41 |
Distribution cellulaire de la protéine de la nucléocapside NCp7 du VIH-1 et caractérisation de son interaction avec la protéine nucléolaire hNoL12 / Cellular distribution of the nucleocapsid protein of HIV-1 NCp7 and characterization of its interaction with the nucleolar protein hNoL 12Zgheib, Sarwat 08 December 2015 (has links)
La protéine de nucléocapside (NC) du virus de l’immunodéficience humaine (VIH-1) joue un rôle majeur dans les différentes étapes du cycle viral du VIH-1 : soit comme domaine fonctionnel de la polyprotéine Gag (NC-Gag) dans les phases tardives du cycle viral, soit sous sa forme mature NCp7 dans les phases précoces. Afin de mieux comprendre le rôle de la forme mature dans le cycle viral, nous avons cherché de nouveaux partenaires cellulaires spécifiques de la NCp7 et identifié la protéine nucléolaire, hNoL12, impliquée dans la maturation des ARNs ribosomaux. L’interaction NCp7/hNoL12 a été confirmée par co-IP, FRET-FLIM et double hybride chez la levure et le domaine d’interaction a été localisé entre les a.a. 22 et 61 correspondant au domaine 5’-3’-exonucléase de hNoL12. Nous avons développé un test pour caractériser cette activité et montré qu’elle est spécifique des ARN simples brins. Enfin, l’extinction de l’expression de hNoL12 entraine une diminution significative de l’infection par un lentivecteur modèle des phases précoces de l’infection soulignant l’implication fonctionnelle de hNoL12 dans cette phase de l’infection. Dans un second projet, nous nous sommes intéressés au devenir de la NCp7 dans les cellules infectées, suite à la transcription inverse. Nous avons généré des vecteurs lentiviraux composés de protéines NCp7 fusionnées à une étiquette tétracysteine permettant son marquage spécifique avec le dérivé de la fluorescéine (FlAsH). Nous avons alors étudié, par microscopie confocale, la distribution intracellulaire de la NCp7 dans des conditions proches de l’infection. Nos résultats indiquent qu’une grande partie de la NCp7 se dissocie du PIC durant son transport dans le cytoplasme. Toutefois, la perte de la NCp7 est une étape tardive qui se déroule proche du noyau confirmant ainsi que la décapsidation a lieu à la membrane nucleaire juste avant l’entrée du complexe de préintegration dans le noyau. Le troisième projet a porté sur le développement d’antiviraux ciblant la NCp7. Nous avons travaillé sur la vectorisation et la caractérisation des propriétés antivirales en milieu cellulaire, d’un peptide sélectionné in vitro pour sa capacité à inhiber l’action chaperonne de la NCp7. L’activité antivirale du peptide vectorisé vis-à-vis d’une infection par un vecteur lentiviral basé sur le VIH-1 s’est révélée décevante. / The Human Immunodeficiency Virus-1 (HIV-1) nucleocapsid protein (NC) plays a major role in the different steps of theviral lifecycle under its two forms; either as a domain of the polyprotein Gag (NC-Gag) in the late phase or as a matureNCp7 protein in the early phase. In order to better understand the role of the mature form in the viral cycle, we searchedfor new NCp7 specific cellular partners and identified the nucleolar protein hNoL12 which is known to be involved inthe maturation of ribosomal RNAs. The NCp7/hNoL12 interaction was confirmed by co- IP, FRET-FLIM, and yeast twohybrid. The interaction domain was localized between a.a. 22 and 61 on hNoL12; which corresponds to its putative 5’-3’-exonuclease domain. We developed an assay to monitor this activity and found it to be specific of single strand RNA.Finally, the cellular knockdown of hNoL12 resulted in a significant decrease in the infection by a pseudovirus mimickingthe early phase of the infection, emphasizing the functional involvement of hNoL12 in this phase. In a second project, wewere interested in the fate of the viral incoming NCp7 in the infected cells, after reverse transcription. We thus generatedlentiviral vectors composed of NCp7 fused to a tetracysteine tag enabling its specific labeling with the fluoresceinderivative FlAsH. We then studied by confocal microscopy, the intracellular distribution of NCp7 containing viralparticles in conditions close to the infection. Our results showed that an important proportion of the NCp7 moleculesdissociates from the PIC during its transport in the cytoplasm. However, the loss of NCp7 is a late step of this processand seems to take place close to the nucleus suggesting that the dissociation of the capsid occurs at the nuclear membranejust before the nuclear entry of the PIC. The third project concerns the development of antiviral inhibitors targetingNCp7. We worked on the vectorization and the characterization of the antiviral properties of a peptide selected in vitrofor its ability to inhibit the NCp7 chaperone activity. The inhibitory activity of the vectorized peptide on infection ofHeLa cells by a HIV-1 based lentiviral vector was found deceiving.
