Spelling suggestions: "subject:"multipole rapide"" "subject:"multipoles rapide""
1 |
Modélisation de la dynamique de l'aimantation par éléments finisKritsikis, Evaggelos 24 January 2011 (has links) (PDF)
On présente ici un ensemble de méthodes numériques performantes pour lasimulation micromagnétique 3D reposant sur l'équation de Landau-Lifchitz-Gilbert, constituantun code nommé feeLLGood. On a choisi l'approche éléments finis pour sa flexibilitégéométrique. La formulation adoptée respecte la contrainte d'orthogonalité entre l'aimantationet sa dérivée temporelle, contrairement à la formulation classique sur-dissipative.On met au point un schéma de point milieu pour l'équation Landau-Lifchitz-Gilbert quiest stable et d'ordre deux en temps. Cela permet de prendre, à précision égale, des pas detemps beaucoup plus grands (typiquement un ordre de grandeur) que les schémas classiques.Un véritable enjeu numérique est le calcul du champ démagnétisant, non local. Oncompare plusieurs techniques de calcul rapide pour retenir celles, inédites dans le domaine,des multipôles rapides (FMM) et des transformées de Fourier hors-réseau (NFFT). Aprèsavoir validé le code sur des cas-tests et établi son efficacité, on présente les applications àla simulation des nanostructures : sélection de chiralité et résonance ferromagnétique d'unplot monovortex de cobalt, hystérésis des chapeaux de Néel dans un plot allongé de fer.Enfin, l'étude d'un oscillateur spintronique prouve l'évolutivité du code.
|
2 |
Modélisation de la dynamique de l’aimantation par éléments finis / Modelling of magnetisation dynamicsKritsikis, Evaggelos 24 January 2011 (has links)
On présente ici un ensemble de méthodes numériques performantes pour lasimulation micromagnétique 3D reposant sur l’équation de Landau-Lifchitz-Gilbert, constituantun code nommé feeLLGood. On a choisi l’approche éléments finis pour sa flexibilitégéométrique. La formulation adoptée respecte la contrainte d’orthogonalité entre l’aimantationet sa dérivée temporelle, contrairement à la formulation classique sur-dissipative.On met au point un schéma de point milieu pour l’équation Landau-Lifchitz-Gilbert quiest stable et d’ordre deux en temps. Cela permet de prendre, à précision égale, des pas detemps beaucoup plus grands (typiquement un ordre de grandeur) que les schémas classiques.Un véritable enjeu numérique est le calcul du champ démagnétisant, non local. Oncompare plusieurs techniques de calcul rapide pour retenir celles, inédites dans le domaine,des multipôles rapides (FMM) et des transformées de Fourier hors-réseau (NFFT). Aprèsavoir validé le code sur des cas-tests et établi son efficacité, on présente les applications àla simulation des nanostructures : sélection de chiralité et résonance ferromagnétique d’unplot monovortex de cobalt, hystérésis des chapeaux de Néel dans un plot allongé de fer.Enfin, l’étude d’un oscillateur spintronique prouve l’évolutivité du code. / Here is presented a set of efficient numerical methods for 3D micromagneticsimulation based on the Landau-Lifchitz-Gilbert equation, making up a code named feeLLGood.The finite element approach was chosen for its geometrical flexibility. The adoptedformulation meets the orthogonality constraint between the magnetization and its time derivative,unlike the over-dissipative classical formulation. A midoint rule was developed forthe Landau-Lifchitz-Gilbert equation which is stable and second order in time. This allowsfor much bigger time steps (typically an order of magnitude) than classical schemes at thesame precision. Computing the nonlocal demagnetizing interaction is a real numerical challenge.Several fast computation techniques are compared. Those selected are novel to thefield : the Fast Multipole Method (FMM) and Non-uniform Fast Fourier Transforms (NFFT).After the code is validated on test cases and its efficiency established, applications to the simulationof nanostructures are presented : chirality selection and ferromagnetic resonanceof a cobalt monovortex dot, Neel caps hysteresis in an iron dot. Finally, the study of a spintronicoscillator proves the code’s upgradability.
|
3 |
Modélisation de la dynamique de l'aimantation par éléments finisKritsikis, Evaggelos 24 January 2011 (has links) (PDF)
On présente ici un ensemble de méthodes numériques performantes pour lasimulation micromagnétique 3D reposant sur l'équation de Landau-Lifchitz-Gilbert, constituantun code nommé feeLLGood. On a choisi l'approche éléments finis pour sa flexibilitégéométrique. La formulation adoptée respecte la contrainte d'orthogonalité entre l'aimantationet sa dérivée temporelle, contrairement à la formulation classique sur-dissipative.On met au point un schéma de point milieu pour l'équation Landau-Lifchitz-Gilbert quiest stable et d'ordre deux en temps. Cela permet de prendre, à précision égale, des pas detemps beaucoup plus grands (typiquement un ordre de grandeur) que les schémas classiques.Un véritable enjeu numérique est le calcul du champ démagnétisant, non local. Oncompare plusieurs techniques de calcul rapide pour retenir celles, inédites dans le domaine,des multipôles rapides (FMM) et des transformées de Fourier hors-réseau (NFFT). Aprèsavoir validé le code sur des cas-tests et établi son efficacité, on présente les applications àla simulation des nanostructures : sélection de chiralité et résonance ferromagnétique d'unplot monovortex de cobalt, hystérésis des chapeaux de Néel dans un plot allongé de fer.Enfin, l'étude d'un oscillateur spintronique prouve l'évolutivité du code.
