Spelling suggestions: "subject:"multiobjektiv dataoptimering"" "subject:"multiobjektiv designoptimering""
1 |
Emission Calculation Model for Vehicle Routing Planning : Estimation of emissions from heavy transports and optimization with carbon dioxide equivalents for a route planning softwareHartikka, Alice, Nordenhög, Simon January 2021 (has links)
The transport sector is a major cause of emissions both in Sweden and globally. This master thesis aims to develop a model for estimating emissions from heavy transport on a specific route. The emissions can be used in a route planning software and help the driver choose a route that contributes to reduced emissions. The methodology was to investigate attributes, like vehicle-related attributes and topography, and their impact on transport emissions. The carbon dioxide, methane and nitrous oxide emissions were converted into carbon dioxide equivalents, which were incorporated as one cost together with a precalculated driving time as a second cost in a multi objective function used for route planning. Different tests were conducted to investigate the accuracy and the usability of the model. First, a validation test was performed, where the optimized routes were analyzed. The test showed that the model was more likely to choose a shorter route in general. The fuel consumption values largely met expectations towards generic values and measurements, that were gathered from research. A second test of the model made use of the driving time combined with the emissions in a multi objective function. In this test, a weighting coefficient was varied and analyzed to understand the possibility to find a value of the coefficient for the best trade-off. The result showed that the model generates different solutions for different coefficients and that it is possible to find a suitable trade-off between the driving time and emissions. Therefore, this study shows that there is a possibility to combine emission with other objectives such as driving time for route optimization. Finally, a sensitivity analysis was performed, where attribute factors and assumptions were varied to see how sensitive they were and, in turn, how much a change would impact the calculated emissions. The result from the sensitivity analysis showed that the changes in topography-attributes had less impact than changes on vehicle-related attributes. In conclusion, this thesis has built a foundation for route planning, based on the environmental aspect, for heavy transports.
|
2 |
Machinery Health Indicator Construction using Multi-objective Genetic Algorithm Optimization of a Feed-forward Neural Network based on Distance / Maskin-Hälsoindikatorkonstruktion genom Multi-objektiv Genetisk Algoritm-Optimering av ett Feed-forward Neuralt Nätverk baserat på AvståndNyman, Jacob January 2021 (has links)
Assessment of machine health and prediction of future failures are critical for maintenance decisions. Many of the existing methods use unsupervised techniques to construct health indicators by measuring the disparity between the current state and either the healthy or the faulty states of the system. This approach can work well, but if the resulting health indicators are insufficient there is no easy way to steer the algorithm towards better ones. In this thesis a new method for health indicator construction is investigated that aims to solve this issue. It is based on measuring distance after transforming the sensor data into a new space using a feed-forward neural network. The feed-forward neural network is trained using a multi-objective optimization algorithm, NSGA-II, to optimize criteria that are desired in a health indicator. Thereafter the constructed health indicator is passed into a gated recurrent unit for remaining useful life prediction. The approach is compared to benchmarks on the NASA Turbofan Engine Degradation Simulation dataset and in regard to the size of the neural networks, the model performs relatively well, but does not outperform the results reported by a few of the more recent methods. The method is also investigated on a simulated dataset based on elevator weights with two independent failures. The method is able to construct a single health indicator with a desirable shape for both failures, although the latter estimates of time until failure are overestimated for the more rare failure type. On both datasets the health indicator construction method is compared with a baseline without transformation function and does in both cases outperform it in terms of the resulting remaining useful life prediction error using the gated recurrent unit. Overall, the method is shown to be flexible in generating health indicators with different characteristics and because of its properties it is adaptive to different remaining