|
42 |
Relations structure-fonction du premier transfert de brin chez le vih-1 / Structure-function relationships of the first strand transfer in hiv-1Maskri, Ouerdia 09 December 2016 (has links)
Les premier et second transferts de brin sont deux étapes essentielles de la transcription inverse du génome du virus de l’immunodéficience humaine de type 1 (VIH-1). De nombreuses études in vitro suggèrent que les transferts nécessitent l’action de la protéine de nucléocapside du VIH-1 (NC). Le premier transfert, se produisant de l’extrémité 5’ vers l’extrémité 3’ de l’ARN génomique du VIH-1, repose en grande partie sur un appariement ADN-ARN impliquant la région r de l’ADN strong-stop (ADNss) et la région R située à l’extrémité 3’ de l’ARN viral (ARN 3’UTR). Les structures, interactions et dynamiques qui gouvernent cet appariement sont mal connues. Jusqu’à notre étude, la formation de l’hybride ADN-ARN n’avait été étudiée in vitro qu’avec des courts acides nucléiques qui ne reflètent que partiellement les structures formées par l’ADNss et l’ARN 3’UTR dans le virus en cours de réplication. L’objectif principal de ma thèse a été de caractériser in vitro les mécanismes moléculaires qui gouvernent l’hybridation de l’ADNss avec l’ARN 3’UTR. Pour atteindre cet objectif, j’ai utilisé des méthodes de la biologie moléculaire et j’ai analysé la structure secondaire de l’ADNss entier avec trois sondes de structure (DNase I, mung bean nuclease et permanganate de potassium) : i) en l’absence de NC ; ii) en présence de NC ; iii) en présence de l’ARN 3’UTR.Les résultats obtenus nous ont permis d’être les premiers à déterminer in vitro la structure secondaire de l’ADNss entier du VIH-1 et à identifier dans celui-ci quatre sites sur lesquels se fixe préférentiellement la NC. A notre connaissance, les structures secondaires des ADNss d’autres rétrovirus n’ont pas été déterminées. Nos données structurales sont en faveur d’une structure secondaire de l’ADNss du VIH-1 constituée de trois tiges-boucles (u5, cpoly(A) et cTAR) et trois régions simple-brin en l’absence ou présence de NC. Notre analyse phylogénétique suggère que la structure secondaire de l’ADNss et les sites forts NC sont conservés parmi les différents groupes du VIH-1. Nos résultats suggèrent aussi qu’une partie de la région u5 de l’ADNss établit des interactions très faibles et probablement transitoires avec une partie de la région U3 de l’ARN 3’UTR en l’absence de NC. En réalisant des cinétiques d’hybridation et en utilisant deux ADNss mutés, nous avons montré que l’hybridation ADNss-ARN 3’UTR nécessite l’activité de la NC et que ce processus ne repose pas sur une seule voie d’initiation. Nos résultats supportent un modèle dans lequel la première étape est la fixation de la NC au niveau des quatre sites, ce qui va déclencher l’ouverture de la structure tridimensionnelle de l’ADNss et favoriser ainsi l’accessibilité de la région r ; la seconde étape étant la déstabilisation par la NC des structures secondaires ; la troisième étape étant l’appariement par la NC des régions complémentaires r et R. L’ensemble des résultats obtenus permet à mon équipe d’accueil d’initier de nouvelles études in vitro et ex vivo. / An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first trand transfer that requires base pairing of the R region at the 3’- end of the genomic RNA with the complementary r region at the 3’-end of minus strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the fulllength HIV-1 ssDNA in the absence or presence of NC.Our probing data obtained in the absence of NC, suggest weak contacts between the u5 region of ssDNA and the U3 region the genomic RNA. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Using the gel retardation assay, we analyzed the interaction of NC with each site. Taken together, our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the threedimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the annealing of ssDNA to the 3’- end of the genomic RNA requires NC activity and does not rely on a single pathway (zipper intermediate or kissing complex).