|
4 |
Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis / Algorithmes hiérarchiques rapides pour l’approximation de rang faible des matrices, applications à la physique des matériaux, la géostatistique et l’analyse de donnéesBlanchard, Pierre 16 February 2017 (has links)
Les techniques avancées pour l’approximation de rang faible des matrices sont des outils de réduction de dimension fondamentaux pour un grand nombre de domaines du calcul scientifique. Les approches hiérarchiques comme les matrices H2, en particulier la méthode multipôle rapide (FMM), bénéficient de la structure de rang faible par bloc de certaines matrices pour réduire le coût de calcul de problèmes d’interactions à n-corps en O(n) opérations au lieu de O(n2). Afin de mieux traiter des noyaux d’interaction complexes de plusieurs natures, des formulations FMM dites ”kernel-independent” ont récemment vu le jour, telles que les FMM basées sur l’interpolation polynomiale. Cependant elles deviennent très coûteuses pour les noyaux tensoriels à fortes dimensions, c’est pourquoi nous avons développé une nouvelle formulation FMM efficace basée sur l’interpolation polynomiale, appelée Uniform FMM. Cette méthode a été implémentée dans la bibliothèque parallèle ScalFMM et repose sur une grille d’interpolation régulière et la transformée de Fourier rapide (FFT). Ses performances et sa précision ont été comparées à celles de la FMM par interpolation de Chebyshev. Des simulations numériques sur des cas tests artificiels ont montré que la perte de précision induite par le schéma d’interpolation était largement compensées par le gain de performance apporté par la FFT. Dans un premier temps, nous avons étendu les FMM basées sur grille de Chebyshev et sur grille régulière au calcul des champs élastiques isotropes mis en jeu dans des simulations de Dynamique des Dislocations (DD). Dans un second temps, nous avons utilisé notre nouvelle FMM pour accélérer une factorisation SVD de rang r par projection aléatoire et ainsi permettre de générer efficacement des champs Gaussiens aléatoires sur de grandes grilles hétérogènes. Pour finir, nous avons développé un algorithme de réduction de dimension basé sur la projection aléatoire dense afin d’étudier de nouvelles façons de caractériser la biodiversité, à savoir d’un point de vue géométrique. / Advanced techniques for the low-rank approximation of matrices are crucial dimension reduction tools in many domains of modern scientific computing. Hierarchical approaches like H2-matrices, in particular the Fast Multipole Method (FMM), benefit from the block low-rank structure of certain matrices to reduce the cost of computing n-body problems to O(n) operations instead of O(n2). In order to better deal with kernels of various kinds, kernel independent FMM formulations have recently arisen such as polynomial interpolation based FMM. However, they are hardly tractable to high dimensional tensorial kernels, therefore we designed a new highly efficient interpolation based FMM, called the Uniform FMM, and implemented it in the parallel library ScalFMM. The method relies on an equispaced interpolation grid and the Fast Fourier Transform (FFT). Performance and accuracy were compared with the Chebyshev interpolation based FMM. Numerical experiments on artificial benchmarks showed that the loss of accuracy induced by the interpolation scheme was largely compensated by the FFT optimization. First of all, we extended both interpolation based FMM to the computation of the isotropic elastic fields involved in Dislocation Dynamics (DD) simulations. Second of all, we used our new FMM algorithm to accelerate a rank-r Randomized SVD and thus efficiently generate multivariate Gaussian random variables on large heterogeneous grids in O(n) operations. Finally, we designed a new efficient dimensionality reduction algorithm based on dense random projection in order to investigate new ways of characterizing the biodiversity, namely from a geometric point of view.
