Spelling suggestions: "subject:"multiplicateurs"" "subject:"multiplicateur""
11 |
Stabilisation d'orbites périodiques pour des systèmes en temps discret et en temps continuPereira Das Chagas, Thiago 25 June 2013 (has links) (PDF)
Le problème principalement étudié dans ce manuscrit est la stabilisation d'orbites périodiques de systèmes dynamiques non linéaires à l'aide d'une commande de rétroaction (feedback). Le but des méthodes de contrôle proposées ici est d'obtenir une oscillation périodique stable. Ces méthodes de contrôle sont appliquées à des systèmes présentant des orbites périodiques instables dans l'espace d'état, et ces dernières sont les orbites destinées à être stabilisées. Les méthodes proposées ici sont telles que l'oscillation stable qui en résulte est obtenue avec un effort de contrôle faible, et que la valeur de la commande tend vers zéro lorsque la trajectoire tend vers l'orbite stabilisée. La stabilité locale des orbites périodiques est analysée par l'étude de la stabilité des systèmes linéaires périodiques à l'aide de la théorie de Floquet. Ces systèmes linéaires sont obtenus par linéarisation des trajectoires au voisinage de l'orbite périodique. Les méthodes de contrôle utilisées ici pour la stabilisation des orbites périodiques sont une loi de commande proportionnelle, une loi de commande de rétroaction retardée et une loi de commande de rétroaction basée sur une prédiction. Ces méthodes sont appliquées aux systèmes en temps discret et aux systèmes en temps continu avec les modifications nécessaires. Les contributions principales de cette thèse sont associées à ces méthodes, proposant une méthode alternative de design de gain, une nouvelle loi de commande et des résultats associés.
|
12 |
Etudes de deux approches mathématiques complémentaires pour un problème de reconstruction tomographiqueSrour, Ali Barles, Guy January 2008 (has links) (PDF)
Thèse de doctorat : Mathématiques : Tours : 2008. / Titre provenant de l'écran-titre.
|
13 |
Estimations de satisfaisabilitéHugel, Thomas 07 December 2010 (has links) (PDF)
Le problème de satisfaisabilité booléenne 3-SAT est connu pour présenter un phénomène de seuil en fonction du quotient entre le nombre de clauses et le nombre de variables. Nous donnons des estimations de la valeur de ce seuil au moyen de méthodes combinatoires et probabilistes: la méthode du premier moment et la méthode du second moment. Ces méthodes mettent en jeu des problèmes d'optimisation sous contraintes et nous amènent à employer de façon intensive la méthode des multiplicateurs de Lagrange. Nous mettons en œuvre une forme pondérée de la méthode du premier moment sur les affectations partielles valides de Maneva ainsi que des variantes. Cela nous conduit à élaborer une pondération générale pour les problèmes de satisfaction de contraintes qui soit compatible avec la méthode du premier moment. Cette pondération est constituée d'une graine et d'un répartiteur, et nous permet d'obtenir une pondération des affectations partielles valides meilleure que celle de Maneva. Nous comparons aussi dans certains cas les performances de la pondération et de l'orientation de l'espace des solutions des problèmes de satisfaction de contraintes relativement à la méthode du premier moment. Nous développons la première sélection non uniforme de solutions pour majorer le seuil de 3-SAT et nous montrons sa supériorité sur ses prédécesseurs. Nous construisons un cadre général pour appliquer la méthode du second moment à k-SAT et nous discutons des conditions qui la font fonctionner. Nous faisons notamment fonctionner la méthode du second moment sur les solutions booléennes et sur les impliquants. Nous étendons cela au modèle distributionnel de k-SAT.