|
43 |
Les protéines de nucléocapside du VIH-1 : structures, dynamiques, propriétés de fixation et de déstabilisation des acides nucléiques / The HIV-1 nucleocapsid proteins : structures, dynamics, interaction and destabilization properties to nucleic acidsBelfetmi, Anissa 18 December 2017 (has links)
L’un des obstacles majeurs à l’éradication du VIH-1 est sa capacité à faire évoluer rapidement son matériel génétique. Ceci lui permet de contourner le système immunitaire de l’hôte ainsi que la pharmacologie antirétrovirale due à l’émergence de formes mutantes et résistantes des enzymes ciblées. A l’origine de ses recombinaisons génétiques, se trouvent d'une part les erreurs commises par la RT lors de l’étape de transcription inverse et d'autre part les processus de transfert de brins qui sont facilités par la protéine de nucléocapside (NC). Notre objectif est de mieux comprendre les propriétés chaperon de la NC pendant le premier transfert de brin ; au cours de celui-ci, la NC déstabilise les structures secondaires des acides nucléiques impliqués ARN et ADN afin de les hybrider pour former un duplex ARN/ADN. Nous souhaitons notamment savoir si la NC est capable de reconnaître la polarité des chaines d’acides nucléiques selon leur nature et si cette capacité module ses propriétés déstabilisatrices. Nos travaux sur la dynamique interne de la protéine ont permis de montrer que certains mouvements étaient corrélés avec les modalités de fixation sur l’ARN. Nous avons ainsi pu montrer, en comparant les propriétés des différentes formes maturées de la NC au cours du cycle viral, que les domaines p1 et p6 présents dans les formes immatures (NCp9 et NCp15) modulaient les propriétés d’interaction comparé à la forme mature (NCp7). Ceci nous amène à reconsidérer le rôle des différentes parties de la polyprotéine Gag sur les propriétés du domaine NC au sein de ce précurseur Gag. Ce domaine apparaissant largement responsable de la reconnaissance et de la sélection du génome viral ARN pour l’encapsidation dans les particules néosynthétisées. Pour réaliser cette étude, nous avons étudié différents complexes entre la NC avec différents acides nucléiques (ARN et ADN), ce en utilisant principalement la résonance magnétique nucléaire couplée à d’autres méthodes biophysiques et biochimiques dans le but d’obtenir des informations à l’échelle atomique. Ce travail peut également être utile dans la conception d’une nouvelle classe d’inhibiteurs dirigés contre la NC sachant que celle-ci représente une cible thérapeutique attrayante vu qu’elle est très conservée et très importante pour l’infectiosité. / One of the major difficulty in the eradication of HIV-1 is its ability to evolve rapidly its genome. This permit to the virus to escape the host immune response and the antiretroviral pharmacology due to the emergence of mutant and resistant forms of the target enzymes.The origin of these genetic recombination is, in one hand the errors commited by the RT during the reverse transcription stage and in the other hand the strand transfer processes facilitated by the nucleocapsid protein (NC).Our goal is to understand the chaperonnig properties of NC protein during the first strand transfer ; where NC destabilizes the involved RNA and DNA secondary structures to anneal them and form a hybrid RNA/DNA duplex.In order to determine this mecanism, we seek, if NC protein have the property to recognize the polarity of nucleic acids chains and if this modulates its destabilization properties. Also, our work on the internal dynamic of the protein showed that some motions are correlated to its binding to RNA.We compared the properties of different maturated forms of NC protein during the viral life cycle and we concluded that p1 and p6 domains present within the immature forms (NCp9 and NCp15) adjusted differently the interaction properties to nucleic acids compared to the mature form (NCp7). It leads us to reconsider the role of the different parts of the Gag polyprotein on the properties of the NC domain within this Gag precursor. This domain appears to be largely responsible for the recognition and selection of the viral genomic RNA in order to package it in the newly formed viral particles.To permform this study, we studied different complexes between NC and nucleic acids sequences (RNA and DNA) using mainly NMR spectroscopy and biophysical or biochemical methods to obtain informations at the atomic scale. This work can also be useful in the design of a new class of inhibitors against NC protein which is an attractive therapeutic target due to its conservation and importance in viral infectivity.
|
44 |
Étude de la réponse immunitaire cellulaire lymphocytaire T spécifique au SRAS-CoV-2Gharbi, Molka 12 1900 (has links)
La maladie à coronavirus (COVID-19) est une infection virale hautement contagieuse causée par le virus SRAS-CoV-2. La maladie s’est rapidement propagée entrainant une épidémie mondiale, causant la mort des personnes à risque. De nombreuses mesures sanitaires ont été prises durant ces deux dernières années, cependant la maladie n’est pas encore éradiquée. Considérant l’importance du système immunitaire dans le contrôle des maladies infectieuses et dans l’induction d’une mémoire immunitaire de longue durée, le SRAS-CoV-2 pourrait être une cible du système immunitaire, en particulier du système adaptatif représenté par les lymphocytes B et T. La réponse humorale induite chez les personnes convalescentes est largement perçue comme étant efficace pour combattre le virus. Par conséquent, toutes les plateformes de vaccination actuelles se sont basées sur la réponse humorale induite, particulièrement par la protéine SPIKE du virus. Compte tenu de la variabilité des réponses humorales ainsi que leur déclin rapide observé chez certains patients, et l’émergence de variants, il est nécessaire d’inclure d’autres stratégies permettant de renforcer la réponse immunitaire. Nous avons émis l’hypothèse qu’une réponse cellulaire pouvait être induite par les lymphocytes T contre les différentes protéines virales du SRAS-CoV-2.