useful life prediction methods. / Estimering av maskinhälsa och prognos av framtida fel är kritiska steg för underhållsbeslut. Många av de befintliga metoderna använder icke-väglett (unsupervised) lärande för att konstruera hälsoindikatorer som beskriver maskinens tillstånd över tid. Detta sker genom att mäta olikheter mellan det nuvarande tillståndet och antingen de friska eller fallerande tillstånden i systemet. Det här tillvägagångssättet kan fungera väl, men om de resulterande hälsoindikatorerna är otillräckliga så finns det inget enkelt sätt att styra algoritmen mot bättre. I det här examensarbetet undersöks en ny metod för konstruktion av hälsoindikatorer som försöker lösa det här problemet. Den är baserad på avståndsmätning efter att ha transformerat indatat till ett nytt vektorrum genom ett feed-forward neuralt nätverk. Nätverket är tränat genom en multi-objektiv optimeringsalgoritm, NSGA-II, för att optimera kriterier som är önskvärda hos en hälsoindikator. Därefter används den konstruerade hälsoindikatorn som indata till en gated recurrent unit (ett neuralt nätverk som hanterar sekventiell data) för att förutspå återstående livslängd hos systemet i fråga. Metoden jämförs med andra metoder på ett dataset från NASA som simulerar degradering hos turbofan-motorer. Med avseende på storleken på de använda neurala nätverken så är resultatet relativt bra, men överträffar inte resultaten rapporterade från några av de senaste metoderna. Metoden testas även på ett simulerat dataset baserat på elevatorer som fraktar säd med två oberoende fel. Metoden lyckas skapa en hälsoindikator som har en önskvärd form för båda felen. Dock så överskattar den senare modellen, som använde hälsoindikatorn, återstående livslängd vid estimering av det mer ovanliga felet. På båda dataseten jämförs metoden för hälsoindikatorkonstruktion med en basmetod utan transformering, d.v.s. avståndet mäts direkt från grund-datat. I båda fallen överträffar den föreslagna metoden basmetoden i termer av förutsägelsefel av återstående livslängd genom gated recurrent unit- nätverket. På det stora hela så visar sig metoden vara flexibel i skapandet av hälsoindikatorer med olika attribut och p.g.a. metodens egenskaper är den adaptiv för olika typer av metoder som förutspår återstående livslängd.
|
3 |
Smart Tracking for Edge-assisted Object Detection : Deep Reinforcement Learning for Multi-objective Optimization of Tracking-based Detection Process / Smart Spårning för Edge-assisterad Objektdetektering : Djup Förstärkningsinlärning för Flermålsoptimering av Spårningsbaserad DetekteringsprocessZhou, Shihang January 2023 (has links)
Detecting generic objects is one important sensing task for applications that need to understand the environment, for example eXtended Reality (XR), drone navigation etc. However, Object Detection algorithms are particularly computationally heavy for real-time video analysis on resource-constrained mobile devices. Thus Object Tracking, which is a much lighter process, is introduced under the Tracking-By-Detection (TBD) paradigm to alleviate the computational overhead. Still, it is common that the configurations of the TBD remain unchanged, which would result in unnecessary computation and/or performance loss in many cases.\\ This Master's Thesis presents a novel approach for multi-objective optimization of the TBD process on precision and latency, with the platform being power-constrained devices. We propose a Deep Reinforcement Learning based scheduling architecture that selects appropriate TBD actions in video sequences to achieve the desired goals. Specifically, we develop a simulation environment providing Markovian state information as input for the scheduler neural network, justified options of TBD actions, and a scalarized reward function to combine the multiple objectives. Our results demonstrate that the trained policies can learn to utilize content information from the current and previous frames, thus optimally controlling the TBD process at each frame. The proposed approach outperforms the baselines that have fixed TBD configurations and recent research works, achieving the precision close to pure detection while keeping the latency much lower. Both tuneable configurations show positive and synergistic contribution to the optimization objectives. We also show that our policies are generalizable, with inference and action time of the scheduler having minimal latency overhead. This makes our scheduling design highly practical in real XR or similar applications on power-constrained devices. / Att upptäcka generiska objekt är en viktig uppgift inom avkänning för tillämpningar som behöver förstå omgivningen, såsom eXtended Reality (XR) och navigering med drönare, bland annat. Algoritmer för objektdetektering är dock särskilt beräkningstunga när det gäller videoanalyser i realtid på resursbegränsade mobila enheter. Objektspårning, å andra sidan, är en lättare process som vanligtvis implementeras under Tracking-By-Detection (TBD)-paradigmet för att minska beräkningskostnaden. Det är dock vanligt att TBD-konfigurationerna förblir oförändrade, vilket leder till onödig beräkning och/eller prestandaförlust i många fall.