|
5 |
Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements / Modélisation de la propagation des ondes sismiques : une méthode multipôle rapide (éléments de frontière) et son couplage avec la méthode des éléments finisGrasso, Eva 13 June 2012 (has links)
La simulation numérique de la propagation d'ondes sismiques est un besoin actuel, par exemple pour modéliser les vibrations induites dans les sols par le trafic ferroviaire ou pour analyser la propagation d'ondes sismiques ou l'interaction sol-structure. La modélisation de ce type de problèmes est complexe et nécessite l'utilisation de méthodes numériques avancées. La méthode des éléments de frontière (boundary element method, BEM) est une méthode très efficace pour la solution de problèmes de dynamique dans des régions étendues (idéalisées comme non-bornées), en particulier après le développement des méthodes BEM accélérées par multipôle rapide (Fast Multipole Method, FMM), la méthode utilisée dans ce travail de thèse. La BEM est basée sur une formulation intégrale qui nécessite de discrétiser uniquement la frontière du domaine (i.e. une surface en 3-D) et prend implicitement en compte les conditions de radiation à l'infini. En revanche, la BEM nécessite la résolution d'un système linéaire dont la matrice est pleine et (pour la formulation par collocation de la BEM) non-symétrique. Cette méthode est donc trop onéreuse pour des problèmes de grandes dimensions (par exemple O(106) DDLs). L'application à la BEM de la méthode multipôle rapide multi-niveaux (multi-level fast multipole method, ou ML-FMM diminue considérablement la complexité et les besoins de mémoire affectant les formulations BEM classiques, rendant la BEM très compétitive pour modéliser la propagation des ondes élastiques. La version élastodynamique de la ML-FMBEM, dans une forme étendue aux domaines homogènes par morceaux, a par exemple été appliquée avec succès dans un travail précédent (thèse S. Chaillat, ENPC, 2008) pour résoudre les problèmes de propagation des ondes sismiques. Cette thèse vise a développer les capacités de la version élastodynamique fréquentielle de la ML-FMBEM dans deux directions. Premièrement, la formulation de la ML-FMBEM a été étendue au cas de matériaux viscoélastiques linéaires faiblement dissipatifs. Deuxièmement, la ML-FMBEM et la méthode des éléments finis (finite element method, FEM) ont été couplées afin de permettre la résolution de problèmes plus compliqués. En effet, le couplage FEM/FMBEM permet de profiter d'un côté de la flexibilité de la FEM pour la modélisation de structures de géométrie complexe ou présentant des non-linéarités de comportement, de l'autre côté de la prise en compte naturelle par la ML-FMBEM des ondes se propageant dans un milieu étendu et rayonnant à l'infini. De nouvelles perspectives d'application (par exemple prise en compte d'hétérogénéités, non-linéarités de comportement) sont ainsi ouvertes. Dans cette thèse, nous avons considéré deux stratégies pour coupler la FMBEM et la FEM avec l'objectif de résoudre les problèmes tridimensionnels de propagation des ondes harmoniques dans le temps et dans des domaines non-bornés. L'idée principale consiste à séparer une ou plusieurs sous-régions pouvant contenir des structures complexes, de fortes hétérogénéités ou des non-linéarités (modélisées au moyen de la FEM) du milieu propagatif complémentaire semi-infini et (visco-) élastique (modélisé au moyen de la FMBEM). Cette séparation est effectuée au moyen d'une décomposition de domaines sans recouvrement. Le deux approches proposées ont été mises en oeuvre, et une série d'expérimentations numériques a été effectuée pour les évaluer et les comparer / The numerical simulation of elastic wave propagation in unbounded media is a topical issue. This need arises in a variety of real life engineering problems, from the modelling of railway- or machinery-induced vibrations to the analysis of seismic wave propagation and soil-structure interaction problems. Due to the complexity of the involved geometries and materials behavior, modelling such situations requires sophisticated numerical methods. The Boundary Element method (BEM) is a very effective approach for dynamical problems in spatially-extended regions (idealized as unbounded), especially since the advent of fast BEMs such as the Fast Multipole Method (FMM) used in this work. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundary (i.e. a surface in 3-D) and accounts implicitly for the radiation conditions at infinity. As a main disadvantage, the BEM leads a priori to a fully-populated and (using the collocation approach) non-symmetrical coefficient matrix, which make the traditional implementation of this method prohibitive for large problems (say O(106) boundary DoFs). Applied to the BEM, the Multi-Level Fast Multipole Method (ML-FMM) strongly lowers the complexity in computational work and memory that hinder the classical formulation, making the ML-FMBEM very competitive in modelling elastic wave propagation. The elastodynamic version of the Fast Multipole BEM (FMBEM), in a form enabling piecewise-homogeneous media, has for instance been successfully used to solve seismic wave propagation problems in a previous work (thesis dissertation of S. Chaillat, ENPC, 2008). This thesis aims at extending the capabilities of the existing frequency-domain elastodynamic FMBEM in two directions. Firstly, the time-harmonic elastodynamic ML-FMBEM formulation has been extended to the case of weakly dissipative viscoelastic media. Secondly, the FMBEM and the Finite Element Method (FEM) have been coupled to take advantage of the versatility of the FEM to model complex geometries and non-linearities while the FM-BEM accounts for wave propagation in the surrounding unbounded medium. In this thesis, we consider two strategies for coupling the FMBEM and the FEM to solve three-dimensional time-harmonic wave propagation problems in unbounded domains. The main idea is to separate one or more bounded subdomains (modelled by the FEM) from the complementary semi-infinite viscoelastic propagation medium (modelled by the FMBEM) through a non-overlapping domain decomposition. Two coupling strategies have been implemented and their performances assessed and compared on several examples
|
Page generated in 0.0342 seconds