• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Buoyancy-thermocapillary convection of volatile fluids in confined and sealed geometries

Qin, Tongran 27 May 2016 (has links)
Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy is a classic problem of fluid mechanics. It has attracted increasing attentions recently due to its relevance for two-phase cooling. Many of the modern thermal management technologies exploit the large latent heats associated with phase change at the interface of volatile liquids, allowing compact devices to handle very high heat fluxes. To enhance phase change, such cooling devices usually employ a sealed cavity from which almost all noncondensable gases, such as air, have been evacuated. Heating one end of the cavity, and cooling the other, establishes a horizontal temperature gradient that drives the flow of the coolant. Although such flows have been studied extensively at atmospheric conditions, our fundamental understanding of the heat and mass transport for volatile fluids at reduced pressures remains limited. A comprehensive and quantitative numerical model of two-phase buoyancy-thermocapillary convection of confined volatile fluids subject to a horizontal temperature gradient has been developed, implemented, and validated against experiments as a part of this thesis research. Unlike previous simplified models used in the field, this new model incorporates a complete description of the momentum, mass, and heat transport in both the liquid and the gas phase, as well as phase change across the entire liquid-gas interface. Numerical simulations were used to improve our fundamental understanding of the importance of various physical effects (buoyancy, thermocapillary stresses, wetting properties of the liquid, etc.) on confined two-phase flows. In particular, the effect of noncondensables (air) was investigated by varying their average concentration from that corresponding to ambient conditions to zero, in which case the gas phase becomes a pure vapor. It was found that the composition of the gas phase has a crucial impact on heat and mass transport as well as on the flow stability. A simplified theoretical description of the flow and its stability was developed and used to explain many features of the numerical solutions and experimental observations that were not well understood previously. In particular, an analytical solution for the base return flow in the liquid layer was extended to the gas phase, justifying the previous ad-hoc assumption of the linear interfacial temperature profile. Linear stability analysis of this two-layer solution was also performed. It was found that as the concentration of noncondensables decreases, the instability responsible for the emergence of a convective pattern is delayed, which is mainly due to the enhancement of phase change. Finally, a simplified transport model was developed for heat pipes with wicks or microchannels that gives a closed-form analytical prediction for the heat transfer coefficient and the optimal size of the pores of the wick (or the width of the microchannels).
32

Statistical mechanics of time-periodic quantum systems / Statistische Mechanik zeitperiodischer Quantensysteme

Wustmann, Waltraut 15 June 2010 (has links) (PDF)
The asymptotic state of a quantum system, which is in contact with a heat bath, is strongly disturbed by a time-periodic driving in comparison to a time-independent system. In this thesis an extensive picture of the asymptotic state of time-periodic quantum systems is drawn by relating it to the structure of the corresponding classical phase space. To this end the occupation probabilities of the Floquet states are analyzed with respect to their semiclassical property of being either regular or chaotic. The regular Floquet states are occupied with exponential weights e^{-betaeff Ereg} similar to the canonical weights e^{-beta E} of time-independent systems. The regular energies Ereg are defined by the quantization of the time-periodic system, whose classical properties also determine the effective temperature 1/betaeff. In contrast, the chaotic Floquet states acquire almost equal probabilities, irrespective of their time-averaged energy. Beyond these semiclassical properties the existence of avoided crossings in the spectrum is an intrinsic quantum property of time-periodic systems. Avoided crossings can strongly influence the entire occupation distribution. As an impressive application a novel switching mechanism is proposed in a periodically driven double well potential coupled to a heat bath. By a weak variation of the driving amplitude its asymptotic state is switched from the ground state in one well to a state with higher average energy in the other well. / Der asymptotische Zustand eines Quantensystems, das in Kontakt mit einem Wärmebad steht, wird durch einen zeitlich periodischen Antrieb gegenüber einem zeitunabhängigen System nachhaltig verändert. In dieser Arbeit wird ein umfassendes Bild über den asymptotischen Zustand zeitlich periodischer Quantensysteme entworfen, indem es diesen zur Struktur des zugehörigen klassischen Phasenraums in Beziehung setzt. Dazu werden die Besetzungswahrscheinlichkeiten der Floquet-Zustände hinsichtlich ihrer semiklassischen Eigenschaft analysiert, nach welcher sie entweder regulär oder chaotisch sind. Die regulären Floquet-Zustände sind mit exponentiellen Gewichten e^{-betaeff Ereg} ähnlich der kanonischen Verteilung e^{-beta E} zeitunabhängiger Systeme besetzt. Dabei sind die reguläre Energien Ereg durch die Quantisierung des Systems vorgegeben, dessen klassische Eigenschaften auch die effektive Temperatur 1/betaeff bestimmen. Die chaotischen Zustände dagegen haben fast einheitliche Besetzungswahrscheinlichkeiten, welche unabhängig von ihrer mittleren Energie sind. Über diese semiklassischen Eigenschaften hinaus ist das Auftreten von vermiedenen Kreuzungen im Spektrum eine intrinsisch quantenmechanische Eigenschaft zeitlich periodischer Systeme. Diese können die gesamte Besetzungsverteilung nachhaltig beeinflussen und finden eine eindrucksvolle Anwendung in Form eines neuartigen Schaltmechanismus in einem harmonisch modulierten Doppelmuldenpotential in Kontakt mit einem Wärmebad. Der asymptotische Zustand kann unter geringer Variation der Antriebsamplitude vom Grundzustand der einen Mulde in einen Zustand höherer mittlerer Energie in der anderen Mulde geschaltet werden.
33