\\ I detta examensarbete presenteras en ny metod för multiobjektiv optimering av TBD-processen med avseende på precision och latens på plattformar med begränsad prestanda. Vi föreslår en djup förstärkningsinlärningsbaserad schemaläggningsarkitektur som väljer lämpliga TBD-åtgärder för videosekvenser för att uppnå de önskade målen. Vi utvecklar specifikt en simulering som tillhandahåller Markovian state-information som indata för schemaläggaren, samt neurala nätverk, motiverade alternativ för TBD-åtgärder och en skalariserad belöningsfunktion för att kombinera de olika målen. Våra resultat visar att de tränade strategierna kan lära sig att använda innehållsinformation från aktuella och tidigare ramar för att optimalt styra TBD-processen för varje bild. Det föreslagna tillvägagångssättet är bättre än både de grundläggande metoderna med en fast TBD-konfiguration och nyare forskningsarbeten. Det uppnår en precision som ligger nära den rena detektionen samtidigt som latensen hålls mycket låg. Båda justerbara konfigurationerna bidrar positivt och synergistiskt till optimeringsmålen. Vi visar också att våra strategier är generaliserbara genom att dela upp träning och testning med en 50 %-ig uppdelning, vilket resulterar i minimal inferenslatens och schemaläggarens handlingslatens. Detta gör vår schemaläggningsdesign mycket praktisk i verkliga XR- eller liknande tillämpningar på enheter med begränsad strömförsörjning.
|
4 |
Access Point Selection and Clustering Methods with Minimal Switching for Green Cell-Free Massive MIMO NetworksHe, Qinglong January 2022 (has links)
As a novel beyond fifth-generation (5G) concept, cell-free massive MIMO (multiple-input multiple-output) recently has become a promising physical-layer technology where an enormous number of distributed access points (APs), coordinated by a central processing unit (CPU), cooperate to coherently serve a large number of user equipments (UEs) in the same time/frequency resource. However, denser AP deployment in cell-free networks as well as an exponentially growing number of mobile UEs lead to higher power consumption. What is more, similar to conventional cellular networks, cell-free massive MIMO networks are dimensioned to provide the required quality of service (QoS) to the UEs under heavy traffic load conditions, and thus they might be underutilized during low traffic load periods, leading to inefficient use of both spectral and energy resources. Aiming at the implementation of energy-efficient cell-free networks, several approaches have been proposed in the literature, which consider different AP switch ON/OFF (ASO) strategies for power minimization. Different from prior works, this thesis focuses on additional factors other than ASO that have an adverse effect not only on total power consumption but also on implementation complexity and operation cost. For instance, too frequent ON/OFF switching in an AP can lead to tapering off the potential power saving of ASO by incurring extra power consumption due to excessive switching. Indeed, frequent switching of APs might also result in thermal fatigue and serious lifetime degeneration. Moreover, time variations in the AP-UE association in favor of energy saving in a dynamic network bring additional signaling and implementation complexity. Thus, in the first part of the thesis, we propose a multi-objective optimization problem that aims to minimize the total power consumption together with AP switching and AP-UE association variations in comparison to the state of the network in the previous state. The proposed problem is cast in mixed integer quadratic programming form and solved optimally. Our simulation results show that by limiting AP switching (node switching) and AP-UE association reformation switching (link switching), the total power consumption from APs only slightly increases but the number of average switching drops significantly regardless of node switching or link switching. It achieves a good balance on the trade-off between radio power consumption and the side effects excessive switching will bring. In the second part of the thesis, we consider a larger cell-free massive MIMO network by dividing the total area into disjoint network-centric clusters, where the APs in each cluster are connected to a separate CPU. In each cluster, cell-free joint transmission is locally implemented to achieve a scalable network implementation. Motivated