Spelling suggestions: "subject:"multigrid"" "subject:"multigrids""
131 |
Development Of A Two-dimensional Navier-stokes Solver For Laminar Flows Using Cartesian GridsSahin, Serkan Mehmet 01 March 2011 (has links) (PDF)
A fully automated Cartesian/Quad grid generator and laminar flow solver have been developed for external flows by using C++. After defining the input geometry by nodal points, adaptively refined Cartesian grids are generated automatically. Quadtree data structure is used in order to connect the Cartesian cells to each other. In order to simulate viscous flows, body-fitted quad cells can be generated optionally. Connectivity is provided by cut and split cells such that the intersection points of Cartesian cells are used as the corners of quads at the outmost row. Geometry based adaptation methods for cut, split cells and highly curved
regions are applied to the uniform mesh generated around the geometry. After obtaining a sufficient resolution in the domain, the solution is achieved with cellcentered approach by using multistage time stepping scheme. Solution based grid adaptations are carried out during the execution of the program in order to refine the regions with high gradients and obtain sufficient resolution in these regions. Moreover, multigrid technique is implemented to accelerate the convergence time significantly. Some tests are performed in order to verify and validate the accuracy and efficiency of the code for inviscid and laminar flows.
|
132 |
Approximation Methods for Two Classes of Singular Integral EquationsRogozhin, Alexander 29 January 2003 (has links) (PDF)
The dissertation consists of two parts. In the first part approximate methods for multidimensional weakly singular integral operators with operator-valued kernels are investigated. Convergence results and error estimates are given. There is considered an application of these methods to solving radiation transfer problems. Numerical results are presented, too.
In the second part we consider a polynomial collocation method for the numerical solution of a singular integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the form \ $aI + b \mu^{-1} S \mu I $\ with \ $S$\ the Cauchy singular integral operator, with piecewise continuous coefficients \ $a$\ and \ $b,$\ and with a Jacobi weight \ $\mu.$\ To the equation
we apply a collocation method, where the collocation points are the Chebyshev nodes of the first kind and where the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this collocation method in weighted \ $L^2$\ spaces, we derive necessary and sufficient conditions. Moreover, the extension of these results to an algebra generated by the sequences of the collocation method applied to the mentioned singular integral operators is discussed and the behaviour of the singular values of the discretized operators is investigated. / Die Dissertation beschäftigt sich insgesamt mit der numerischen Analysis singulärer Integralgleichungen, besteht aber aus zwei voneinander unabhängigen Teilen. Der este Teil behandelt Diskretisierungsverfahren für mehrdimensionale schwach singuläre Integralgleichungen mit operatorwertigen Kernen. Darüber hinaus wird hier die Anwendung dieser allgemeinen Resultate auf ein Strahlungstransportproblem diskutiert, und numerische Ergebnisse werden präsentiert.
Im zweiten Teil betrachten wir ein Kollokationsverfahren zur numerischen Lösung Cauchyscher singulärer Integralgleichungen auf Intervallen. Der Operator der Integralgleichung hat die Form \ $aI + b \mu^{-1} S \mu I $\ mit dem Cauchyschen singulären Integraloperator \ $S,$\ mit stückweise stetigen Koeffizienten \ $a$\ und \ $b,$\ und mit einem klassischen Jacobigewicht \ $\mu.$\ Als Kollokationspunkte dienen die Nullstellen des n-ten Tschebyscheff-Polynoms erster Art und Ansatzfunktionen sind ein in einem geeigneten Hilbertraum orthonormales System gewichteter Tschebyscheff-Polynome zweiter Art. Wir erhalten notwendige und hinreichende Bedingungen für die Stabilität und Konvergenz dieses Kollokationsverfahrens. Außerdem wird das Stabilitätskriterium auf alle Folgen aus der durch die Folgen des Kollokationsverfahrens erzeugten Algebra erweitert. Diese Resultate liefern uns Aussagen über das asymptotische Verhalten der Singulärwerte der Folge der diskreten Operatoren.
