Spelling suggestions: "subject:"nanodrähte"" "subject:"nanodrähten""
21 |
Integration of III-V compound nanocrystals in silicon via ion beam implantation and flash lamp annealingWutzler, René 26 September 2017 (has links)
The progress in device performance of modern microelectronic technology is mainly driven by down-scaling. In the near future, this road will probably reach a point where physical limits make even more down-scaling impossible. The substitution of single components materialwise over the last decades, like high-k dielectrics or metal gates, has been a suitable approach to foster performance improvements. In this scheme, the integration of high-mobility III-V compound semiconductors as channel materials into Si technology is a promising route to follow for the next one or two device generations. III-V integration, today, is conventionally performed by using techniques like molecular beam epitaxy or wafer bonding which utilize solid phase crystallization but suffer to strain due to the lattice mismatch between III-V compounds and Si. An alternative approach using sequential ion beam implantation in combination with a subsequent flash lamp annealing is presented in this work.
Using this technique, nanocrystals from various III-V compounds have been successfully integrated into bulk Si and Ge as well as into thin Si layers which used either SOI substrates or were grown by plasma-enhanced chemical vapour deposition. The III-V compounds which have been fabricated are GaP, GaAs, GaSb, InP, InAs, GaSb and InxGa1-xAs with variable composition. The structural properties of these nanocrystals have been investigated by Rutherford backscattering, scanning electron microscopy and transmission electron microscopy, including bright-field, dark-field, high-resolution, high-angle annular dark-field and scanning mode imaging, electron-dispersive x-ray spectroscopy and energy-filtered element mapping. Furthermore, Raman spectroscopy and X-ray diffraction have been performed to characterise the nanocrystals optically.
In Raman spectroscopy, the characteristic transversal and longitudinal optical phonon modes of the different III-V compounds have been observed. These signals proof that the nanocrystals have formed by the combination of ion implantation and flash lamp annealing. Additionally, the appearance of the typical phonon modes of the respective substrate materials verifies recrystallization of the substrate by the flash lamp after amorphisation during implantation. In the bulk Si samples, the nanocrystals have a circular or rectangular lateral shape and they are randomly distributed at the surface. Their cross-section has either a hemispherical or triangular shape. In bulk Ge, there are two types of precipitates: one at the surface with arbitrary shape and another one buried with circular shape. For the thin film samples, the lateral shape of the nanocrystals is more or less arbitrary and they feature a block-like cross-section which is limited in height by the Si layer thickness. Regarding crystalline quality, the nanocrystals in all samples are mainly single-crystalline with only a few number of stacking faults. However, the crystalline quality in the bulk samples is slightly better than in the thin films. The X-ray diffraction measurements display the (111), (220) and (311) Bragg peaks for InAs and GaAs as well as for the InxGa1-xAs where the peaks shift with increasing In content from GaAs towards InAs.
The underlying formation mechanism is identified as liquid phase epitaxy. Hereby, the ion implantation leads to an amorphisation of the substrate material which is then molten by the subsequent flash lamp annealing. This yields a homogeneous distribution of the implanted elements within the melt due to their strongly increased diffusivity in the liquid phase. Afterwards, the substrate material starts to recrystallize at first and an enrichment of the melt with group-III and group-V elements takes place due to segregation. When the temperature is low enough, the III-V compound semiconductor starts to crystallize using the recrystallized substrate material as a template for epitaxial growth.
In order to gain control over the lateral nanocrystal distribution, an implantation mask of either aluminium or nickel is introduced. Using this mask, only small areas of the samples are implanted. After flash lamp treatment, nanocrystals form only in these small areas, which allows precise positioning of them. An optimal implantation window size with an edge length of around 300nm has been determined to obtain one nanocrystal per implanted area. During an additional experiment, the preparation of Si nanowires using electron beam lithography and reactive ion etching has been conducted. Hereby, two different processes have been investigated; one using a ZEP resist, a lift-off step and a Ni hard mask and another one using a hydrogen silsesquioxane resist which is used directly as a mask for etching. The HSQ-based process turned out to yield Si nanowires of better quality. Combining both, the masked implantation and the Si nanowire fabrication, it might be possible to integrate a single III-V nanocrystal into a Si nanowire to produce a III-V-in-Si-nanowire structure for electrical testing. / Der Fortschritt in der Leistungsfähigkeit der Bauelemente moderner Mikroelektroniktechnologie wird hauptsächlich durch das Skalieren vorangetrieben. In naher Zukunft wird dieser Weg wahrscheinlich einen Punkt erreichen, an dem physikalische Grenzen weiteres Herunterskalieren unmöglich machen. Der Austausch einzelner Teile auf Materialebene, wie Hoch-Epsilon-Dielektrika oder Metall-Gate-Elektroden, war während der letzten Jahrzehnte ein geeigneter Ansatz, um die Leistungsverbesserung voranzubringen. Nach diesem Schema ist die Integration von III-V-Verbindungshalbleiter mit hoher Mobilität ein vielversprechender Weg, dem man für die nächsten ein oder zwei Bauelementgenerationen folgen kann. Heutzutage erfolgt die III-V-Integration konventionell mit Verfahren wie der Molekularstrahlepitaxie oder dem Waferbonden, welche die Festphasenkristallisation nutzen, die aber aufgrund der Gitterfehlanpassung zwischen III-V-Verbindungen und Silizium an Verspannungen leiden. In dieser Arbeit wird ein alternativer Ansatz präsentiert, welcher die sequenzielle Ionenstrahlimplantation in Verbindung mit einer darauffolgenden Blitzlampentemperung ausnutzt.