Statistical mechanics of time-periodic quantum systems

Wustmann, Waltraut 21 May 2010 (has links)
The asymptotic state of a quantum system, which is in contact with a heat bath, is strongly disturbed by a time-periodic driving in comparison to a time-independent system. In this thesis an extensive picture of the asymptotic state of time-periodic quantum systems is drawn by relating it to the structure of the corresponding classical phase space. To this end the occupation probabilities of the Floquet states are analyzed with respect to their semiclassical property of being either regular or chaotic. The regular Floquet states are occupied with exponential weights e^{-betaeff Ereg} similar to the canonical weights e^{-beta E} of time-independent systems. The regular energies Ereg are defined by the quantization of the time-periodic system, whose classical properties also determine the effective temperature 1/betaeff. In contrast, the chaotic Floquet states acquire almost equal probabilities, irrespective of their time-averaged energy. Beyond these semiclassical properties the existence of avoided crossings in the spectrum is an intrinsic quantum property of time-periodic systems. Avoided crossings can strongly influence the entire occupation distribution. As an impressive application a novel switching mechanism is proposed in a periodically driven double well potential coupled to a heat bath. By a weak variation of the driving amplitude its asymptotic state is switched from the ground state in one well to a state with higher average energy in the other well. / Der asymptotische Zustand eines Quantensystems, das in Kontakt mit einem Wärmebad steht, wird durch einen zeitlich periodischen Antrieb gegenüber einem zeitunabhängigen System nachhaltig verändert. In dieser Arbeit wird ein umfassendes Bild über den asymptotischen Zustand zeitlich periodischer Quantensysteme entworfen, indem es diesen zur Struktur des zugehörigen klassischen Phasenraums in Beziehung setzt. Dazu werden die Besetzungswahrscheinlichkeiten der Floquet-Zustände hinsichtlich ihrer semiklassischen Eigenschaft analysiert, nach welcher sie entweder regulär oder chaotisch sind. Die regulären Floquet-Zustände sind mit exponentiellen Gewichten e^{-betaeff Ereg} ähnlich der kanonischen Verteilung e^{-beta E} zeitunabhängiger Systeme besetzt. Dabei sind die reguläre Energien Ereg durch die Quantisierung des Systems vorgegeben, dessen klassische Eigenschaften auch die effektive Temperatur 1/betaeff bestimmen. Die chaotischen Zustände dagegen haben fast einheitliche Besetzungswahrscheinlichkeiten, welche unabhängig von ihrer mittleren Energie sind. Über diese semiklassischen Eigenschaften hinaus ist das Auftreten von vermiedenen Kreuzungen im Spektrum eine intrinsisch quantenmechanische Eigenschaft zeitlich periodischer Systeme. Diese können die gesamte Besetzungsverteilung nachhaltig beeinflussen und finden eine eindrucksvolle Anwendung in Form eines neuartigen Schaltmechanismus in einem harmonisch modulierten Doppelmuldenpotential in Kontakt mit einem Wärmebad. Der asymptotische Zustand kann unter geringer Variation der Antriebsamplitude vom Grundzustand der einen Mulde in einen Zustand höherer mittlerer Energie in der anderen Mulde geschaltet werden.
34

Nonequilibrium statistical thermodynamics at the nanoscale

Andrieux, David 05 May 2008 (has links)
Motivés par les développements récents dans le domaine des nanosciences, nous étudions les propriétés statistiques et thermodynamiques des systèmes mésoscopiques. En particulier, nous nous concentrons sur les résultats connus sous le nom de théorèmes de fluctuation. Ces relations donnent des prédictions sur le comportement de différents quantités dynamiques dans des situations loin de l'équilibre, tout en tenant compte des fluctuations de l'évolution temporelle.<p><p>\ / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished

Page generated in 0.0269 seconds