|
133 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
134 |
Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human BrainWolters, Carsten H. 28 November 2004 (has links) (PDF)
The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG. / Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\"uckstr\"ome im leitf\"ahigen Gewebe des Kopfes, die sog. {\em Sekund\"arstr\"ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\"osung erfordert die wiederholte Berechnung des {\em Vorw\"arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\"ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\"olkerung betroffen sind und f\"ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\"ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\"aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\"angender Zentren im Gehirn, z.B.~des prim\"ar-mo\-to\-ri\-schen, des prim\"ar-au\-di\-to\-rischen oder prim\"ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\"onnten L\"ahmungen, H\"or- und Sensibilit\"atsst\"orungen vermieden werden. Dazu werden \"uber akustische oder sensorische Reize charakteristische Signale evoziert und \"uber Summationstechniken sichtbar gemacht. Durch das L\"osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\"uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\"ange im Gehirn und die Aufdeckung der aktivierten Areale w\"ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\"osung des Vorw\"artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\"adel, die Zerebrospinalfl\"ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\"ahigkeiten besitzen. Der menschliche Sch\"adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\"ahige spongi\"ose Schicht wird von zwei stark isolierenden Schichten, den \"au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\"adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\"adel demnach eine richtungsabh\"angige oder {\em anisotrope} Leitf\"ahigkeit mit einem gemessenen Verh\"altnis von bis zu 1 zu 10. F\"ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \"ahnlichen Verh\"altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\"ahigkeit der WM nicht-invasiv in gen\"ugender Aufl\"osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\"ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \"uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\"urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\"ankte Mobilit\"at \"uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\"atze f\"ur die L\"osung des Vor\-w\"arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\"oht sich die Komplexit\"at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\"aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \"ublicherweise drei Schichten, die die Kopfhaut, den Sch\"adel und das Gehirn repr\"asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\"achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\"ur isotrop leitf\"ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\"aten eingehen zu k\"onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\"ahigkeits-Anisotropien n\"otig und in welchen F\"allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\"onnen komplexe FE-Vorw\"artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\"ur inverse Quellrekonstruktionen in den Anwendungen zu gen\"ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \"Offnungen im Sch\"adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\"aten wie L\"asionen im Gehirn oder die Sutura des Sch\"adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\"assigbaren Einfluss auf das EEG/MEG-Vorw\"arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\"at zweier ausgew\"ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\"adel-Anisotropie nach. Insbesondere f\"ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\"at auf Sch\"adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\"assigbaren Einfluss auf die EEG/MEG-Vorw\"artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\"osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\"onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\"atz\-liche Annahmen \"uber die Quellen sind dementsprechend unerl\"asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\"arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\"oglichst genau erkl\"art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\"osung nimmt und die Algorithmen stabil in Bezug auf eine \"Ubersch\"atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\"onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\"o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\"a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \"uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\"a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\"ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\"adelkante \"uber ein Gl\"atten und Aufblasen der segmentierten Hirnoberfl\"ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\"atzte. \"Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\"ucksichtigung der MR-Inhomogenit\"aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\"adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\"attete Spongiosaoberfl\"ache darstellt und somit ein Abgreifen der Leitf\"ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\"oglicht. Die Eigenvektoren der WM-Tensoren wurden \"uber Ganzkopf-DT-MRT gemessen. Sch\"adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\"a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\"oste FE-Modellierung} des EEG/ MEG-Vorw\"artsproblems. Zun\"achst wurde ein \"Uberblick \"uber die Theorie gegeben und die praktische Realisierung der sp\"ater eingesetzten hochaufgel\"osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\"utzpunkte zur Gl\"attung an Gewebekanten nutzen, vorteilhaft sind zu herk\"ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\"ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\"osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\"osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\"oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\"ur das Verfahren der konjugierten Gradienten konnte f\"ur hochaufgel\"oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \"Uber\-blick \"uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\"asentiert. Es wurde zun\"achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\"uhrt. F\"ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\"arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\"ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\"urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\"uber einem sog. {\em Kal\-man-Gl\"atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\"at} durchgef\"uhrt. Der erste Teil bezog sich dabei auf das Vorw\"arts\-problem, wo die Resultate im Einklang mit der verf\"ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\"adelanisotropie einen nicht-vernachl\"assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\"o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\"ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\"ahigkeits\"anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\"usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\"achlich tangential orientierten oberfl\"achennahen Quelle besonders sensitiv gegen\"uber einer 1 zu 10 Sch\"adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\"adel re\-la\-tiv d\"unn) zu tief und im parietalen und okzipitalen Bereich (Sch\"adel relativ dick) zu oberfl\"achennah lokalisiert wurden, scheint eine Approximation der Sch\"adelanisotropie in BE-Modellen \"uber eine Anpassung des skalaren Sch\"adelleitf\"ahigkeitswertes nicht m\"oglich zu sein. Obwohl bei Vernachl\"assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\"ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24$^{\circ}$ und einer mehr als zweifach untersch\"atzten Quellst\"arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\"ur die Rekonstruktion der vier tangentialen oberfl\"achennahen Dipole, welche als Aktivit\"atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\"adel\-anisotropie als vernachl\"assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\"ur alle getesteten inversen Verfahren stark verf\"alscht. Anisotropie verschob das Aktivit\"ats\-zentrum von $L_1$ und $L_2$ Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung.