Mit Hilfe dieses Verfahrens wurden Nanokristalle verschiedener III-V-Verbindungshalbleiter erfolgreich in Bulksilizium- und -germaniumsubstrate sowie in dünne Siliziumschichten integriert. Für die dünnen Schichten wurden hierbei entweder SOI-Substrate verwendet oder sie wurden mittels plasmagestützer chemischer Gasphasenabscheidung gewachsen. Die hergestellten III-V-Verbindungen umfassen GaP, GaAs, GaSb, InP, InAs, InSb und InxGa1-xAs mit veränderbarer Zusammensetzung. Die strukturellen Eigenschaften dieser Nanokristalle wurden mit Rutherford-Rückstreu-Spektroskopie, Rasterelektronenmikroskopie und Transmissionselektronenmikroskopie untersucht. Bei der Transmissionelektronenmikroskopie wurden die Hellfeld-, Dunkelfeld-, hochauflösenden, “high-angle annular dark-field” und Rasteraufnahmemodi sowie die energiedispersive Röntgenspektroskopie und die energiegefilterte Elementabbildung eingesetzt. Darüber hinaus wurden Ramanspektroskopie- und Röntgenbeugungsmessungen durchgeführt, um die Nanokristalle optisch zu charakterisieren.
Mittels Ramanspektroskopie wurden die charakteristischen transversal- und longitudinal-optischen Phononenmoden der verschiedenen III-V-Verbindungen beobachtet. Diese Signale beweisen, dass sich unter Verwendung der Kombination von Ionenstrahlimplantation und Blitzlampentemperung Nanokristalle bilden. Weiterhin zeigt das Vorhandensein der typischen Phononenmoden der jeweiligen Substratmaterialien, dass die Substrate aufgrund der Blitzlampentemperung rekristallisiert sind, nachdem sie durch Ionenimplantation amorphisiert wurden. In den Bulksiliziumproben besitzen die Nanokristalle eine kreisförmige oder rechteckige Kontur und sind in zufälliger Anordnung an der Oberfläche verteilt. Ihr Querschnitt zeigt entweder eine Halbkugel- oder dreieckige Form. Im Bulkgermanium gibt es zwei Arten von Ausscheidungen: eine mit willkürlicher Form an der Oberfläche und eine andere, vergrabene mit sphärischer Form. Betrachtet man die Proben mit den dünnen Schichten, ist die laterale Form der Nanokristalle mehr oder weniger willkürlich und sie zeigen einen blockähnlichen Querschnitt, welcher in der Höhe durch die Siliziumschichtdicke begrenzt ist. Bezüglich der Kristallqualität sind die Nanokristalle in allen Proben mehrheitlich einkristallin und weisen nur eine geringe Anzahl an Stapelfehlern auf. Jedoch ist die Kristallqualität in den Bulkmaterialien ein wenig besser als in den dünnen Schichten. Die Röntgenbeugungsmessungen zeigen die (111), (220) und (311) Bragg-Reflexe des InAs und GaAs sowie des InxGa1-xAs, wobei sich hier die Signalpositionen mit steigendem Gehalt an Indium von GaAs zu InAs verschieben.
Als zugrundeliegender Bildungsmechanismus wurde die Flüssigphasenepitaxie identifiziert. Hierbei führt die Ionenstrahlimplantation zu einer Amorphisierung des Substratmaterials, welches dann durch die anschließende Blitzlampentemperung aufgeschmolzen wird. Daraus resultiert eine homogene Verteilung der implantierten Elemente in der Schmelze, da diese eine stark erhöhte Diffusivität in der flüssigen Phase aufweisen. Danach beginnt zuerst das Substratmaterial zu rekristallisieren und es kommt aufgrund von Segregationseffekten zu einer Anreicherung der Schmelze mit den Gruppe-III- und Gruppe-V-Elementen. Wenn die Temperatur niedrig genug ist, beginnt auch der III-V-Verbindungshalbleiter zu kristallisieren, wobei er das rekristallisierte Substratmaterial als Grundlage für ein epitaktisches Wachstum nutzt.