Dans cette étude nous avons détecté la réactivité des lymphocytes T contre les protéines virales (SPIKE, membrane, nucléocapside) par ELISPOT chez les patients convalescents. Nous avons ensuite identifié plus précisément les séquences riches en épitopes au niveau de la protéine membranaire et de la nucléocapside en préparant des délétants successifs (approche « mRNA PCR-based epitope chase technique” ou mPec). La validation de ces séquences a été confirmée par l’utilisation de banques de peptides dans des zones définies, se chevauchant de 12 acides aminés. En vue d’inclure ces régions dans une stratégie vaccinale future, une protéine de fusion MN contenant les séquences riches en épitopes a été créée et la réactivité des lymphocytes T contre la protéine MN a été évaluée de nouveau par ELISPOT.
Nos données démontrent une réponse T dirigée principalement contre la nucléocapside et la protéine membranaire. Trois zones immunogènes sont identifiées au niveau de la nucléocapside et une zone au niveau de la membrane. La réactivité observée contre la protéine de fusion MN souligne le potentiel pouvoir immunogène des protéines (membrane et nucléocapside) et l’importance d’inclure ces protéines dans une stratégie vaccinale future afin de solliciter une réponse immunitaire cellulaire protectrice. / Coronavirus disease (COVID-19) is a highly contagious viral infection caused by the SARS-CoV-2 virus. The disease has spread rapidly resulting in a worldwide epidemic, causing death in those at risk. Numerous health measures have been taken over the past two years, but the disease has not yet been eradicated. Considering the importance of the immune system in the control of infectious diseases and in the induction of a long-lasting immune memory, SARS-CoV-2 could be a target of the immune system, in particular of the adaptive system represented by B and T lymphocytes. The humoral response induced in convalescent individuals is widely used as an effective therapy to combat the virus. Therefore, all current vaccination platforms have relied on the humoral response induced particularly by the virus' SPIKE protein. Given the variability of humoral responses and their rapid decline in some patients, and the emergence of variants, it is necessary to include other strategies to enhance the immune response. We hypothesized that a cellular response could be induced by T cells against the different viral proteins of SARS-CoV-2.
In this study, we detected the reactivity of T cells against viral proteins (SPIKE, membrane, nucleocapsid) by ELISPOT in convalescent patients. We then identified more precisely the immunogenic sequences at the level of the membrane protein and the nucleocapsid by successive deletants using the mRNA PCR-based epitope chase technique (mPec). The validation of these sequences was confirmed by the use of small peptide libraries (overlapping by 12 amino acids), covering defined sequences rich in epitopes. In order to include these regions in a future vaccine strategy, a MN fusion protein containing the selected sequences was created and T cell reactivity against the MN protein was further confirmed by ELISPOT.
Our data show a T-cell response primarily against the nucleocapsid and membrane protein. Three immunogenic zones were identified at the nucleocapsid level and one zone at the membrane level. The reactivity observed against the MN fusion protein cassette rich in epitopes, highlights the potential immunogenicity of the proteins (membrane and nucleocapsid) and the importance of including these proteins in a future vaccine strategy.
|
45 |
Expression and characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli. / Expression & characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coliJanuary 2005 (has links)
Wang Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 124-135). / Abstracts in English and Chinese. / Acknowledgements / Abstract / 摘要 / Table of contents / List of figures / List of tables / List of abbreviations / CHAPTER / Chapter 1. --- Introduction / Chapter 1.1 --- Background of SARS and epidemiology / Chapter 1.2 --- SARS symptoms and infected regions / Chapter 1.3 --- SARS virus / Chapter 1.4 --- Treatment for SARS at present / Chapter 1.5 --- Vaccine development is a more effective way to fight against SARS / Chapter 1.6 --- Vaccine candidates / Chapter 1.6.1 --- Truncated S protein as a vaccine candidate / Chapter 1.6.2 --- Full-length N protein as a vaccine candidate / Chapter 1.7 --- E.coli expression system / Chapter 1.8 --- Baculovirus expression system / Chapter 1.8.1 --- Characteristics of baculovirus / Chapter 1.8.2 --- Infection cycle of baculovirus / Chapter 1.8.3 --- Control of viral gene expression in virus-infected cells / Chapter 1.8.4 --- Merits of baculovirus expression system / Chapter 1.9 --- Aim of study / Chapter 2. --- "Bacterial expression and purification of rS1-1000(E), rS401-1000(E) and rN(E)" / Chapter 2.1 --- Introduction / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Reagents for bacterial culture / Chapter 2.2.2 --- Reagents for agarose gel electrophoresis / Chapter 2.2.3 --- 2'-deoxyribonucleoside 5'-triphosphate (dNTP) mix for polymerase chain reaction (PCR) / Chapter 2.2.4 --- Sonication buffer / Chapter 2.2.5 --- Reagents for immobilized metal affinity chromatography (IMAC) purification / Chapter 2.2.6 --- Reagents for gel filtration chromatography / Chapter 2.2.7 --- Reagents for sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) / Chapter 2.2.8 --- Reagents for Western blotting / Chapter 2.3 --- Methods / Chapter 2.3.1 --- General techniques in molecular cloning / Chapter 2.3.2 --- "PCR amplification of the S1-400,S401-1000" / Chapter 2.3.3 --- Construction of clone pET-S 1-400 and PET-s401-1000 / Chapter 2.3.4 --- Construction of clone pAC-N / Chapter 2.3.5 --- Expression / Chapter 2.3.6 --- Inclusion bodies preparation / Chapter 2.3.7 --- Inclusion bodies solubilization using urea / Chapter 2.3.8 --- Protein refolding by rapid dilution and dialysis / Chapter 2.3.9 --- Purification of recombinant protein by nickel ion chelating Sepharose fast flow column (IMAC) / Chapter 2.3.10 --- Gel filtration chromatography for further purification / Chapter 2.3.11 --- Bradford assay for the protein concentration analysis / Chapter 2.3.12 --- Protein analysis / Chapter 2.4 --- Results / Chapter 2.4.1 --- SDS-PAGE analysis of the expressed proteins / Chapter 2.4.2 --- Western blot analysis of the bacterial cell lysate / Chapter 2.4.3 --- Protein purification by IMAC / Chapter 2.4.4 --- Purification of rS401-1000(E) by gel filtration / Chapter 2.4.5 --- Determination of production yield of recombinant fusion proteins / Chapter 2.5 --- Discussion / Chapter 2.5.1 --- Expression vector selected for rS1-400(E) and rS401-1000(E) expression / Chapter 2.5.2 --- Protein expression in E.coli / Chapter 2.5.3 --- Purification process / Chapter 3. --- Baculovirus expression and purification of rS401-1000(ACN) and rN(BMN) protein / Chapter 3.1 --- Introduction / Chapter 3.2 --- Materials / Chapter 3.2.1 --- Reagents for insect cell culture and virus work / Chapter 3.3 --- Methods / Chapter 3.3.1 --- "PCR amplification of N and cloning of S401-1000, N genes into the transfer vector pVL1393" / Chapter 3.3.2 --- Cloning of S401-1000 into transfer vector pFastBac HT B / Chapter 3.3.3 --- Virus works / Chapter 3.3.4 --- Identification of recombinant BmNPV or AcMNPV / Chapter 3.3.5 --- Manipulation of silkworm / Chapter 3.3.6 --- Mouse immunization for polyclonal antibody against rN(E) protein / Chapter 3.4 --- Results / Chapter 3.4.1 --- Expression of rN(BMN) in baculovirus / Chapter 3.4.2 --- Expression of rS401-1000(BMN) and rS401-1000(ACN) in baculovirus / Chapter 3.5 --- Discussion / Chapter 3.5.1 --- The expression level of rN(BMN) in both in vitro and invivo / Chapter 3.5.2 --- The rS401-1000(ACN) protein expression level in vitro / Chapter 3.5.3 --- Failure in generating rS401-1000(BMN) / Chapter 3.5.4 --- Purification process of rN(BMN) by IMAC / Chapter 4. --- "Characterization of recombinant rS1-400(E), rN(E), rN(BMN), rS401_1000(E) and rS401-1000(ACN)" / Chapter 4.1 --- Introduction / Chapter 4.2 --- Materials / Chapter 4.2.1 --- Reagents for enzyme-linked immunosorbent assay (ELISA) / Chapter 4.2.2 --- Reagents for purification of human IgG / Chapter 4.2.3 --- Source and identity of Immune sera / Chapter 4.3 --- Methods / Chapter 4.3.1 --- ELISA / Chapter 4.3.2 --- Purification process of human IgG / Chapter 4.4 --- Results / Chapter 4.4.1 --- Validation of Immune sera using SARS viral lysate / Chapter 4.4.2 --- Immunoreactivities of rS1-400(E) and rN(E) against pooled patients sera and normal human serum / Chapter 4.4.3 --- Immunoreactivity comparison of rN(E) and rN(BMN) / Chapter 4.4.4 --- Comparison of the immunoreactivities of rS401-1000(E) and rS401-1000(ACN) / Chapter 4.4.5 --- Immunoreactivity of SARS related proteins against Anti-SARS Antibody (Equine) / Chapter 4.5 --- Discussion / Chapter 4.5.1 --- Comparison of the immunoreactivities of SARS related proteins expressed in the present study / References
|
46 |
Determination of the secondary structure of minus strong-stop DNA and the mechanism of annealing involved in the first strand transfer in HIV-1 / Analyse structurale et fonctionnelle du premier transfert de brin chez le VIH-1Chen, Yingying 14 September 2012 (has links)
Le 1er transfert de brin, étape cruciale de la transcription inverse impliquant la protéine de nucléocapside du VIH-1 (NC), repose sur l’appariement de la séquence r de l’ADN « strong stop » (ADNss) avec la séquence 3’ R de l’ARN viral (3’UTR) qui forme les tiges-boucles TAR et polyA. La séquence r est supposé former les tiges-boucles cTAR et cpolyA. Le transfert repose donc probablement sur l’hybridation de molécules structurées. La structure secondaire de l’ADNss n’a jamais été déterminée. L’objectif a été d’identifier les interactions et structures gouvernant l’hybridation de l’ADNss avec l’ARN 3’UTR. Les outils de la biologie moléculaire et trois sondes de structure ciblant l’ADN ont été utilisés pour atteindre cet objectif. Nos résultats sont les suivants : 1) l’ADN cTAR nu se replie sous