by the outcomes of the first part, we reshape our dynamic network simulator to keep the active APs for a given spatial traffic pattern the same as long as the mean arrival rates of the UEs are constant. Moreover, the initially formed AP-UE association for a particular UE is not allowed to change. In that way, we make the number of node and link switching zero throughout the considered time interval. For this dynamic network, we propose a deep reinforcement learning (DRL) framework that learns the policy of maximizing long-term energy efficiency (EE) for a given spatially-varying traffic density. The active AP density of each network-centric cluster and the boundaries of the clusters are learned by the trained agent to maximize the EE. The DRL algorithm is shown to learn a non-trivial joint cluster geometry and AP density with at least 7% improvement in terms of EE compared to the heuristically-developed benchmarks. / Som ett nytt koncept bortom den femte generationen (5G) har cellfri massiv MIMO (multiple input multiple output) nyligen blivit en lovande teknik för det fysiska lagret där ett enormt antal distribuerade åtkomstpunkter (AP), som samordnas av en central processorenhet (CPU), samarbetar för att på ett sammanhängande sätt betjäna ett stort antal användarutrustningar (UE) i samma tids- och frekvensresurs. En tätare utplacering av AP:er i cellfria nät samt ett exponentiellt växande antal mobila användare leder dock till högre energiförbrukning. Dessutom är cellfria massiva MIMO-nät, i likhet med konventionella cellulära nät, dimensionerade för att ge den erforderliga tjänstekvaliteten (QoS) till enheterna under förhållanden med hög trafikbelastning, och därför kan de vara underutnyttjade under perioder med låg trafikbelastning, vilket leder till ineffektiv användning av både spektral- och energiresurser. För att genomföra energieffektiva cellfria nät har flera metoder föreslagits i litteraturen, där olika ASO-strategier (AP switch ON/OFF) beaktas för att minimera energiförbrukningen. Till skillnad från tidigare arbeten fokuserar den här avhandlingen på andra faktorer än ASO som har en negativ effekt inte bara på den totala energiförbrukningen utan också på komplexiteten i genomförandet och driftskostnaden. Till exempel kan alltför frekventa ON/OFF-omkopplingar i en AP leda till att ASO:s potentiella energibesparingar avtar genom extra energiförbrukning på grund av överdriven omkoppling. Frekventa omkopplingar av AP:er kan också leda till termisk trötthet och allvarlig försämring av livslängden. Dessutom medför tidsvariationer i AP-UE-associationen till förmån för energibesparingar i ett dynamiskt nät ytterligare signalering och komplexitet i genomförandet. I den första delen av avhandlingen föreslår vi därför ett optimeringsproblem med flera mål som syftar till att minimera den totala energiförbrukningen tillsammans med växling av AP och variationer i AP-UE-associationen i jämförelse med nätets tillstånd i det föregående läget. Det föreslagna problemet är en blandad helhetsmässig kvadratisk programmering och löses optimalt. Våra simuleringsresultat visar att genom att begränsa växling av AP (node switching) och växling av AP-UE-association (link switching) ökar den totala energiförbrukningen från AP:erna endast något, men antalet genomsnittliga växlingar ökar, oavsett om det rör sig om node switching eller link switching. Det ger en bra balans mellan radiokraftförbrukning och de bieffekter som överdriven växling medför. I den andra delen av avhandlingen tar vi hänsyn till ett större cellfritt massivt MIMO-nätverk genom att dela upp det totala området i disjunkta nätverkscentrerade kluster, där AP:erna i varje kluster är anslutna till en separat CPU. I varje kluster genomförs cellfri gemensam överföring lokalt för att uppnå en skalbar nätverksimplementering. Motiverat av resultaten i den första delen omformar vi vår dynamiska nätverkssimulator så att de aktiva AP:erna för ett givet rumsligt trafikmönster är desamma så länge som den genomsnittliga ankomsthastigheten för de enskilda enheterna är konstant. Dessutom tillåts inte den ursprungligen bildade AP-UE-associationen för en viss användare att förändras. På så sätt gör vi antalet nod- och länkbyten till noll under hela det aktuella tidsintervallet. För detta dynamiska nätverk föreslår vi ett ramverk för djup förstärkningsinlärning (DRL) som lär sig en strategi för att maximera energieffektiviteten på lång sikt för en given rumsligt varierande trafiktäthet. Den aktiva AP-tätheten i varje nätverkscentrerat kluster och klustrens gränser lärs av den utbildade agenten för att maximera EE. Det visas att DRL-algoritmen lär sig en icke-trivial gemensam klustergeometri och AP-täthet med minst 7% förbättring av EE jämfört med de heuristiskt utvecklade riktmärkena.