In der Absicht Kontrolle über die laterale Verteilung der Nanokristalle zu erhalten, wurde eine Implantationsmaske aus Aluminium beziehungsweise Nickel eingeführt. Durch die Benutzung einer solchen Maske wurden nur kleine Bereiche der Proben implantiert. Nach der Blitzlampentemperung werden nur in diesen kleinen Bereichen Nanokristalle gebildet, was eine genaue Positionierung dieser erlaubt. Es wurde eine optimale Implantationsfenstergröße mit einer Kantenlänge von ungefähr 300 nm ermittelt, damit sich nur ein Nanokristall pro implantierten Bereich bildet. Während eines zusätzlichen Experiments wurde die Präparation von Siliziumnanodrähten mit Hilfe von Elektronenstrahllithografie und reaktivem Ionenätzen durchgeführt. Hierbei wurden zwei verschiedene Prozesse getestet: einer, welcher einen ZEP-Lack, einen Lift-off-Schritt und eine Nickelhartmaske nutzt, und ein anderer, welcher einen HSQ-Lack verwendet, der wiederum direkt als Maske für die Ätzung dient. Es stellte sich heraus, dass der HSQ-basierte Prozess Siliziumnanodrähte von höherer Qualität liefert. Kombiniert man beides, die maskierte Implantation und die Siliziumnanodrahtherstellung, miteinander, sollte es möglich sein, einzelne III-V-Nanokristalle in einen Siliziumnanodraht zu integrieren, um eine III-V-in-Siliziumnanodrahtstruktur zu fertigen, welche für elektrische Messungen geeignet ist.
|
22 |
Functionalizing the Microtubule LumenJoshi, Foram Meghal 03 June 2022 (has links)
The functionalization of the outer lattice of in vitro reconstituted microtubules has paved the way for the development of diverse nano-device applications. The outer lattice has been metallized for the bottom-up synthesis of nanowires composed of various materials. Moreover, a wide range of biomolecules and nanoprobes have been attached to the outer surface for nano-scale transport and detection assays in conjunction with motor proteins. The functionalization of the outer lattice has certain implications: While the nanowires adopt the overall shape of the microtubules, their surface is inhomogeneous due to the absence of any morphological control. The attachment of cargo on the outer lattice creates a ‘roadblock effect’ hindering the transport activity of the motor proteins as they share a common substrate surface. In this project, the utilization of the hollow interior region of the microtubules, called the lumen (∼15 nm in diameter) is proposed to overcome these limitations. A strategy is developed to functionalize the microtubule lumen by targeting molecular cargo conjugated to lumen-binding (anti-acetyl alpha-tubulin lysine-40) antibodies. This would optimize existing motility-based applications as the outer surface would be exclusively available for the activity of the motor proteins. Furthermore, microtubules functionalized with luminal gold nanoparticle ‘seeds’ are utilized for the lumen-templated assembly of gold nanowires.
|
23 |
Infrared nanospectroscopy at cryogenic temperatures and on semiconductor nanowiresLang, Denny 18 November 2019 (has links)
Die vorliegende Dissertation befasst sich mit der streuenden, infraroten Rasternahfeldmikroskopie (engl. s-SNIM) in Kombination mit dem Freie-Elektronen
Laser (FEL) am Helmholtz-Zentrum Dresden-Rossendorf. Der FEL ist eine intensive,schmalbandige Strahlungsquelle, welche vom mittleren bis ferninfraroten
Spektralbereich durchstimmbar ist (5 meV bis 250 meV). Die s-SNIM Technik
ermöglicht Infrarotmikroskopie- und spektroskopie mit einer wellenlängenunabhängigen räumlichen Auflösung von etwa 10nm.
Der erste Ergebnisteil demonstriert die Erweiterung eines FEL-basierten s- SNIM hinsichtlich der Möglichkeit, bei tiefen Temperaturen bis 5K messen zu können. So verdeutlichen wir die Funktionalität unseres Tieftemperatur-s-SNIM anhand verschiedener Proben wie Au, strukturiertem Si/SiO2 sowie Gallium-Vanadium-Sulfid (GaV4S8). Das letztgenannte Material erregt momentan ein hohes wissenschaftliches Interesse, da es sogenannte Skyrmionen des Néel-Typs – periodische angeordnete Spinwirbel – enthält. GaV4S8 hat einen strukturellen Phasenübergang bei T = 42K und beinhaltet bei niedrigeren Temperaturen ferroelektrische Domänen, die wir unter anderem mittels s-SNIM abbilden können. Hierbei beobachten wir einen beträchtlichen Einfluss der Infrarotstrahlung auf die Domänenstruktur. Dies nutzen wir, um den lokalen Hitzeeintrag der Infrarotstrahlung lokal unter der s-SNIM Sonde zu quantifizieren.