|
14 |
Évaluation d’implantation d’un programme de transfert de connaissances par agents multiplicateurs pour la prévention des mauvais traitements chez les jeunes enfantsBriand-Lamarche, Mélodie 12 1900 (has links)
L’étude des pratiques de prévention en santé publique laisse voir que les innovations basées sur des données probantes ne sont pas toujours les plus utilisées (Ringwalt et al. 2002, Wandersman et Florin 2003). Dans la volonté de mettre de l’avant non seulement une innovation basée sur des données probantes, mais aussi une innovation réellement utile à la communauté que le Centre de liaison sur l’intervention et la prévention psychosociale (CLIPP) a mis sur pied en 2006 le programme de formation par agents multiplicateurs «Agir en milieu de garde» ayant pour principal objectif la prévention des mauvais traitements chez les jeunes enfants. La présente étude vise à décrire l’implantation de ce programme dans les services de garde en milieu familial du Québec et à examiner les processus qui ont influencé cette implantation. Les résultats exposent le niveau d’implantation sur deux plans : le dosage et la fidélité. L’étude des processus d’implantation permet de documenter l’influence sur le niveau d’implantation de quatre types de facteurs : individuels, organisationnels, communautaires et propres à l’innovation ainsi que l’influence des interactions entre ces différents facteurs. / The study of Public Health prevention practices suggests that evidence-based innovations are not always the most widely used (Ringwalt et al. 2002, Wandersman and Florin 2003). In 2006, in a strong desire to put forward not only an innovation based on evidence, but also an innovation really useful to the community, the Centre de liaison sur l’intervention et la prévention psychosociale (CLIPP) created “Agir en milieu de garde”, a trained-the-trainers program based whose primary objective was prevention of infant abuse. The present study’s goal is to describe the program’s implementation in home day care centers in Quebec and examine the processes that have an influence on this implementation. The results establish the level of implementation on two specific aspects : dosage and adherence. By studying implementation processes, the present study was able to document how the level of implementation is influenced by four different types of factors :individual, organizational, community and specific to innovation. This study also looked at how the interactions between these four types of factors can influence the implementation.
|
15 |
Continuous linear and bilinear Schur multipliers and applications to perturbation theory / Multiplicateurs de Schur linéaires et bilinéaires continus et applications à la théorie de la perturbationCoine, Clément 30 June 2017 (has links)
Dans le premier chapitre, nous commençons par définir certains produits tensoriels et identifions leur dual. Nous donnons ensuite quelques propriétés des classes de Schatten. La fin du chapitre est dédiée à l’étude des espaces de Bochner à valeurs dans l'espace des opérateurs factorisables par un espace de Hilbert. Le deuxième chapitre est consacré aux multiplicateurs de Schur linéaires. Nous caractérisons les multiplicateurs bornés sur B(Lp, Lq) lorsque p est inférieur à q puis appliquons ce résultat pour obtenir de nouvelles relations d'inclusion entre espaces de multiplicateurs. Dans le troisième chapitre, nous caractérisons, au moyen de multiplicateurs de Schur linéaires, les multiplicateurs de Schur bilinéaires continus à valeurs dans l'espace des opérateurs à trace. Dans le quatrième chapitre, nous donnons divers résultats concernant les opérateurs intégraux multiples. En particulier, nous caractérisons les opérateurs intégraux triples à valeurs dans l'espace des opérateurs à trace puis nous donnons une condition nécessaire et suffisante pour qu'un opérateur intégral triple définisse une application complètement bornée sur le produit de Haagerup de l'espace des opérateurs compacts. Enfin, le cinquième chapitre est dédié à la résolution des problèmes de Peller. Nous commençons par étudier le lien entre opérateurs intégraux multiples et théorie de la perturbation pour le calcul fonctionnel des opérateurs autoadjoints pour finir par la construction de contre-exemples à ces problèmes. / In the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems.