|
5 |
Joint Trajectory and Handover Management for UAVs Co-existing with Terrestrial Users : Deep Reinforcement Learning Based Approaches / Gemensam bana och överlämnandehantering för UAV som samexisterar med markbundna användare : Deep Reinforcement Learning-baserade tillvägagångssättDeng, Yuhang January 2024 (has links)
Integrating unmanned aerial vehicles (UAVs) as aerial user equipments (UEs) into cellular networks is now considered as a promising solution to provide extensive wireless connectivity for supporting UAV-centric commercial or civilian applications. However, the co-existence of UAVs with conventional terrestrial UEs is one of the primary challenges for this solution. Flying at higher altitudes with maneuverability advantage, UAVs are able to establish line-of-sight (LoS) connectivity with more base stations (BSs) than terrestrial UEs. Although LoS connectivity reduces the communication delay of UAVs, they also simultaneously increase the interference that UAVs cause to terrestrial UEs. In scenarios involving multiple UAVs, LoS connectivity can even lead to interference issues among themselves. In addition, LoS connectivity leads to extensive overlapping coverage areas of multiple BSs for UAVs, forcing them to perform frequent handovers during the flight if the received signal strength (RSS)-based handover policy is employed. The trajectories and BS associations of UAVs, along with their radio resource allocation are essential design parameters aimed at enabling their seamless integration into cellular networks, with a particular focus on managing interference levels they generate and reducing the redundant handovers they performe. Hence, this thesis designs two joint trajectory and handover management approaches for single-UAV and multi-UAVs scenarios, respectively, aiming to minimize the weighted sum of three key performance indicators (KPIs): transmission delay, up-link interference, and handover numbers. The approaches are based on deep reinforcement learning (DRL) frameworks with dueling double deep Q-network (D3QN) and Q-learning with a MIXer network (QMIX) algorithms being selected as the training agents, respectively. The choice of these DRL algorithms is motivated by their capability in designing sequential decision-making policies consisting of trajectory design and handover management. Results show that the proposed approaches effectively address the aforementioned challenges while ensuring the low transmission delay of cellular-connected UAVs. These results are in contrast to the performance of benchmark scheme, which directs UAVs to follow the shortest path and perform handovers based on RSS. Specifically, when considering the single-UAV scenario, the D3QN-based approach reduces the up-link interference by 18% and the handover numbers by 90% with a 59% increase in transmission delay as compared to the benchmark. The equivalent delay increase is 15 microseconds, which is considered negligible. For the multi-UAVs scenario, the QMIX-based approach jointly optimizes three performance metrics as compared to the benchmark scheme, resulting in a 70% decrease in interference, a 91% decrease in handover numbers, and a 47% reduction in transmission delay. It is noteworthy that an increase of UAVs operating within the same network leads to performance degradation due to UAVs competing for communication resources and mutual interference. When transitioning from the single-UAV scenario to the multi-UAVs scenario, the performance of the benchmark scheme experiences a significant decline, with an increase of 199% in interference, 89% in handover numbers, and 652% in transmission delay. In contrast, the proposed QMIX algorithm effectively coordinates multiple UAVs, mitigating performance degradation and achieving performance similar to the D3QN algorithm applying in the single-UAV scenario: an interference increase of 9%, a handover numbers increase of 9% and a delay increase of 152%. The