Der zweite Teil der Ergebnisse beinhaltet s-SNIM Messungen an hochwertigen Halbleiter-Nanodrähten (ND), welche mittels Molekularstrahlepitaxie gewachsen wurden. Derartige ND sind, unter anderem aufgrund ihrer hohen Ladungsträgermobilität, vielversprechende Komponenten für schnelle optoelektronische Nanoelemente der Zukunft. So untersuchen wir beispielsweise hochdotierte GaAs/InGaAs Kern/Schale ND, bei denen wir – unter Verwendung eines Dauerstrich CO2 Lasers – eine spektral scharfe plasmonische Resonanz bei etwa 125 meV beobachten. Betrachten wir selbige ND mittels intensiver, gepulster FEL-Strahlung, ist eine signifikante Rotverschiebung zu Energien kleiner als 100 meV sowie eine Verbreiterung der Resonanz festzustellen. Dieses nichtlineare Verhalten wird zurückgeführt auf eine starke Erhitzung des Elektronengases unter dem Einfluss der intensiven FEL-Pulse. Unsere Erkenntnisse zeigen dahingehend die Möglichkeiten auf, Nichtgleichgewichtszustände im s-SNIM gezielt zu induzieren und zu beinflussen. Abgesehen von den Messungen der Nichtlinearität ist die Herstellung und Charakterisierung von ND-Querschnitten – sowohl der genannten homogen dotierten, als auch modulationsdotierten– Gegenstand des zweiten Ergebniskapitels.:Abstract iii
Zusammenfassung v
1 Introduction 1
2 Fundamentals 3
2.1 Scanning probe techniques 3
2.1.1 Atomic force microscopy 4
2.1.2 Piezoresponse force microscopy 8
2.1.3 Kelvin-probe force microscopy 9
2.2 Infrared nanospectroscopy 10
2.2.1 The diffraction limit 10
2.2.2 Scattering scanning near-field infrared microscopy 11
2.2.3 Point-dipole model 12
2.2.4 Signal detection 17
2.2.5 Higher harmonic demodulation and contrast 19
2.2.6 Advantages and limitations of s-SNIM 22
2.3 Infrared light sources 24
2.3.1 Carbon dioxide laser 24
2.3.2 Free-electron laser 26
3 Infrared nanospectroscopy at cryogenic temperatures 31
3.1 Introduction 31
3.2 Samples 33
3.3 Experimental details 36
3.3.1 Low-temperature atomic force microscopy 36
3.3.2 Optical setup 38
3.3.3 Low-temperature scattering scanning near-field infrared microscopy 39
3.3.4 Measurement modes and data acquisition 42
3.4 Results and discussion 44
3.4.1 Performance and IR heating calibration 44
3.4.2 s-SNIM study of gallium vanadium sulfide 49
3.5 Conclusion 51
4 Infrared nanospectroscopy on semiconductor nanowires 53
4.1 Introduction 53
4.2 Samples 55
4.2.1 GaAs/InGaAs core/shell nanowires 55
4.2.2 Modulation doped nanowires 56
4.2.3 Nanowire cross sections 57
4.2.4 Infrared response of doped nanowires 59
4.3 Experimental details 61
4.3.1 Room-temperature atomic force microscopy 61
4.3.2 Room-temperature scattering scanning near-field infrared microscopy 63
4.3.3 Properties of the free-electron laser pulses 65
4.4 Results and discussion 68
4.4.1 GaAs/InGaAs core/shell nanowires 68
4.4.2 Nanowire cross sections 75
4.5 Conclusion 79
5 Summary and outlook 81
A Citation metrics 85
B Additional nanospectroscopic studies 87
B.1 Silicon carbide nanoparticle probes 87
B.2 Individual impurities in Si 91
B.3 Surface phonon polaritons in moybdenum disulfide 96
C Derivation of the nonparabolic effective mass and density of states 99
C.1 Effective mass 99
C.2 Density of states 100
D Comparison of self-homodyne and pseudo-heterodyne detection 103
Bibliography 105
List of Abbreviations 125
List of Symbols 132
List of Publications 133
Acknowledgments 137
Versicherung 139 / This PhD thesis concentrates on scattering scanning near-field infrared microscopy (s-SNIM) which utilizes the radiation from the free-electron laser (FEL) at the Helmholtz-Zentrum Dresden-Rossendorf. The FEL is an intense, narrow-band radiation source, tunable from the mid- to far-infrared spectral range (5 meV to 250 meV). The s-SNIM technique enables infrared microscopy and spectroscopy with a wavelength-independent spatial resolution of about 10nm.
The first part demonstrates the extension of s-SNIM at the FEL towards cryogenic temperatures as low as 5K. To this end, we show the functionality of our low-temperature s-SNIM apparatus on different samples such as Au, structured Si/SiO2, as well as the multiferroic material gallium vanadium sulfide (GaV4S8). The latter material recently attracted a lot of interest since it hosts a Néel-type skyrmion lattice – a periodic array of spin vortices. Below T = 42K, GaV4S8 undergoes a structural phase transition and then forms ferroelectric domains, which we can map out by low-tempererature s-SNIM. Notably, we found a strong impact on the ferroelectric domains upon infrared irradiation, which we further utilize to calibrate the local heat contribution of the focused infrared beam beneath the s-SNIM probe.