|
135 |
Implicit, Multigrid And Local-Preconditioning Procedures For Euler And Navier-Stokes Computations With Upwind SchemesAmaladas, J Richard 06 1900 (has links) (PDF)
No description available.
|
136 |
Implicit extrapolation methods for multilevel finite element computationsJung, M., Rüde, U. 30 October 1998 (has links)
Extrapolation methods for the solution of partial differential equations are commonly based on the existence of error expansions for the approximate solution. Implicit extrapolation, in the contrast, is based on applying extrapolation indirectly, by using it on quantities like the residual. In the context of multigrid methods, a special technique of this type is known as \034 -extrapolation. For finite element systems this algorithm can be shown to be equivalent to higher order finite elements. The analysis is local and does not use global expansions, so that the implicit extrapolation technique may be used on unstructured meshes and in cases where the solution fails to be globally smooth. Furthermore, the natural multilevel structure can be used to construct efficient multigrid and multilevel preconditioning techniques. The effectivity of the method is demonstrated for heat conduction problems and problems from elasticity theory.
|
137 |
Approximation Methods for Two Classes of Singular Integral EquationsRogozhin, Alexander 13 December 2002 (has links)
The dissertation consists of two parts. In the first part approximate methods for multidimensional weakly singular integral operators with operator-valued kernels are investigated. Convergence results and error estimates are given. There is considered an application of these methods to solving radiation transfer problems. Numerical results are presented, too.
In the second part we consider a polynomial collocation method for the numerical solution of a singular integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the form \ $aI + b \mu^{-1} S \mu I $\ with \ $S$\ the Cauchy singular integral operator, with piecewise continuous coefficients \ $a$\ and \ $b,$\ and with a Jacobi weight \ $\mu.$\ To the equation
we apply a collocation method, where the collocation points are the Chebyshev nodes of the first kind and where the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this collocation method in weighted \ $L^2$\ spaces, we derive necessary and sufficient conditions. Moreover, the extension of these results to an algebra generated by the sequences of the collocation method applied to the mentioned singular integral operators is discussed and the behaviour of the singular values of the discretized operators is investigated. / Die Dissertation beschäftigt sich insgesamt mit der numerischen Analysis singulärer Integralgleichungen, besteht aber aus zwei voneinander unabhängigen Teilen. Der este Teil behandelt Diskretisierungsverfahren für mehrdimensionale schwach singuläre Integralgleichungen mit operatorwertigen Kernen. Darüber hinaus wird hier die Anwendung dieser allgemeinen Resultate auf ein Strahlungstransportproblem diskutiert, und numerische Ergebnisse werden präsentiert.
Im zweiten Teil betrachten wir ein Kollokationsverfahren zur numerischen Lösung Cauchyscher singulärer Integralgleichungen auf Intervallen. Der Operator der Integralgleichung hat die Form \ $aI + b \mu^{-1} S \mu I $\ mit dem Cauchyschen singulären Integraloperator \ $S,$\ mit stückweise stetigen Koeffizienten \ $a$\ und \ $b,$\ und mit einem klassischen Jacobigewicht \ $\mu.$\ Als Kollokationspunkte dienen die Nullstellen des n-ten Tschebyscheff-Polynoms erster Art und Ansatzfunktionen sind ein in einem geeigneten Hilbertraum orthonormales System gewichteter Tschebyscheff-Polynome zweiter Art. Wir erhalten notwendige und hinreichende Bedingungen für die Stabilität und Konvergenz dieses Kollokationsverfahrens. Außerdem wird das Stabilitätskriterium auf alle Folgen aus der durch die Folgen des Kollokationsverfahrens erzeugten Algebra erweitert. Diese Resultate liefern uns Aussagen über das asymptotische Verhalten der Singulärwerte der Folge der diskreten Operatoren.
