• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 48
  • 15
  • 15
  • 14
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 374
  • 85
  • 61
  • 60
  • 58
  • 56
  • 51
  • 49
  • 40
  • 37
  • 33
  • 32
  • 32
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes

McNamara, James W., Li, Amy, Smith, Nicola J., Lal, Sean, Graham, Robert M., Kooiker, Kristina Bezold, van Dijk, Sabine J., Remedios, Cristobal G. dos, Harris, Samantha P., Cooke, Roger 05 1900 (has links)
Cardiac myosin binding protein-C (cMyBP-C) is a structural and regulatory component of cardiac thick filaments. It is observed in electron micrographs as seven to nine transverse stripes in the central portion of each half of the A band. Its C-terminus binds tightly to the myosin rod and contributes to thick filament structure, while the N-terminus can bind both myosin S2 and actin, influencing their structure and function. Mutations in the MYBPC3 gene (encoding cMyBP-C) are commonly associated with hypertrophic cardiomyopathy (HCM). In cardiac cells there exists a population of myosin heads in the super-relaxed (SRX) state, which are bound to the thick filament core with a highly inhibited ATPase activity. This report examines the role cMyBP-C plays in regulating the population of the SRX state of cardiac myosin by using an assay that measures single ATP turnover of myosin. We report a significant decrease in the proportion of myosin heads in the SRX state in homozygous cMyBP-C knockout mice, however heterozygous cMyBP-C knockout mice do not significantly differ from the wild type. A smaller, non-significant decrease is observed when thoracic aortic constriction is used to induce cardiac hypertrophy in mutation negative mice. These results support the proposal that cMyBP-C stabilises the thick filament and that the loss of cMyBP-C results in an untethering of myosin heads. This results in an increased myosin ATP turnover, further consolidating the relationship between thick filament structure and the myosin ATPase. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.
152

Untersuchungen zum Rekrutierungsmechanismus und zur funktionellen Rolle des atypischen Myr5 bei der Epithelzellinvasion durch Shigella flexneri

Böwe, Christian 23 April 2004 (has links)
Shigellen sind die Erreger der bakteriellen Ruhr beim Menschen, ihrem einzigen bisher bekannten Wirt. Ein wesentlicher Virulenzfaktor von Shigellen ist ihre Fähigkeit, in Epithelzellen des Intestinaltraktes einzudringen. Dabei induziert Shigella in der Wirtszelle Zytoskelettrearrangements, die zur Ausbildung einer blütenartigen Membranstruktur um das Bakterium herum führen, die schließlich über dem eindringenden Bakterium konfluiert und damit den Mikroorganismus internalisiert. Die Zytoskelettveränderungen sind essenziell für den Internalisierungsmechanismus und werden von der kleinen GTPase Rho gesteuert, wobei die Rho-Aktivität zeitlich und räumlich streng reguliert wird, um eine überschießende Bildung von F-Aktin auf Kosten des zellulären G-Aktin-pools zu verhindern. Myr5, ein atypisches Myosin der Klasse IX, ist das erste beschriebene Myosin mit einem Rho inaktivierenden GAP-Modul. Deshalb vermuteten wir, dass der Rho-Antagonist Myr5 während der Shigelleninvasion funktionell von Bedeutung sein könnte. Wir konnten zeigen, dass Myr5 bei der Shigelleninvasion in die zellulären Protrusionen rekrutiert wird. Dort kolokalisierte Myr5 mit F-Aktin und den Rho-Isoformen B und C, nicht jedoch mit RhoA. Die Rekrutierung von Myr5 in die Invasionszone erfolgte unabhängig von der Myosin-Kopf- und der GAP-Funktion. Die Resultate funktioneller quantitativer Untersuchungen zu einer möglichen Rolle während der bakteriellen Invasion sind kompatibel mit der Hypothese, dass sowohl die GAP-Funktion als auch die Myosin-Kopf-Funktion von Myr5 während unterschiedlicher Phasen der Shigelleninvasion von Bedeutung sind. / Shigella causes bacillary dysentery in humans, the only known host. A major feature of its pathogenic potential is the capacity to invade intestinal epithelial cells. Shigella entry into epithelial cells is considered a parasite induced internalization process requiring cytoskeletal rearrangements. Shigella induces a blossom-like membrane structure consisting of membrane sheaths that coalesce above and thus internalize the invasive microorganism. Cytoskeletal remodeling is an essential part of the entry process and is regulated by the small GTPase rho. Temporal and special regulation of rho activity is important to prevent excessive generation of F-actin in depense of the cellular G-actin pool. The class IX myosin myr5 is characterized by a GTPase activating protein (GAP)-module in the tail region. The GAP-module of myr5 is able to inactivate rho. We therefore hypothesized a potential role of myr5 in the regulation of rho activity during Shigella entry into epithelial cells. We could show that myr5 is recruited into bacterial entry spot. Myr5 colocalized with F-actin, rhoB and rhoC but not rhoA. Shigella-induced recruitment of myr5 did not require a functional myosin head or GAP-domain. The results of quantitative functional studies of a potential role of myr5 during bacterial entry suggest a dual role of the myosin head function and the GAP module of myr5 during different steps of the internalization process.
153