The second part of this thesis contains comprehensive s-SNIM investigations of high-quality semiconductor nanowires (NWs) grown by molecular beam epitaxy. Such NWs are promising building blocks for fast opto-)electronic nanodevices, amongst others due to their high carrier mobility. We have examined highly doped GaAs/InGaAs core/shell NWs and observed a strong and spectrally sharp plasmonic resonance at about 125 meV, using a continuous wave CO2 laser for probing. If we probe the same NWs utilizing the intense, pulsed FEL radiation, we observe a pronounced redshift to energies less than 100 meV and a broading of the plasmonic response. This nonlinear response is most likely induced by heating of the electron gas upon irradiation by the strong FEL pulses. Our observations open up the possibility to actively induce and observe non-equilibrium states in s-SNIM directly by the mid-infrared beam. Beside the nonlinear effect, we prepared and measured cross sections of both homogeneously-doped and modulation-doped core/shell NWs.:Abstract iii
Zusammenfassung v
1 Introduction 1
2 Fundamentals 3
2.1 Scanning probe techniques 3
2.1.1 Atomic force microscopy 4
2.1.2 Piezoresponse force microscopy 8
2.1.3 Kelvin-probe force microscopy 9
2.2 Infrared nanospectroscopy 10
2.2.1 The diffraction limit 10
2.2.2 Scattering scanning near-field infrared microscopy 11
2.2.3 Point-dipole model 12
2.2.4 Signal detection 17
2.2.5 Higher harmonic demodulation and contrast 19
2.2.6 Advantages and limitations of s-SNIM 22
2.3 Infrared light sources 24
2.3.1 Carbon dioxide laser 24
2.3.2 Free-electron laser 26
3 Infrared nanospectroscopy at cryogenic temperatures 31
3.1 Introduction 31
3.2 Samples 33
3.3 Experimental details 36
3.3.1 Low-temperature atomic force microscopy 36
3.3.2 Optical setup 38
3.3.3 Low-temperature scattering scanning near-field infrared microscopy 39
3.3.4 Measurement modes and data acquisition 42
3.4 Results and discussion 44
3.4.1 Performance and IR heating calibration 44
3.4.2 s-SNIM study of gallium vanadium sulfide 49
3.5 Conclusion 51
4 Infrared nanospectroscopy on semiconductor nanowires 53
4.1 Introduction 53
4.2 Samples 55
4.2.1 GaAs/InGaAs core/shell nanowires 55
4.2.2 Modulation doped nanowires 56
4.2.3 Nanowire cross sections 57
4.2.4 Infrared response of doped nanowires 59
4.3 Experimental details 61
4.3.1 Room-temperature atomic force microscopy 61
4.3.2 Room-temperature scattering scanning near-field infrared microscopy 63
4.3.3 Properties of the free-electron laser pulses 65
4.4 Results and discussion 68
4.4.1 GaAs/InGaAs core/shell nanowires 68
4.4.2 Nanowire cross sections 75
4.5 Conclusion 79
5 Summary and outlook 81
A Citation metrics 85
B Additional nanospectroscopic studies 87
B.1 Silicon carbide nanoparticle probes 87
B.2 Individual impurities in Si 91
B.3 Surface phonon polaritons in moybdenum disulfide 96
C Derivation of the nonparabolic effective mass and density of states 99
C.1 Effective mass 99
C.2 Density of states 100
D Comparison of self-homodyne and pseudo-heterodyne detection 103
Bibliography 105
List of Abbreviations 125
List of Symbols 132
List of Publications 133
Acknowledgments 137
Versicherung 139
|
24 |
Optical properties of single semiconductor nanowires and nanowire ensembles / probing surface physics by photoluminescence spectroscopyPfüller, Carsten 07 July 2011 (has links)
Diese Arbeit beschreibt die optische Charakterisierung mittels Photolumineszenzspektroskopie (PL) von Halbleiter-Nanodrähten (ND) im allgemeinen und einzelnen GaN-ND und GaN-ND-Ensembles im speziellen. ND werden oftmals als vielversprechende Bausteine zukünftiger, kleinster Bauele- mente bezeichnet. Diese Vision beruht insbesondere auf einigen attraktiven Eigenheiten, die ND im allgemeinen zugeschrieben werden. Im ersten Teil dieser Arbeit werden exemplarisch einige dieser Eigenschaften näher untersucht. So wird anhand von temperaturabhängigen PL-Messungen an Au- und selbstinduzierten GaAs/(Al,Ga)As-ND der Einfluss des Keimmaterials auf die PL der ND untersucht. Weiterhin werden die optischen Eigenschaften von ZnO-ND untersucht, die auf Si-, Saphir- und ZnO-Substraten gewachsen wurden. Die optische Charakterisierung von GaN-ND nimmt den Hauptteil dieser Arbeit ein. Die detaillierte Untersuchung einzelner GaN-ND und von GaN-ND-Ensembles zeigt die Relevanz des großen Oberflächen-zu-Volumen-Verhältnisses und dass jeder ND ganz eigene optische Eigenschaften aufweist. Die unerwartet starke Verbreiterung des strahlenden Übergangs donatorgebundener Exzitonen wird durch das vermehrte Auftreten von Oberflächendonatoren erklärt, deren statistische Relevanz durch PL-Messungen an einzelnen ausgestreuten und freistehenden GaN-ND nachgewiesen werden kann. Weiterhin wird der Einfluss elektrischer Felder auf die optischen Eigenschaften von GaN-ND ermittelt. Die Ein- und Auskopplung von Licht mit GaN ND wird mithilfe von Reflektanz- und