explore advanced designs with optimization, a new set of medium fidelity analysis tools is required. These tools need to resolve more of the physics than conventional tools like (BEM) models and linear beams, while being faster than high fidelity techniques like grid based computational fluid dynamics and shell and brick based finite element models. Nonlinear beam models based on Geometrically Exact Beam Theory (GEBT) and Variational Asymptotic Beam Section Analysis (VABS) can resolve the effects of flexible structures with anisotropic material properties. Lagrangian Vortex Dynamics (LVD) can resolve the aerodynamic effects of novel blade curvature. Initially this research focused on the structural optimization capabilities. First, it developed adjoint-based gradients for the coupled GEBT and VABS analysis. Second, it developed a composite lay-up parameterization scheme based on manufacturing processes. The most significant challenge was obtaining aero-elastic optimization solutions in the presence of erroneous gradients. The errors are due to poor convergence properties of conventional LVD. This thesis presents a new LVD formulation based on the Finite Element Method (FEM) that defines an objective convergence metric and analytic gradients. By adopting the same formulation used in structural models, this aerodynamic model can be solved simultaneously in aero-structural simulations. The FEM-based LVD model is affected by singularities, but there are strategies to overcome these problems. This research successfully demonstrates the FEM-based LVD model in aero-elastic design optimization. / Graduate / 0548 / pilot.mm@gmail.com
176

Méthodologie et algorithmes adaptés à l’optimisation multi-niveaux et multi-objectif de systèmes complexes / Multi-level and multi-objective design optimization tools for handling complex systems

Moussouni, Fouzia 08 July 2009 (has links)
La conception d'un système électrique est une tâche très complexe qui relève d’expertises dans différents domaines de compétence. Dans un contexte compétitif où l’avance technologique est un facteur déterminant, l’industrie cherche à réduire les temps d'étude et à fiabiliser les solutions trouvées par une approche méthodologique rigoureuse fournissant une solution optimale systémique.Il est alors nécessaire de construire des modèles et de mettre au point des méthodes d'optimisation compatibles avec ces préoccupations. En effet, l’optimisation unitaire de sous-systèmes sans prendre en compte les interactions ne permet pas d'obtenir un système optimal. Plus le système est complexe plus le travail est difficile et le temps de développement est important car il est difficile pour le concepteur d'appréhender le système dans toute sa globalité. Il est donc nécessaire d'intégrer la conception des composants dans une démarche systémique et globale qui prenne en compte à la fois les spécificités d’un composant et ses relations avec le système qui l’emploie.Analytical Target Cascading est une méthode d'optimisation multi niveaux de systèmes complexes. Cette approche hiérarchique consiste à décomposer un système complexe en sous-systèmes, jusqu’au niveau composant dont la conception relève d’algorithmes d'optimisation classiques. La solution optimale est alors trouvée par une technique de coordination qui assure la cohérence de tous les sous-systèmes. Une première partie est consacrée à l'optimisation de composants électriques. L'optimisation multi niveaux de systèmes complexes est étudiée dans la deuxième partie où une chaîne de traction électrique est choisie comme exemple / The design of an electrical system is a very complex task which needs experts from various fields of competence. In a competitive environment, where technological advance is a key factor, industry seeks to reduce study time and to make solutions reliable by way of a rigorous methodology providing a systemic solution.Then, it is necessary to build models and to develop optimization methods which are suitable with these concerns. Indeed, the optimization of sub-systems without taking into account the interaction does not allow to achieve an optimal system. More complex the system is more the work is difficult and the development time is important because it is difficult for the designer to understand and deal with the system in its complexity. Therefore, it is necessary to integrate the design components in a systemic and holistic approach to take into account, in the same time, the characteristics of a component and its relationship with the system it belongs to.Analytical Target Cascading is a multi-level optimization method for handling complex systems. This hierarchical approach consists on the breaking-down of a complex system into sub-systems, and component where their optimal design is ensured by way of classical optimization algorithms. The optimal solution of the system must be composed of the component's solutions. Then a coordination strategy is needed to ensure consistency of all sub-systems. First, the studied and proposed optimization algorithms are tested and compared on the optimization of electrical components. The second part focuses on the multi-level optimization of complex systems. The optimization of railway traction system is taken as a test case
177

OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões / OMPP for conceptual design of aircraft based on evolutionary heuristics and decision making

Alvaro Martins Abdalla 30 October 2009 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de otimização multidisciplinar de projeto conceitual de aeronaves. O conceito de aeronave otimizada tem como base o estudo evolutivo de características das categorias imediatas àquela que se propõe. Como estudo de caso, foi otimizada uma aeronave de treinamento militar que faça a correta transição entre as fases de treinamento básico e avançado. Para o estabelecimento dos parâmetros conceituais esse trabalho integra técnicas de entropia estatística, desdobramento da função de qualidade (QFD), aritmética fuzzy e algoritmo genético (GA) à aplicação de otimização multidisciplinar ponderada de projeto (OMPP) como metodologia de projeto conceitual de aeronaves. Essa metodologia reduz o tempo e o custo de projeto quando comparada com as técnicas tradicionais existentes. / This work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
178

Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos / Multidisciplinary design optimization of flexible wings using metamodels

Paulo Roberto Caixeta Júnior 11 August 2011 (has links)
A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto. / The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.
179

Metamodel-Based Multidisciplinary Design Optimization of Automotive Structures

Ryberg, Ann-Britt January 2017 (has links)
Multidisciplinary design optimization (MDO) can be used in computer aided engineering (CAE) to efficiently improve and balance performance of automotive structures. However, large-scale MDO is not yet generally integrated within automotive product development due to several challenges, of which excessive computing times is the most important one. In this thesis, a metamodel-based MDO process that fits normal company organizations and CAE-based development processes is presented. The introduction of global metamodels offers means to increase computational efficiency and distribute work without implementing complicated multi-level MDO methods. The presented MDO process is proven to be efficient for thickness optimization studies with the objective to minimize mass. It can also be used for spot weld optimization if the models are prepared correctly. A comparison of different methods reveals that topology optimization, which requires less model preparation and computational effort, is an alternative if load cases involving simulations of linear systems are judged to be of major importance. A technical challenge when performing metamodel-based design optimization is lack of accuracy for metamodels representing complex responses including discontinuities, which are common in for example crashworthiness applications. The decision boundary from a support vector machine (SVM) can be used to identify the border between different types of deformation behaviour. In this thesis, this information is used to improve the accuracy of feedforward neural network metamodels. Three different approaches are tested; to split the design space and fit separate metamodels for the different regions, to add estimated guiding samples to the fitting set along the boundary before a global metamodel is fitted, and to use a special SVM-based sequential sampling method. Substantial improvements in accuracy are observed, and it is found that implementing SVM-based sequential sampling and estimated guiding samples can result in successful optimization studies for cases where more conventional methods fail.
180

Sun-Synchronous Orbit Slot Architecture Analysis and Development

Watson, Eric 01 May 2012 (has links)
Space debris growth and an influx in space traffic will create a need for increased space traffic management. Due to orbital population density and likely future growth, the implementation of a slot architecture to Sun-synchronous orbit is considered in order to mitigate conjunctions among active satellites. This paper furthers work done in Sun-synchronous orbit slot architecture design and focuses on two main aspects. First, an in-depth relative motion analysis of satellites with respect to their assigned slots is presented. Then, a method for developing a slot architecture from a specific set of user defined inputs is derived.

Page generated in 0.1156 seconds