Cellular and Molecular Mechanisms Underlying Acute Quadriplegic Myopathy : Studies in Experimental Animal Models and Intensive Care Unit Patients

Norman, Holly January 2006 (has links)
<p>The combination of a severe systemic illness, corticosteroids, and neuromuscular blocking agents in patients on the mechanical ventilator often results in a condition known as Acute Quadriplegic Myopathy (AQM). While severe weakness of all spinal nerve innervated muscles is known to be a significant clinical characteristic of the disease, this symptom is typically not recognized until the disease has progressed to an advanced stage. End result effects have been classified, which include the loss of the thick filament, or myosin heavy chain, an in-excitable muscle membrane, and an up-regulation of protein degradation; however, there is little known about the acute stage of AQM. This project has focused on understanding the underlying mechanisms of AQM, specifically in regard to protein synthesis, both at the mRNA and nuclear transcription levels. To study the early stages of the disease two animal models have been developed: rat and pig. Further, we have examined AQM muscle tissue, to investigate the similarities of our animal models to patients, as well as to study the recovery process. Particular interest was directed on the myofibrillar proteins myosin (MyHC) and actin, as they are the primary proteins involved in muscle contraction, as well as the myosin associated proteins, myosin binding protein C and H. </p><p>At the mRNA level, MyHC and actin are both down-regulated in response to AQM. The myosin binding proteins are affected differently, with H protein increasing during severe atrophy and C protein either being slightly down-regulated or unchanged. Nuclear transcription factors were also affected, with such factors as MuRF1 and MAFbx up-regulated. </p><p>Thus far results have shown that protein synthesis is altered in AQM and largely contributes to both the development and recovery of the disease. The pathways of protein synthesis may prove to be an ideal target for the prevention of AQM and/or symptom alleviation.</p>
154

Cellular and Molecular Mechanisms Underlying Acute Quadriplegic Myopathy : Studies in Experimental Animal Models and Intensive Care Unit Patients