|
16 |
Efficient inference and learning in graphical models for multi-organ shape segmentation / Inférence efficace et apprentissage des modèles graphiques pour la segmentation des formes multi-organesBoussaid, Haithem 08 January 2015 (has links)
Cette thèse explore l’utilisation des modèles de contours déformables pour la segmentation basée sur la forme des images médicales. Nous apportons des contributions sur deux fronts: dans le problème de l’apprentissage statistique, où le modèle est formé à partir d’un ensemble d’images annotées, et le problème de l’inférence, dont le but est de segmenter une image étant donnée un modèle. Nous démontrons le mérite de nos techniques sur une grande base d’images à rayons X, où nous obtenons des améliorations systématiques et des accélérations par rapport à la méthode de l’état de l’art. Concernant l’apprentissage, nous formulons la formation de la fonction de score des modèles de contours déformables en un problème de prédiction structurée à grande marge et construisons une fonction d’apprentissage qui vise à donner le plus haut score à la configuration vérité-terrain. Nous intégrons une fonction de perte adaptée à la prédiction structurée pour les modèles de contours déformables. En particulier, nous considérons l’apprentissage avec la mesure de performance consistant en la distance moyenne entre contours, comme une fonction de perte. L’utilisation de cette fonction de perte au cours de l’apprentissage revient à classer chaque contour candidat selon sa distance moyenne du contour vérité-terrain. Notre apprentissage des modèles de contours déformables en utilisant la prédiction structurée avec la fonction zéro-un de perte surpasse la méthode [Seghers et al. 2007] de référence sur la base d’images médicales considérée [Shiraishi et al. 2000, van Ginneken et al. 2006]. Nous démontrons que l’apprentissage avec la fonction de perte de distance moyenne entre contours améliore encore plus les résultats produits avec l’apprentissage utilisant la fonction zéro-un de perte et ce d’une quantité statistiquement significative.Concernant l’inférence, nous proposons des solveurs efficaces et adaptés aux problèmes combinatoires à variables spatiales discrétisées. Nos contributions sont triples: d’abord, nous considérons le problème d’inférence pour des modèles graphiques qui contiennent des boucles, ne faisant aucune hypothèse sur la topologie du graphe sous-jacent. Nous utilisons un algorithme de décomposition-coordination efficace pour résoudre le problème d’optimisation résultant: nous décomposons le graphe du modèle en un ensemble de sous-graphes en forme de chaines ouvertes. Nous employons la Méthode de direction alternée des multiplicateurs (ADMM) pour réparer les incohérences des solutions individuelles. Même si ADMM est une méthode d’inférence approximative, nous montrons empiriquement que notre implémentation fournit une solution exacte pour les exemples considérés. Deuxièmement, nous accélérons l’optimisation des modèles graphiques en forme de chaîne en utilisant l’algorithme de recherche hiérarchique A* [Felzenszwalb & Mcallester 2007] couplé avec les techniques d’élagage développés dans [Kokkinos 2011a]. Nous réalisons une accélération de 10 fois en moyenne par rapport à l’état de l’art qui est basé sur la programmation dynamique (DP) couplé avec les transformées de distances généralisées [Felzenszwalb & Huttenlocher 2004]. Troisièmement, nous intégrons A* dans le schéma d’ADMM pour garantir une optimisation efficace des sous-problèmes en forme de chaine. En outre, l’algorithme résultant est adapté pour résoudre les problèmes d’inférence augmentée par une fonction de perte qui se pose lors de l’apprentissage de prédiction des structure, et est donc utilisé lors de l’apprentissage et de l’inférence. [...] / This thesis explores the use of discriminatively trained deformable contour models (DCMs) for shape-based segmentation in medical images. We make contributions in two fronts: in the learning problem, where the model is trained from a set of annotated images, and in the inference problem, whose aim is to segment an image given a model. We demonstrate the merit of our techniques in a large X-Ray image segmentation benchmark, where we obtain systematic improvements in accuracy and speedups over the current state-of-the-art. For learning, we formulate training the DCM scoring function as large-margin structured prediction and construct a training objective that aims at giving the highest score to the ground-truth contour configuration. We incorporate a loss function adapted to DCM-based structured prediction. In particular, we consider training with the Mean Contour Distance (MCD) performance measure. Using this loss function during training amounts to scoring each candidate contour according to its Mean Contour Distance to the ground truth configuration. Training DCMs using structured prediction with the standard zero-one loss already outperforms the current state-of-the-art method [Seghers et al. 2007] on the considered medical benchmark [Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that training with the MCD structured loss further improves over the generic zero-one loss results by a statistically significant amount. For inference, we propose efficient solvers adapted to combinatorial problems with discretized spatial variables. Our contributions are three-fold:first, we consider inference for loopy graphical models, making no assumption about the underlying graph topology. We use an efficient decomposition-coordination algorithm to solve the resulting optimization problem: we decompose the model’s graph into a set of open, chain-structured graphs. We employ the Alternating Direction Method of Multipliers (ADMM) to fix the potential inconsistencies of the individual solutions. Even-though ADMMis an approximate inference scheme, we show empirically that our implementation delivers the exact solution for the considered examples. Second,we accelerate optimization of chain-structured graphical models by using the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] couple dwith the pruning techniques developed in [Kokkinos 2011a]. We achieve a one order of magnitude speedup in average over the state-of-the-art technique based on Dynamic Programming (DP) coupled with Generalized DistanceTransforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorporate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an efficient optimization of the underlying chain structured subproblems. The resulting algorithm is naturally adapted to solve the loss-augmented inference problem in structured prediction learning, and hence is used during training and inference. In Appendix A, we consider the case of 3D data and we develop an efficientmethod to find the mode of a 3D kernel density distribution. Our algorithm has guaranteed convergence to the global optimum, and scales logarithmically in the volume size by virtue of recursively subdividing the search space. We use this method to rapidly initialize 3D brain tumor segmentation where we demonstrate substantial acceleration with respect to a standard mean-shift implementation. In Appendix B, we describe in more details our extension of the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on chain-structured graphs.
|
17 |
Résolution de problèmes non linéaires par les méthodes de points intérieurs. Théorie et algorithmes.Ouriemchi, Mohammed 08 December 2005 (has links) (PDF)
Les méthodes barrières proposent de résoudre le problème non linéaire en résolvant une suite de problèmes pénalisés. Le lien entre la suite, dite externe, des solutions des fonctions pénalisées et la solution du problème initial a été établie dans les années soixante.<br /><br /> Dans cette thèse, nous avons utilisé une fonction barrière logarithmique. A chaque itération externe, la technique SQP se charge de produire une série de sous-problèmes quadratiques dont les solutions forment une suite, dite interne, de directions de descente pour résoudre le problème non linéaire pénalisé.<br /><br /> Nous avons introduit un changement de variable sur le pas de déplacement ce qui a permis d'obtenir des conditions d'optimalité plus stable numériquement.<br /><br /> Nous avons réalisé des simulations numériques pour comparer les performances de la méthode des gradients conjugués à celle de la méthode D.C., appliquées pour résoudre des problèmes quadratiques de région de confiance.<br /><br /> Nous avons adapté la méthode D.C. pour résoudre les sous-problèmes verticaux, ce qui nous a permis de ramener leurs dimensions de $n+m$ à $m+p$ ($ p < n $).<br /><br /> L'évolution de l'algorithme est contrôlée par la fonction de mérite. Des tests numériques permettent de comparer les avantages de différentes formes de la fonction de mérite. Nous avons introduit de nouvelles règles pour améliorer cette évolution.<br /><br /> Les expériences numériques montrent un gain concernant le nombre de problèmes résolus. L'étude de la convergence de notre méthode SDC, clôt ce travail.
|
18 |
Stabilisation frontière du système élastodynamique en présence de singularitésBrossard, Romain 30 November 2004 (has links) (PDF)
Nous considérons le cas d'un corps faiblement élastique dont une partie de la frontière est encastrée. Notre problème est de déterminer un contrôle sur la partie de la frontière laissée libre (non-encastrée), de telle sorte que le système, quelque soit son état d'origine, s'amortisse le plus rapidement possible.<br /><br />En d'autres termes, nous considérons un système élastodynamique, amorti au moyen d'une rétroaction définie par une condition de type Neumann sur une partie de la frontière, l'autre partie de la frontière étant munie des conditions de Dirichlet homogène. Nous obtenons des résultats de stabilisation frontière linéaire et non-linéaire, ainsi qu'un résultat de contrôlabilité. Nous démontrons pour cela des relations ad-hoc, dites de Rellich, puis nous utilisons la méthode des multiplicateurs.<br /><br />L'originalité de ce travail réside dans la présence d'une interface entre la partie Dirichlet et la partie Neumann, qui génère des singularités.