Ramanmessungen bestimmt. Die zentralen Ergebnisse dieser Arbeit motivieren die Einführung eines Modells, dass die typischerweise nichtexponentielle Rekombinationsdynamik in ND-Ensemblen erklärt. Es basiert auf einer Verteilung der Rekombinationsraten. Vorläufige Ergebnisse dieses Modells beschreiben das nichtexponentielle Rekombinationdynamik in GaN ND-Ensemblen zufriedenstellend und erlauben eine Abschätzung ihrer internen Quanteneffizienz. / This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. In the first part of the thesis, some of these features are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and self-assisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Sapphire, and ZnO substrates. The major part of this thesis discusses the optical properties of GaN NWs. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio and that each NW exhibits its own individual recombination behavior. An unexpected broadening of the donor-bound exciton transition is explained by the abundant presence of surface donors in NWs. The existence and statistical relevance of these surface donors is confirmed by PL experiments of single GaN NWs which are either dispersed or free-standing. Furthermore, the influence of electric fields on the optical properties of GaN NWs is investigated and the coupling of light with GaN NWs is studied by reflectance and Raman measurements. The central results of this thesis motivate the introduction of a model that explains the typically observed nonexponential recombination dynamics in NW ensembles. It is based on a distribution of recombination rates. Preliminary simulations using this model describe the nonexponential decay of GaN NW ensembles satisfactorily and allow for an estimation of their internal quantum efficiency.
|
25 |
Grundlegende Untersuchungen zum CVD-Wachstum Fe-gefüllter Kohlenstoff-NanoröhrenMüller, Christian 26 June 2008 (has links) (PDF)
Gegenstand dieser Arbeit war: - die Optimierung und Modellierung des CVD-Wachstums von Fe-gefüllten CNTs aus Ferrocen, - die Auswahl geeigneter Schichtsysteme für das orientierte Wachstum Fe-gefüllter CNTs, - eine umfassende Charakterisierung der Nanostrukturen und deren Bezug zu den Wachstumsparametern, - die Formulierung eines allgemeingültigen Wachstumsmodels. Es wurde eine Anlage zur thermisch induzierten chemischen Gasphasenabscheidung bei Atmosphärendruck verwendet. Im Mittelpunkt der Syntheseexperimente standen Fe-gefüllte MWCNTs. Als Precursoren dienten Ferrocen und Cyclopentadienyl-eisen-dicarbonyl-dimer. Für die Darstellung von CNT-Ensembles mit idealerweise paralleler Ausrichtung der Einzelindividuen kamen thermisch oxidierte Si-Substrate (Schichtdicke des Oxid: 1 µm) zum Einsatz. Das Wachstum der CNTs wurde überwiegend als cokatalysierter Prozess durchgeführt, d.h. neben dem Fe aus dem Precursor dienten dünne Metallschichten (Fe, Co, oder Ni, Schichtdicke ≤ 10 nm), die auf den Substraten deponiert waren, als Katalysatorreservoir. Zunächst ging es darum den CVD-Prozess hinsichtlich tubularer CNTs mit senkrechter Vorzugsorientierung zur Substratoberfläche, einer guten Kristallinität der Hülle, sowie einem hohen Füllungsanteil der ferromagnetischen α-Fe-Phase zu überprüfen. Generell ließ sich die Abscheidung gefüllter CNTs für mittlere Substrattemperaturen im Bereich von 1013 – 1200 K durchführen. Die optimale Wachstumstemperatur lag bei ≈ 1103 K. Mit den beiden Precursoren - Ferrocen und Cyclopentadienyl-eisen-dicarbonyl-dimer ließen sich Fe-gefüllte CNTs in guter Qualität darstellen. Letztere Verbindung verringerte die Abscheidung von amorphem Kohlenstoff auf der CNT-Oberfläche, barg allerdings die Nachteile einer Sauerstoffkontamination und höherer Verdampfungs-temperaturen in sich. Aus der Vielzahl von Experimenten konnte abgeleitet werden, dass die Haupteinflussgrößen für den Innen- und Außendurchmesser der CNTs die Katalysatorschicht auf dem Substrat, die Synthesetemperatur und der Precursormassenstrom sind. Höhere Temperaturen und/oder ein Mehrangebot an Precursor äußerten sich stets in größeren Durchmessern. Zusätzliche Metallschichten auf den oxidierten Si-Substraten erlaubten eine gezielte Durchmesservariation. Beispielsweise zeigte sich an Substraten mit 2 nm Fe bzw. 2 nm Ni, dass sich die mittleren CNT-Außendurchmesser gegenüber dem auf unbeschichteten Substraten (34 nm) zu 44 nm bzw. 30 nm verändern lässt. Mit Al-Zwischenschichten konnten sogar Durchschnittswerte für den CNT-Außendurchmesser von 18 nm erzielt werden. Durch Röntgenstrukturuntersuchungen und Mössbaueranalysen an CNT-Ensembles wurde α-Fe als Hauptbestandteil der Füllung identifiziert. Auf den hohen Anteilen der α-Fe-Phase beruhte auch das magnetische Verhalten der Nanodrähte. Ein Beleg für die Schlüsselrolle des Systems Fe-C während des Wachstumsprozesses war die Phase Fe3C, mit orthorhombischer Struktur. Weniger häufig ließ sich γ-Fe nachweisen. Darüber