Norman, Holly January 2006 (has links)
The combination of a severe systemic illness, corticosteroids, and neuromuscular blocking agents in patients on the mechanical ventilator often results in a condition known as Acute Quadriplegic Myopathy (AQM). While severe weakness of all spinal nerve innervated muscles is known to be a significant clinical characteristic of the disease, this symptom is typically not recognized until the disease has progressed to an advanced stage. End result effects have been classified, which include the loss of the thick filament, or myosin heavy chain, an in-excitable muscle membrane, and an up-regulation of protein degradation; however, there is little known about the acute stage of AQM. This project has focused on understanding the underlying mechanisms of AQM, specifically in regard to protein synthesis, both at the mRNA and nuclear transcription levels. To study the early stages of the disease two animal models have been developed: rat and pig. Further, we have examined AQM muscle tissue, to investigate the similarities of our animal models to patients, as well as to study the recovery process. Particular interest was directed on the myofibrillar proteins myosin (MyHC) and actin, as they are the primary proteins involved in muscle contraction, as well as the myosin associated proteins, myosin binding protein C and H. At the mRNA level, MyHC and actin are both down-regulated in response to AQM. The myosin binding proteins are affected differently, with H protein increasing during severe atrophy and C protein either being slightly down-regulated or unchanged. Nuclear transcription factors were also affected, with such factors as MuRF1 and MAFbx up-regulated. Thus far results have shown that protein synthesis is altered in AQM and largely contributes to both the development and recovery of the disease. The pathways of protein synthesis may prove to be an ideal target for the prevention of AQM and/or symptom alleviation.
155

Neuartige Myosin ATPase-Inhibitoren auf der Basis polyhalogenierter Pyrrolalkaloide und stereoselektive Synthese hormonell aktiver Steroide

Martin, René 07 January 2009 (has links) (PDF)
Während meiner Dissertation beschäftigte ich mich mit der Synthese von polyhalogenierten Pyrrolalkaloiden. Im Zentrum der Darstellung dieser Verbindungen stand die von mir in meiner Diplomarbeit erfolgreich zur Synthese von Pentabrompseudilin angewandte silber-katalysierte Cyclisierung von N-tosylsubstituierten Homopropargylaminen. So konnte das Pentachlorpseudilin in der zweiten Totalsynthese überhaupt sowie mehrere gemischt halogenierte synthetische Derivate aufgebaut werden. Diese Verbindungen konnten in einer Kooperation mit Herrn Prof. Gutzeit aus der Fachrichtung Biologie der TU Dresden und Herrn Prof. Manstein von der Medizinischen Hochschule Hannover, als hochwirksame Myosin ATPase-Inhibitoren identifiziert werden. Bei den verschieden halogenierten Verbindungen ließen sich deutliche Unterschiede in der inhibitorischen Aktivität feststellen. Ein zum Pentabrompseudilin benzologes Indolderivat, welches in einer kurzen Synthese aufgebaut werden konnte, war hingegen nicht aktiv. Im zweiten Teil der Promotion beschäftigte ich mich in einer Kooperation mit Dr. Kurzchalia vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik (Dresden) mit der Synthese von hormonell aktiven Steroiden, speziell den Cholesten-26-säuren, welche Liganden für den hormonellen Rezeptor DAF-12 des Nematoden Caenorhabditis elegans repräsentieren. Die an C-25 R-konfigurierten Säuren waren in der Literatur mit einer deutlich geringeren Aktivität als die 25S-Säuren beschrieben. Die 25R-Steroide waren synthetisch leicht aus kommerziell erhältlichem Diosgenin zugänglich. So konnten alle drei 25R-Säuren in kurzen Synthesen dargestellt werden. In deren Verlauf wurden verschiedene Oxidations- und Schutzgruppenreaktionen eindrucksvoll angewendet. Für die Einführung der 25S-Konfiguration in der Seitenkette sollte eine EVANS-Aldolreaktion an geeignetem Startmaterial angewandt werden. In der Tat führte die Verwendung eines chiralen Oxazolidinons stereoselektiv zum gewünschten Enantiomer in sehr guten Ausbeuten, selbst bei großen Ansätzen. Zur weiteren Transformation musste die durch die Aldolreaktion eingeführte Hydroxygruppe an C-24 entfernt werden. Dies gelang in exzellenter Ausbeute mit Hilfe einer radikalischen Deoxygenierung nach BARTON und MCCOMBIE. So konnte in acht Stufen ein zentrales Syntheseintermediat gewonnen werden, dass in alle drei Naturstoffe überführt werden konnte. Damit waren ausreichende Mengen für biologische Untersuchungen hergestellt worden. Mit der gesättigten (25S)-Dafachronic Acid konnte ein neuer Ligand für DAF-12 synthetisiert werden. Gleichzeitig konnte gezeigt werden, dass die Existenz einer Doppelbindung in den Cholesten-26-säuren für die biologische Aktivität unerheblich ist. Für weitere biologische Tests konnten neue Normethylderivate des Cholesterols gewonnen werden. Diese zeigten zum Teil ungewöhnliche biologische Aktivität. Außerdem wurden Versuche zu an verschiedenen Positionen bromierten Cholesterolderivaten unternommen. Im letzten Teil meiner Dissertation konnten neue hoch hydroxylierte Steroide dargestellt werden, die in einer Kooperation mit Prof. Franzblau vom Institute for Tuberculosis Research (Chicago, USA) auf ihre Aktivität gegen Mycobacterium tuberculosis getestet werden sollten. Dabei konnte eine ungewöhnliche 1,2-anti-Hydroborierung beoachtet werden, deren Mechanismus noch genauer untersucht werden muss.
156