|
138 |
Numerical Analysis of the Two Dimensional Wave Equation : Using Weighted Finite Differences for Homogeneous and Hetrogeneous MediaBöhme, Christian, Holmberg, Anton, Nilsson Lind, Martin January 2020 (has links)
This thesis discusses properties arising when finite differences are implemented forsolving the two dimensional wave equation on media with various properties. Both homogeneous and heterogeneous surfaces are considered. The time derivative of the wave equation is discretised using a weighted central difference scheme, dependenton a variable parameter gamma. Stability and convergence properties are studied forsome different values of gamma. The report furthermore features an introduction to solving large sparse linear systems of equations, using so-called multigrid methods.The linear systems emerge from the finite difference discretisation scheme. Aconclusion is drawn stating that values of gamma in the unconditionally stable region provides the best computational efficiency. This holds true as the multigrid based numerical solver exhibits optimal or near optimal scaling properties.
|
139 |
Solvent Effects for Vertical Ionization Processes in Liquid Water and at the Liquid-Vapor InterfaceCoons, Marc P. L. January 2017 (has links)
No description available.
|
140 |
Raffinement de maillage multi-grille local en vue de la simulation 3D du combustible nucléaire des Réacteurs à Eau sous Pression / Local multigrid mesh refinement in view of nuclear fuel 3D modelling in Pressurised Water ReactorsBarbié, Laureline 03 October 2013 (has links)
Le but de cette étude est d'améliorer les performances, en termes d'espace mémoire et de temps de calcul, des simulations actuelles de l'Interaction mécanique Pastille-Gaine (IPG), phénomène complexe pouvant avoir lieu lors de fortes montées en puissance dans les réacteurs à eau sous pression. Parmi les méthodes de raffinement de maillage, méthodes permettant de simuler efficacement des singularités locales, une approche multi-grille locale a été choisie car elle présente l'intérêt de pouvoir utiliser le solveur en boîte noire tout en ayant un faible nombre de degrés de liberté à traiter par niveau. La méthode Local Defect Correction (LDC), adaptée à une discrétisation de type éléments finis, a tout d'abord été analysée et vérifiée en élasticité linéaire, sur des configurations issues de l'IPG, car son utilisation en mécanique des solides est peu répandue. Différentes stratégies concernant la mise en oeuvre pratique de l'algorithme multi-niveaux ont également été comparées. La combinaison de la méthode LDC et de l'estimateur d'erreur a posteriori de Zienkiewicz-Zhu, permettant d'automatiser la détection des zones à raffiner, a ensuite été testée. Les performances obtenues sur des cas bidimensionnels et tridimensionnels sont très satisfaisantes, l'algorithme proposé se montrant plus performant que des méthodes de raffinement h-adaptatives. Enfin, l'algorithme a été étendu à des problèmes mécaniques non linéaires. Les questions d'un raffinement espace/temps mais aussi de la transmission des conditions initiales lors du remaillage ont entre autres été abordées. Les premiers résultats obtenus sont encourageants et démontrent l'intérêt de la méthode LDC pour des calculs d'IPG. / The aim of this study is to improve the performances, in terms of memory space and computational time, of the current modelling of the Pellet-Cladding mechanical Interaction (PCI),complex phenomenon which may occurs during high power rises in pressurised water reactors. Among the mesh refinement methods - methods dedicated to efficiently treat local singularities - a local multi-grid approach was selected because it enables the use of a black-box solver while dealing few degrees of freedom at each level. The Local Defect Correction (LDC) method, well suited to a finite element discretisation, was first analysed and checked in linear elasticity, on configurations resulting from the PCI, since its use in solid mechanics is little widespread. Various strategies concerning the implementation of the multilevel algorithm were also compared. Coupling the LDC method with the Zienkiewicz-Zhu a posteriori error estimator in orderto automatically detect the zones to be refined, was then tested. Performances obtained on two-dimensional and three-dimensional cases are very satisfactory, since the algorithm proposed is more efficient than h-adaptive refinement methods. Lastly, the LDC algorithm was extended to nonlinear mechanics. Space/time refinement as well as transmission of the initial conditions during the remeshing step were looked at. The first results obtained are encouraging and show the interest of using the LDC method for PCI modelling.
|
Page generated in 0.0445 seconds