|
19 |
Méthodes numériques pour problèmes d'interaction fluide-structure avec valvesDiniz Dos Santos, Nuno 11 December 2007 (has links) (PDF)
Cette thèse est motivée par la modélisation et la simulation numérique des phénomènes d'interaction fluide-structure autour de valves cardiaques. L'interaction avec la paroi des vaisseaux est traitée avec une formulation Arbitraire Lagrange Euler (ALE), tandis que l'interaction avec les valves est traitée à l'aide de multiplicateurs de Lagrange, dans une formulation de type Domaines Fictifs (FD). Après une présentation de synthèse des diverses méthodes utilisées en interaction fluide-structure dans les écoulements sanguins, nous décrivons une méthode permettant de simuler la dynamique d'une valve immergée dans un écoulement visqueux incompressible. L'algorithme de couplage est partionné, ce qui permet de conserver des solveurs fluides et structures indépendants. Le maillage du fluide est mobile pour suivre la paroi des vaisseaux, mais indépendant du maillage des valves. Ceci autorise des très grands déplacements sans nécessiter de remaillage. Nous proposons une stratégie pour gérer le contact entre plusieurs valves. L'algorithme est totalement indépendant des solveurs de structures et est bien adapté au couplage fluide-structure partionné. Enfin, nous proposons un schéma de couplage semi-implicite permettant de mêler efficacement les formulations ALE et FD. Toutes les méthodes considérées sont accompagnées de nombreux tests numériques en 2D et 3D.
|
20 |
Spectral multipliers, R-bounded homomorphisms and analytic diffusion semigroupsKriegler, Christoph 04 December 2009 (has links) (PDF)
Ce travail traite du calcul fonctionnel des op\'rateurs dont le spectre est contenu dans les nombres r\'{e}els positifs. On s'int\'resse en particulier aux th\'{e}or\`{e}mes de multiplicateurs spectraux.\\ On aborde le calcul abstrait et optimal, c'est-\`{a}-dire les homomorphismes $u : C(K) \to B(X)$. Si $X$ est un espace de Hilbert, alors l'extension naturelle $\hat{u} : C(K;[u]') \to B(X)$ de $u$ sur l'ensemble des op\'rateurs est \` nouveau born\'{e}e. En utilisant la $R$-bornitude, un renforcement de la bornitude uniforme, on donne une extension de ce r\'sultat \` des espaces de Banach g\'{e}n\'raux $X$ et on l'applique au calcul $H$ infini et aux bases inconditionnelles dans des espaces $L^p$.\\ On d\'{e}veloppe des calculs associ\'s \` des op\'{e}rateurs sectoriels. Les exemples classiques en sont les th\'or\`mes spectraux de Mihlin et H\"{o}rmander donnant des classes de fonctions lisses qui forment des multiplicateurs de Fourier sur $L^p$. Ces th\'{e}or\`{e}mes ont d\'{e}j\`{a} \'{e}t\'{e} \'{e}tendus \`{a} une large classe d'op\'{e}rateurs de type Laplacien. On les regroupe sous une forme unifi\'{e}e gr\^{a}ce \`{a} la th\'{e}orie des op\'{e}rateurs: on compare le calcul de Mihlin et de H\"rmander \` la bornitude des familles classiques associ\'{e}es \`{a} un op\'rateur sectoriel.\\ Pour la famille des puissances imaginaires, on donne une caract\'{e}risation de leur croissance polynomiale en fonction d'un calcul fonctionnel qui raffine le calcul de Mihlin.\\ On \'tudie des semi-groupes de diffusion qui agissent sur une \'{e}chelle d'espaces de Banach. Il est connu que le semi-groupe a une extension analytique sur un secteur dans le plan complexe si cette \'chelle consiste des espaces $L^p$. On donne une g\'{e}n\'ralisation de ce r\'{e}sultat \`{a} des espaces $L^p$ non commutatifs en utilisant la th\'orie des espaces d'op\'{e}rateurs.
|
Page generated in 0.0724 seconds