delay increase is attributed to the reduced communication resources available to each individual UAVs, given the constant communication resources of the network. / Att integrera obemannade flygfordon (UAV) som flyganvändarutrustning (UE) i cellulära nätverk anses nu vara en lovande lösning för att tillhandahålla omfattande trådlös anslutning för att stödja UAV-centrerade kommersiella eller civila tillämpningar. Men samexistensen av UAV med konventionella markbundna UE är en av de främsta utmaningarna för denna lösning. Flygande på högre höjder med manövrerbarhetsfördelar kan UAV:er etablera siktlinje (LoS)-anslutning med fler basstationer (BS) än markbundna UE. Även om LoS-anslutning minskar kommunikationsfördröjningen för UAV:er, ökar de samtidigt störningen som UAV:er orsakar för markbundna UE. I scenarier som involverar flera UAV:er kan LoS-anslutning till och med leda till störningsproblem sinsemellan. Dessutom leder LoS-anslutning till omfattande överlappande täckningsområden för flera BS:er för UAV, vilket tvingar dem att utföra frekventa överlämningar under flygningen om den mottagna signalstyrkan (RSS)-baserad överlämningspolicy används. UAV:s banor och BS-associationer, tillsammans med deras radioresursallokering, är väsentliga designparametrar som syftar till att möjliggöra deras sömlösa integrering i cellulära nätverk, med särskilt fokus på att hantera störningsnivåer de genererar och minska de redundanta handovers de utför. Därför designar denna avhandling två gemensamma bana och handover-hanteringsmetoder för en-UAV-respektive multi-UAV-scenarier, som syftar till att minimera den viktade summan av tre nyckelprestandaindikatorer (KPI:er): överföringsfördröjning, upplänksinterferens och överlämningsnummer . Tillvägagångssätten är baserade på ramverk för djup förstärkning inlärning (DRL) med duellerande dubbla djupa Q-nätverk (D3QN) och Q-lärande med ett MIXer-nätverk (QMIX) algoritmer som väljs som träningsagenter. Valet av dessa DRL-algoritmer motiveras av deras förmåga att utforma sekventiella beslutsfattande policyer som består av banadesign och handover-hantering. Resultaten visar att de föreslagna tillvägagångssätten effektivt tar itu med ovannämnda utmaningar samtidigt som de säkerställer den låga överföringsfördröjningen för mobilanslutna UAV:er. Dessa resultat står i kontrast till prestanda för benchmark-schemat, som styr UAV:er att följa den kortaste vägen och utföra överlämningar baserat på RSS. Närmare bestämt, när man överväger singel-UAV-scenariot, minskar det D3QN tillvägagångssättet upplänksinterferensen med 18% och överlämningssiffrorna med 90% med en 59% ökning av överföringsfördröjningen jämfört med riktmärket. Den ekvivalenta fördröjningsökningen är 15 mikrosekunder, vilket anses vara försumbart. För scenariot med flera UAV:er optimerar det QMIX-baserade tillvägagångssättet tillsammans tre prestandamått jämfört med benchmark-schemat, vilket resulterar i en 70% minskning av störningar, en 91% minskning av överlämningssiffror och en 47% minskning av överföringsfördröjningen. Det är anmärkningsvärt att en ökning av UAV:er som arbetar inom samma nätverk leder till prestandaförsämring på grund av UAV:er som konkurrerar om kommunikationsresurser och ömsesidig störning. Vid övergången från scenariot med en UAV till scenariot med flera UAV, upplever prestanda för benchmark-schemat en betydande nedgång, med en ökning på 199% av störningar, 89% i överlämnandetal och 652% i överföringsfördröjning. Däremot koordinerar den föreslagna QMIX-algoritmen effektivt flera UAV, vilket minskar prestandaförsämring och uppnår prestanda liknande D3QN-algoritmen som tillämpas i single-UAV-scenariot: en störningsökning på 9%, en ökning av antalet överlämningar med 9% och en fördröjningsökning på 152%. Ökningen av fördröjningen tillskrivs de minskade kommunikationsresurserna tillgängliga för varje enskild UAV, givet nätverkets konstanta kommunikationsresurser.
|
Page generated in 0.1071 seconds