Synthese halogenierter Carbazole und Totalsynthese der Amaryllisalkaloide Pratosin und Hippadin

Kirst, Juliane 14 July 2009 (has links) (PDF)
Während meiner Dissertation beschäftigte ich mich mit der Synthese von polyhalogenierten Carbazolderivaten. Das Carbazolgerüst wurde über den Palladiumvermittelten, bestehend aus Buchwald-Hartwig-Aminierung und oxidativer Cyclisierung, aufgebaut. Die Halogensubstituenten wurden entweder am Carbazol eingeführt oder bereits über die Startmoleküle in die Synthese eingebracht. Somit konnten verschiedene halogenierte halogenierte Derivate synthetisiert werden. Diese Verbindungen konnten in einer Kooperation mit Herrn Prof. Gutzeit aus der Fachrichtung Biologie der TU Dresden auf ihre Aktivität in der Inhibierung der Myosin ATPase untersucht werden. Dabei wurde ein tribromiertes 1-Hydroxycarbazol als wirksamer Inhibitor identifiziert. Der zweite Teil der Promotion umfasst die Darstellung der Amaryllisalkaloide Pratosin und Hippadin, sowie der auf diesem Weg ebenfalls zugänglichen Naturstoffe Assoanin, Oxoassoanin, Anhydrolycorin-7-on und deren Naturstoffanaloga Anhydrolycorin. Die Synthese wurde auf zwei verschiedenen Wegen durchgeführt und beinhaltet als Schlüsselreaktionen die Eisenvermittelte C-C und C-N Bindungsbildung, sowie die Palladiumvermittelte Biarylkupplung. / This thesis is about my research study of the synthesis of polyhalogenated carbazoles. The skeletal structure of the carbazoles are easily assembled by palladium(0)-catalyzed Buchwald-Hartwig coupling and palladium(II)-mediated oxidative cyclisation. Through cooperation with Prof. Gutzeit many different halogenated carbazole derivatives could be analyzed concerning the activity of the inhibition of myosin ATPase. The tribrominated 1-Hydroxycarbazole was identified as sn effective inhibitor. The second part of my thesis includes the total synthesis of amaryllidaceae alkaloids pratosine, oxoassoanine, assoanine, hippadine, anhydrolycorinone and anhydrolycorine. The synthesis was accomplished by two different pathways which include the Iron-mediated C-C and C-N bond formation and intramolecular palladium-catalysed biaryl coupling reaction as the key steps.
157

Distinct actin-dependent mechanisms ensure apical nuclear migration in different zebrafish neuroepithelia