la forme de deux conformations différentes qui sont en équilibre ; 2) la NC peut déplacer l’équilibre vers l’une des conformations et se fixer préférentiellement sur la boucle interne du cTAR ; 3) la NC est exigée pour former un hétéroduplex constitué de l’intégralité de l’ADNss et du 3’ UTR ; 4) l’hybridation ADNss-3’UTR peut être initiée à partir de plusieurs sites dans 0,2 mM MgCl2 ; 5) l’ADNss forme deux conformations en équilibre dans 0,2 mM MgCl2 et principalement une seule dans 2 mM MgCl2 ; 6) dans l’ADNss, la NC se fixe préférentiellement au niveau de la région simple-brin qui relie les tiges-boucles cTAR et cpolyA. Cette fixation joue probablement un rôle important dans l’hybridation des tiges-boucles ARN et ADN complémentaires. Notre étude permet de mieux comprendre la transcription inverse et la recombinaison qui dépend du transfert de brin interne. / The 1st strand transfer, a crucial step of reverse transcription involving the HIV-1 nucleocapsid protein (NC), relies on base pairing of the r sequence of strong-stop DNA (ssDNA) with the 3’ R sequence of viral RNA (3’ UTR) which forms the TAR and polyA stem-loops. The r sequence can form the cTAR and cpolyA stem-loops. Therefore, the transfer relies probably on annealing of folded molecules. This process is not well known at the molecular and structural level. The tools of molecular biology and three DNA-targeted probes were used to get insights into the annealing process. Our results were the following: 1) in the absence of NC, the cTAR DNA folds into two distinct conformations in equilibrium; 2) NC slightly shifts the equilibrium toward one conformation and binds tightly the internal loop of the cTAR hairpin; 3) NC is required for the formation of heteroduplex of the full-length ssDNA and 3’ UTR; 4) the annealing of ssDNA to 3’ UTR can be initiated from different sites in the presence of 0.2 mM MgCl2; 5) the full-length ssDNA folds into two conformations in equilibrium in 0.2 mM MgCl2 but mainly into one conformation in 2 mM MgCl2 ; 6) NC preferentially binds to the single-stranded region between the cTAR and cpolyA hairpins in ssDNA. This binding site probably plays an important role in the annealing of complementary DNA and RNA hairpins. This study helps us to gain insights into the reverse transcription process and the associated genetic recombination.
|
47 |
Propriedades antigênicas e imunogênicas da região conservada da proteína do nucleocapsídeo do vírus da cinomose canina expressa em sistema procarioto / Antigenic and immunogenic properties of the conserved region of Canine distemper virus nucleocapsid protein expressed in Escherichia coliFernandes, Maureen Hoch Vieira 03 December 2015 (has links)
Submitted by Ubirajara Cruz (ubirajara.cruz@gmail.com) on 2017-05-12T13:41:13Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_Maureen_Fernandes.pdf: 925477 bytes, checksum: adc4b50d524df10be1448912c874f299 (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-05-12T21:22:55Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_Maureen_Fernandes.pdf: 925477 bytes, checksum: adc4b50d524df10be1448912c874f299 (MD5) / Made available in DSpace on 2017-05-12T21:22:55Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_Maureen_Fernandes.pdf: 925477 bytes, checksum: adc4b50d524df10be1448912c874f299 (MD5)
Previous issue date: 2015-12-03 / Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS / O objetivo deste trabalho foi a expressão da região conservada da proteína do nucleocapsídeo do vírus da cinomose (aa 222-316) em Escherichia coli e posterior avaliação de suas propriedades antigênicas e imunogênicas. Para tal, a região conservada do gene da proteína do nucleocapsídeo do vírus da cinomose canina (NP CDV) foi selecionada e codón otimizada para expressão em E. coli. O gene sintético foi inserido em um vetor pAE e clonado em cepas E. coli TOP10F. A proteína recombinante foi expressa em E. coli cepa Star e purificada por cromatografia de afinidade. A concentração de proteína obtida após purificação foi aproximadamente 300 mg/mL. A expressão da proteína recombinante NP do CDV (rCDVNP) foi confirmada por eletroforese em gel de poliacrilamida (SDS-PAGE) e Western blot utilizando anticorpos monoclonais anti His tag. A antigenicidade da rCDVNP foi demonstrada por Western blot e ELISA indireto, empregando soros de cães positivos e negativos para cinomose canina. A rCDVNP foi inoculada em galinhas e imunoglobulina Y (IgY) foi purificada a partir da gema de ovo, utilizando o método de delipidação com água destilada acidificada e precipitação com sulfato de amônia. A purificação de IgY foi confirmada por SDS-PAGE e a concentração média de IgY que se obteve foi 28,55 mg/mL. A produção de IgY anti-rCDVNP foi analisada por Western blot e ELISA indireto. Os resultados demonstraram que o gene sintético codificante da região conservada da NP do CDV foi clonado com sucesso utilizando o vetor pAE em E. coli, resultando posteriormente na expressão de porção da NP na forma recombinante. A rCDVNP demonstrou ser antigênica, uma vez que os soros de cães positivos para cinomose