hinaus konnten sämtliche CNT-Füllungen mittels SAED und HRTEM als Einkristalle charakterisiert werden. Die innerhalb der CNTs eingeschlossenen Fe- oder Fe-C-Nanodrähte wiesen außerdem keine kristallographische(n) Vorzugsrichtung(en) gegenüber den CNT-Wänden auf. Anhand der experimentellen Befunde war es möglich ein phänomenologisches Wachstumsmodell vorzuschlagen, welche eine Erweiterung des VLS-Mechanismus darstellt. Das in der vorliegenden Arbeit vorgestellte Modell greift das base-growth-Konzept auf und favorisiert die Akkumulation von Katalysatormaterial über die geöffneten Enden der CNTs. Eine genauere kinetische und thermodynamische Beschreibung war aufgrund der im Nanometerbereich nur schwer zugänglichen Stoffdaten nicht möglich.
|
26 |
Ab initio Beschreibung der elektronischen Struktur und der Transporteigenschaften von metallischen Nanodrähten / Ab initio description of the electronic structure and the transport properties of metallic nanowiresOpitz, Jörg 16 August 2002 (has links) (PDF)
Ab initio calculations of the electronic structure of freestanding Cu and Na nanowires with a diameter of few atoms are presented. The calculations are based on density functional theory in local density approximation using a Screened Korringa-Kohn-Rostoker-Green's function method. The method was extended for the description of quasi-onedimensional systems. Translational invariance in direction of the wire is assumed. The dependence of the bandstructure and the density of states from thickness and shape of the cross-section is discussed. The quantum confinement of the eigenstates is analysed. By comparing the results of the Na and Cu wires, the influence of the d-electrons is shown. Based on the Landauer theory of transport the conductance is obtained within a Green's function formalism. The numerical description of the conductance is tested for ideal translationally invariant Na and Cu wires. The influence of substitutional transition metal impurities on the electronic structure and the conductance of the 2x2 Cu wire is studied. A spin-dependent discussion is given for magnetic impurities. / Es werden ab initio Berechnungen der elektronischen Struktur freistehender Na- und Cu-Nanodrähte mit einem Durchmesser von wenigen Atomen präsentiert. Für die Berechnung wird eine Screened Korringa-Kohn-Rostoker-Grennsche Funktionsmethode genutzt, die auf der Spindichtefunktionaltheorie in lokaler-Spindichtenäherung basiert. Diese Methode wurde für die Beschreibung von quasieindimensionalen Systemen erweitert. Die Drähte werden als translationsinvariant in Drahtrichtung beschrieben. Es wird die Abhängigkeit der Bandstruktur und der Zustandsdichte von der Dicke und der Form des Querschnitts diskutiert. Das Quantenconfinement der Eigenzustände wird analysiert. Durch den Vergleich der Resultate für den Na- und den Cu-Draht kann der Einfluss der d-Elektronen gezeigt werden. Ausgehend von der Landauer-Theorie des Transports wird der Leitwert im Rahmen eines Greenschen Funktions-Formalismus berechnet. Diese neue numerische Beschreibung des Leitwertes wird an idealen translationsinvarianten Drähten getestet. Es wird der Einfluss von substitutionellen 3d-Übergangsmetall-Störungen auf die elektronische Struktur und auf den Leitwert von 2x2-Cu-Drähten studiert. Im Fall magnetischer Defekte wird dieser Einfluss spinabhängig diskutiert.
|
27 |
Template-Assisted Electrodeposition of Metallic Nanowires and their Application in Electronic Packaging / Templat-gestützte Elektroabscheidung metallischer Nanodrähte und deren Anwendung in der Aufbau- und VerbindungstechnikGraf, Matthias 04 April 2014 (has links) (PDF)
Electronic Packaging is currently deeply in need of new solutions concerning vertical interconnection strategies. With respect to downscaling the geometrical limits, entering the nanoscale for first-level interconnects is nothing more than a consequence. This thesis proposes a new strategy for highly resolved vertical interconnects that are realized by metallic nanowires (NWs). These are embedded inside a dielectric matrix enabling the further raster size reduction for chip interconnects. The creation of NW arrays in self-ordering templates (anodized Al2O3 (AAO) and track-etched poly carbonate) by electrochemical deposition of Ag and Ni inside the pores of these as well as the characterisation of the NWs' properties with respect to the film's applicability are to the fore. Electrical properties are shown to be sensitive to the mode of deposition. Crystallographic properties do not seem to be responsible for this while the NWs' morphology slightly differs and is therefore expected to remarkably influence electron transport. Additionally, the deposition mechanism in high-aspect-ratio pores of AAO is in another focus of investigation. This process was in the past described as diffusively controlled, but this assertion was not further evaluated.