Yanakieva, Iskra 09 August 2019 (has links)
Correct nuclear position is crucial for cellular function. The cytoskeletal mechanisms of nuclear positioning have been studied intensely in cultured cells. However, it is less clear if and how tissue morphology can influence nuclear positioning in developing tissues. To address this question, this thesis compares nuclear migration in straight and curved neuroepithelia of the developing zebrafish. Neuroepithelial nuclei occupy different apicobasal positions in interphase but migrate to the apical surface before mitosis, a process essential for epithelial development. While apical migration in the straight hindbrain and the curved retina depends on actomyosin, it is unclear how the necessary forces are generated and if tissue morphology influences the force generation mechanisms. Remarkably, this study demonstrates that in neuroepithelia of different shape nuclei move with distinct kinetics and undergo distinct deformations. Such differences are explained by the action of disparate forces that propel hindbrain and retinal nuclei. In agreement with this conclusion, hindbrain and retinal cells display distinct actomyosin distribution and regulation during nuclear migration. Apical movement is shown to depend on Rho-ROCK activity in the hindbrain and formin activity in the retina. Therefore, hindbrain and retinal cells employ distinct actin-dependent mechanisms of nuclear positioning. Comparison of nuclear movements in another pair of straight and curved neuroepithelia shows that in tissues with similar morphology nuclei have conserved modes of apical migration. The different mechanisms of apical migration used in tissues of different shape argue that tissue morphology can indeed influence the mechanism of nuclear positioning. The findings in this thesis suggest that different mechanisms arise due to differences in actin arrangements during development of tissues with distinct curvature. Furthermore, they emphasize the importance of developmental context, tissue and cell morphology for the execution of intracellular processes.:1. INTRODUCTION 1.1. The cytoskeleton is a versatile tool to perform a variety of cellular functions 1.1.1. Introduction to microtubules and actomyosin 1.1.2. Functions of the cytoskeleton 1.1.3. The cytoskeleton and intracellular transport 1.2. The cytoskeleton in nuclear positioning 1.2.1. The nucleus can be coupled to the cytoskeleton 1.2.2. Mechanisms of nuclear positioning by microtubules and actin 1.2.3. Nuclear positioning in the pseudostratified epithelium 1.3. Objective of the study 2. MATERIALS AND METHODS 2.1. Zebrafish methods 2.1.1. Zebrafish husbandry 2.1.2. RNA and DNA injections 2.1.3. Cloning strategies 2.1.4. List of constructs 2.1.5. Heat shock of embryos 2.1.6. Drug treatments 2.1.7. Immunofluorescence 2.2. Image acquisition 2.2.1. Confocal scans 2.2.2. Time-lapse imaging using spinning disk confocal microscope (SDCM) 2.2.3. Time-lapse imaging using light-sheet fluorescent microscope (LSFM) 2.3. Laser ablations 2.3.1. PSE laser ablations 2.3.2. Nuclear laser ablations 2.4. Image analysis 2.4.1. Sample drift correction 2.4.2. Actin, myosin, and nuclear intensity distribution 2.4.3. Nuclear segmentation, shape measurements, and tracking in 3D 2.4.4. Analysis of the kinetics of apical nuclear migration 2.4.5. Tissue and cell shape measurements 3. RESULTS 3.1. Characterization of apical nuclear migration in zebrafish neuroepithelia 3.1.1. The overall duration of G2 and apical migration differ in hindbrain and retina 3.1.2. Hindbrain and retinal nuclei move with distinct kinetics during apical migration 3.2. Nuclear deformations can be used to study the forces experienced by the organelle 3.2.1. The absence of lamin A/C is likely to enable nuclear deformations 3.2.2. Neuroepithelial nuclei can respond to applied forces by deformation 3.2.3. Retinal nuclei deform more strongly during apical migration 3.2.4. Deformation of ablated regions in the nucleus suggests that retinal nuclei are pushed to the apical side 3.3. Apical nuclear migration depends on actomyosin with distinct distribution in hindbrain and retina 3.3.1. Apical nuclear migration in the hindbrain depends on actin and not on microtubules 3.3.2. Actin and myosin are locally enriched basally of the nucleus in retinal cells but not in hindbrain G2 cells 3.4. Apical nuclear migration is regulated differently in hindbrain and retinal cells 3.4.1. Initial screening for possible actomyosin regulators of apical nuclear migration 3.4.2. Apical nuclear migration is controlled by different actomyosin regulators in hindbrain and retinal cells 3.5. Cells of neuroepithelia with distinct curvature use different mechanisms of apical migration 3.5.1. Tissue-wide contractile actomyosin that is enriched basally in the retina, is absent in the hindbrain 3.5.2. Tissue curvature and cell shape differ between hindbrain and retina 3.5.3. Characterization of the straight and the curved regions of the MHB 3.5.4. Nuclei in straight and curved neuroepithelia move with distinct kinetics 3.5.5. Nuclear shape changes during apical migration are stronger in curved compared to straight neuroepithelia 3.5.6. Basal cytoplasmic actomyosin follows the nucleus in cells of curved neuroepithelia 4. DISCUSSION 4.1. The deformability of neuroepithelial nuclei as a prerequisite for migration in the crowded PSE 4.2. Possible mechanisms of apical nuclear migration 4.2.1. Cortical flow-dependent mechanism in the hindbrain 4.2.2. Basal pushing mechanism in the retina 4.2.2.a. Pushing of the nucleus by a cytoplasmic flow 4.2.2.b. Pushing of the nucleus by an expanding actin network 4.2.2.c. Possible roles of myosin in a basal pushing mechanism 4.3. The adaptability of the cytoskeleton ensures robust apical nuclear migration 4.3.1. Cytoskeleton adaptability ensures the robustness of apical nuclear migration 4.3.2. Adaptation of the actomyosin cytoskeleton to different tissue curvature 5. OUTLOOK LIST OF ABBREVIATIONS LIST OF TABLES LIST OF FIGURES MOVIE LEGENDS REFERENCES APPENDIX
158