canina reconheceram a proteína. A rCDVNP foi imunogênica após inoculação em galinhas, sendo possível o isolamento e purificação de alta concentração de IgY específica a partir de gema de ovo. Estes resultados sugerem que tanto a rCDVNP quanto a IgY anti-rCDVNP produzida podem ser utilizadas como ferramentas úteis em ensaios de imunodiagnóstico da cinomose canina. / The purpose of this study was the expression of the conserved region of Canine distemper virus nucleocapsid protein (aa 222-316) in Escherichia coli and subsequent evaluation of its antigenic and immunogenic properties. The conserved region of Canine distemper virus nucleocapsid (CDV NP) gene was selected and codon optimized for E. coli expression. The synthetic gene was inserted in a pAE vector and cloned into E. coli TOP10F strain. The recombinant protein was expressed in E. coli Star strain and purified by affinity chromatography. The protein yield after purification was approximately 300 mg/mL. Recombinant CDV NP (rCDVNP) expression was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis by using His-Tag monoclonal antibodies. The rCDVNP antigenicity was demonstrated by Western blot and ELISA, employing positive and negative CDV dog sera. The rCDVNP was inoculated in hens and immunoglobulin Y (IgY) was isolated and purified from egg yolk, according the delipidation method with acidified distilled water and the precipitation method with ammonium sulfate. The purification of IgY was confirmed by SDS-PAGE and the mean yield of IgY was 28.55 mg/mL. The production of IgY anti-rCDVNP was analyzed by Western blot and ELISA assays. The results showed that the synthetic gene coding the conserved region of the NP CDV was successfully cloned using pAE vector in E. coli, resulting in the expression of a recombinant NP. The rCDVNP proved to be antigenic, since distemper positive dog sera recognized the protein. The rCDVNP proved to be immunogenic after inoculation in hens and it was possible to isolate and purify high concentration of specific IgY from egg yolk. These results suggest that both rCDVNP as IgY anti-rCDVNP produced can be used as useful tools in immunodiagnostic assays of canine distemper.
|
48 |
Ordre et désordre, bases structurales de la reconnaissance moléculaire chez les paramyxovirus / Structural Basis of Molecular Recognition in Intrinsically Disordered Viral ProteinsCommunie, Guillaume 24 October 2013 (has links)
Environ 40 pour cent du protéome humain est composé d'importantes régions dépliées. Ces protéines intrinsèquement désordonnées (PID) n'adoptent pas de structures secondaires et tertiaires stables mais échantillonnent un vaste paysage conformationnel. Malgré cela, elles sont aujourd'hui connues pour intervenir dans de nombreux processus biologiques ou pathologiques. À l'instar des eucaryotes, les virus -- surtout les virus à ARN -- ont eux aussi recours aux propriétés particulières des PID pour effectuer les interactions nécessaires à leur réplication. Les paramyxovirus, comme le virus de la rougeole, sont des virus à ARN simple brin de polarité négative et environ 10 pour cent de leur génome de 15 à 18 kilobases code pour des régions dépliées. Cette thèse détaille l'étude de deux protéines virales directement impliquées dans la réplication, la nucléoprotéine et la phosphoprotéine. Elles interagissent l'une avec l'autre et sont composées à la fois de régions dépliées et repliées. Des données à résolution atomique ont été obtenues en spectroscopie par Résonance Magnétique Nucléaire (RMN) en ce qui concerne les parties désordonnées, et en cristallographie pour ce qui est des parties repliées. Les résultats apportent un nouvel aperçu du rôle du désordre conformationnel dans la transcription et la réplication des paramyxovirus. / About 40 percent of the human proteome contains large disordered regions. These intrinsically disordered proteins (IDPs) do not adopt stable secondary and tertiary structures, but sample a large conformational space. In spite of that, they are now known to be involved in many physiological as well as pathological processes. Following the example of eukaryotes, viruses -- especially RNA viruses -- benefit from the particular features of IDPs in their replication machinery. Paramyxoviruses, that includes Measles virus, are single stranded, negative sense RNA viruses and about 10 percent of their 15 to 18 kilobase RNA genome is known to encode for disordered regions. This thesis focuses on the study of two different proteins of paramyxoviruses, namely the nucleoprotein and the phosphoprotein that are directly involved in the replication of the viral genome. They interact with each other and are composed of folded and disordered domains. Atomic resolution information is obtained about the structure and dynamics of these proteins using a combination of Nuclear Magnetic Resonance (NMR) spectroscopy measurements for the disordered parts and X-ray crystallography for the folded domains. The results provide novel insight into the role of conformational disorder in transcription and replication of paramyxoviruses.