Identification of Myosin Light Chain, Myosin Light Chain Phosphatase, and Rho Kinase in the Corpus Cavernosum of the Rat

Cosper, Marcus S. 11 June 2009 (has links)
No description available.
159

Actomyosin mechanics at the cell level

Erzberger, Anna 29 February 2016 (has links) (PDF)
Almost all animal cells maintain a thin layer of actin filaments and associated proteins underneath the cell membrane. The actomyosin cortex is subject to internal stress patterns which result from the spatiotemporally regulated activity of non-muscle myosin II motors in the actin network. We study how these active stresses drive changes in cell shape and flows within the cortical layer, and how these cytoskeletal deformations and flows govern processes such as cell migration, cell division and organelle transport. Following a continuum mechanics approach, we develop theoretical descriptions for three different cellular processes, to obtain - in collaboration with experimental groups - a detailed and quantitative understanding of the underlying cytoskeletal mechanics. We investigate the forces and cortex flows involved in adhesion-independent cell migration in confinement. Many types of cell migration rely on the extension of protrusions at the leading edge, where the cells attach to the substrate with specific focal adhesions, and pull themselves forward, exerting stresses in the kPa range. In confined environments however, cells exhibit migration modes which are independent of specific adhesions. Combining hydrodynamic theory, microfluidics and quantitative imaging of motile, non-adherent carcinosarcoma cells, we analyze the mechanical behavior of cells during adhesion-independent migration. We find that the accumulation of active myosin motors in the rear part of these cells results in a retrograde cortical flow as well as the contraction of the cell body in the rear and expansion in the front, and we describe how both processes contribute to the translocation of the cells, depending on the geometric and mechanical parameters of the system. Importantly, we find that the involved propulsive forces are several orders of magnitude lower than during adhesive motility while the achieved migration velocities are similar. Moreover, the distribution of forces on the substrate during non-adhesive migration is fundamentally different, giving rise to a positive force dipole. In contrast to adhesive migration modes, non-adhesive cells move by exerting pushing forces at the rear, acting to expand rather than contract their substrate as they move. These differences may strongly affect hydrodynamic and/or deformational interactions between collectively migrating cells. In addition to the work outlined above, we study contractile ring formation in the actin cytoskeleton before and during cell division. While in disordered actin networks, myosin motor activity gives rise to isotropic stresses, the alignment of actin filaments in the cortex during cell division introduces a preferred direction for motor-filament interactions, resulting in anisotropies in the cortical stress. Actin filaments align in myosin-dependent shear flows, resulting in possible feedback between motor activity, cortical flows and actin organization. We investigate how the mechanical interplay of these different cortical properties gives rise to the formation of a cleavage furrow during cell division, describing the level of actin filament alignment at different points on the cortex with a nematic order parameter, in analogy to liquid crystal physics. We show that cortical anisotropies arising from shear-flow induced alignment patterns are sufficient to drive the ingression of cellular furrows, even in the absence of localized biochemical myosin up-regulation. This mechanism explains the characteristic appearance of pseudocleavage furrows in polarizing cells. Finally, we study the characteristic nuclear movements in pseudostratified epithelia during development. These tissues consist of highly proliferative, tightly packed and elongated cells, with nuclei actively travelling to the apical side of the epithelium before each cell division. We explore how cytoskeletal properties act together with the mechanics of the surrounding tissue to control the shape of single cells embedded in the epithelium, and investigate potential mechanisms underlying the observed nuclear movements. These findings form a theoretical basis for a more detailed characterization of processes in pseudostratified epithelia. Taken together, we present a continuum mechanics description of the actomyosin cell cortex, and successfully apply it to several different cell biological processes. Combining our theory with experimental work from collaborating groups, we provide new insights into different aspects of cell mechanics.
160

Untersuchung der Pathomechanismen hypertrophieassoziierter Mutationen im MYL3 Gen

Lossie, Janine 27 June 2012 (has links)
Myosin II, das Motorprotein des kardialen Muskels, besteht aus zwei schweren und vier leichten Ketten. Der Hebelarmbereich der schweren Myosinkette (MyHC) enthält das IQ-Konsensus-Motiv für die Bindung der essentiellen leichten Myosinkette (ELC), welche wesentlich für eine normale Kraftentwicklung des Myosinmoleküls ist. Im Rahmen dieser Arbeit wurden fünf, mit hypertropher Kardiomyopathie assoziierte, Mutationen im humanen essentiellen ventrikulären leichten Myosinketten (hVLC1)-Gen (MYL3) untersucht (E56G, A57G, E143K, M149V, R154H). Von keiner dieser Mutationen war der Pathomechanismus bekannt. Ziel der Arbeit war es, die Effekte der Mutationen im MYL3-Gen auf Proteinstruktur und Funktion zu untersuchen und daraufhin einen möglichen Pathomechanismus zu formulieren. Dazu erfolgten Strukturanalysen (CD-Spektren, Schmelzkurven, FLIM), Versuche auf Protein- und Zellebene (Protein-Protein-Interaktionsstudien, Sorting Assay) sowie Untersuchungen in vitro (Zell-Verkürzungsmessungen, isoliert perfundierte Herzen nach Langendorff) und in vivo (Echokardiographie) im transgenen Mausmodell. / Myosin II, the motor protein of cardiac muscle, is composed of two heavy chains (MyHC) and four non-covalently linked light chains (MLC). The lever arm of the MyHC contains the IQ motif that binds the essential myosin light chain (ELC), which is necessary for the normal force production of the myosin molecule. Five with HCM associated mutations in the human ventricular essential myosin light chain (hVLC1) -gen (MYL3) were investigated in this study (E56G, A57G, E143K, M149V, R154H). The pathomechanisms of the mutations were not known. Aim of the study was i) to test the hypothesis that mutations in the ventricular essential myosin light chain affect the protein structure, the binding to the IQ motif of MyHC and the force production of the myosin molecule as well as ii) to postulate an accompanying pathomechanism. Structural analyses (circular dichroism, melting curves, fluorescence lifetime imaging microscopy), functional investigations (surface plasmon resonance spectroscopy, sorting assay) and in vivo (echocardiography) and in vitro studies in a transgenic mouse model were performed.

Page generated in 0.0266 seconds