|
49 |
Cloning and characterization of the human coronavirus NL63 nucleocapsid proteinBerry, Michael January 2011 (has links)
<p>The human coronavirus NL63 was discovered in 2004 by a team of researchers in Amsterdam. Since its discovery it has been shown to have worldwide spread and affects mainly children, aged 0-5 years old, the immunocompromised and the elderly. Infection with HCoV-NL63 commonly results in mild upper respiratory tract infections and presents as the common cold, with symptoms including fever, cough, sore throat and rhinorrhoea. Lower respiratory tract findings are less common but may develop into more serious complications including bronchiolitis, pneumonia and croup. The primary function of the HCoV-NL63 nucleocapsid (N) protein is the formation of theprotective ribonucleocapsid core. For this particle to assemble, the N-protein undergoes N-N dimerization and then interacts with viral RNA. Besides the primary structural role of the Nprotein, it is also understood to be involved in viral RNA transcription, translation and replication, including several other physiological functions. The N-protein is also highly antigenic and elicits a strong immune response in infected patients. For this reason the N-protein may serve as a target for the development of diagnostic assays. We have used bioinformatic analysis to analyze the HCoV-NL63 N-protein and compared it to coronavirus N-homologues. This bioinformatic analysis provided the data to generate recombinant clones for expression in a bacterial system. We constructed recombinant clones of the N-protein of SARS-CoV and HCoV-NL63 and synthesized truncated clones corresponding to the N- and C-terminal of the HCoV-NL63 N-protein. These heterologously expressed proteins will serve the basis for several post-expression studies including characterizing the immunogenic epitope of the N-protein as well identifying any antibody crossreactivity between coronavirus species.</p>
|
50 |
Expression of Human Coronavirus NL63 and SARS-CoV Nucleocapsid Proteins for antibody productionMnyamana, Yanga E. January 2012 (has links)
<p>Human Coronaviruses (HCoVs) are found within the family Coronaviridae (genus, Coronavirus) and are enveloped, single-stranded, positive-sense RNA viruses. Infections of humans by  / coronaviruses are not normally associated with severe diseases. However, the identification of the coronavirus responsible for the outbreak of severe acute respiratory syndrome (SARS-CoV)  / showed that highly pathogenic coronaviruses can enter the human population. The SARS-CoV epidemic resulted in 8 422 cases with 916 deaths globally (case fatality rate: 10.9%). In 2004 a  / group 1 Coronavirus, designated Human Coronavirus NL63 (HCoV-NL63), was isolated from a 7 month old Dutch child suffering from bronchiolitis. In addition, HCoV-NL63 causes disease in  / children (detected in approximately 10% of respiratory tract infections), the elderly and the immunocompromised. This study was designed to express the full length nucleocapsid (N) proteins of  / HCoV-NL63 and SARS-CoV for antibody production in an animal model. The NL63-N/pFN2A and SARSN/ pFN2A plasmid constructs were used for this study. The presence of the insert on the Flexi ® / vector was confirmed by restriction endonuclease digest and sequence verification. The sequenced chromatographs obtained from Inqaba Biotec were consistent with sequences from  / the NCBI Gen_Bank. Proteins were expressed in a KRX Escherichia coli bacterial system and analysed using 15% SDS-PAGE and Western Blotting. Thereafter, GST-tagged proteins were purified  / ith an affinity column purification system. Purified fusion proteins were subsequently cleaved with Pro-TEV Plus protease, separated on 15% SDS-PAGE gel and stained with Coomassie  / Brilliant Blue R250. The viral fusion proteins were subsequently used to immunize Balbc mice in order to produce polyclonal antibodies. A direct ELISA was used to analyze and validate the  / production of polyclonal antibodies by the individual mice. This is a preliminary study for development of diagnostic tools for the detection of HCoV-NL63 from patient samples collected in the  / Western Cape.</p>
|
Page generated in 0.0318 seconds