The presence of a gradient in the diffusion coefficient as well as the presence and expansion of an electrochemical double layer located at the template's inner surface are responsible limiting the deposition process. An existing model of porous electrodes is compared to the measured data and found not to be valid for the system of highly recessed ultramicroelectrode arrays by which this system is described. Therefore a new model that differentiates between charge-transfer and diffusive motion is proposed and shown to fit to the system's properties. Apart from mechanistic investigations, the implementation of the obtained NW arrays as an interconnector film proposes these to be applied best by adhesive bonding. Bonding properties were found to be well realizable by the additional coverage of the filled membranes with a polymer thin film. This can easily be attached onto the film by spin-coating the corresponding monomer and reactive curing while already being embedded in the package. Alternative methods for contact formation, such as non-reactive bonding and nanosoldering using segmented NWs, are proposed. The strategy is shown to still lack important technological questions while the findings with respect to fabrication, growth and implementation are very promising. / Die Aufbau- und Verbindungstechnik der Elektronik wird in absehbarer Zeit Größenskalen erreichen, bei denen die verwendeten Materialien in der ersten Kontaktierungsebene als Nanomaterialien zu bezeichnen sind, das heißt ≤ 100 nm sind. Des Weiteren bestehen momentan nur bedingt viele Ansätze zu deren Implementierung in Vertikalverbindungsstrukturen (zum Beispiel für die dreidimensionale Integration). Die vorliegende Dissertation schlägt daher vor, die vertikale Verbindung über einen zwischen die Chips laminierbaren Film mit hochdichten und vertikal ausgerichteten nanoskaligen Drähten (NWs) zu realisieren. Diese sind in einer dielektrischen Matrix fixiert und gewährleisten die elektrische Anisotropie des Kontaktfilms. Innerhalb dieser Matrix werden die metallischen Drähte durch elektrochemische Abscheidung erzeugt. Der Fokus dieser Arbeit liegt somit auf der Charakterisierung des reduktiven Wachstumsprozesses von Ag und Ni innerhalb dünner Poren. Dabei können die Eigenschaften durch verschiedene Abscheidemodi gezielt beeinflusst werden. Hinsichtlich der elektrischen Eigenschaften ergibt sich im Vergleich zu der zugrundeliegenden Kristallographie ein wesentlich stärkerer Einfluss der Draht-Morphologie. Der Prozess der Porenfüllung wird im Allgemeinen als stark diffusionskontrolliert angenommen, wurde jedoch bisher nicht weiter quantifiziert. Die der Abscheidung zugrundeliegenden Prozesse Elektrolytdiffusion, Ladungstransfer an der Elektrode und Migrationsbeeinflussung durch die Porengeometrie werden daher voneinander getrennt und einzeln charakterisiert.
Das vorliegende System kann als Matrix von stark versenkten Ultramikroelektroden abstrahiert werden. Existente Modelle zur Beschreibung derartiger Systeme treffen auf den vorliegenden Fall im Allgemeinen nicht zu, sodass basierend auf elektrochemischen Untersuchungen ein variiertes Abscheidemodell vorgeschlagen wird. Dieses berücksichtigt die Nicht-Linearität der elektrochemischen Doppelschicht, die von der Porenoberfläche ausgeht sowie deren Frequenzabhängigkeit. Neben mechanistischen Untersuchungen schließen sich Versuche an, deren Fokus auf der direkten Anwendung der mit Nanodrähten gefüllten Membranen liegt. Dabei wird vornehmlich deren Fixierung per Klebeverbindung angestrebt. Die Realisierung klebbarer Filme gelingt über die Auftragung von polymeren Dünnfilmen durch Spin-Coating des jeweiligen Monomeren. Diese Filme werden hinsichtlich ihrer Klebeeigenschaften charakterisiert. Abschließend werden alternative Kontaktiermethoden wie die Thermokompression oder das nanoskalige Löten basierend auf der Herstellung von segmentierten Nanodrähten demonstriert und hinsichtlich ihrer Applizierbarkeit diskutiert. Die erreichten Ergebnisse zeigen den noch vorhandenen Bedarf an technologischer Optimierung sowie Kompatibilisierung auf. Die Erkenntnisse hinsichtlich der Herstellung, des Wachstums sowie der Implementierungsansätze sind jedoch vielversprechend.
|
28 |
Template-Assisted Electrodeposition of Metallic Nanowires and their Application in Electronic PackagingGraf, Matthias 17 December 2013 (has links)
Electronic Packaging is currently deeply in need of new solutions concerning vertical interconnection strategies. With respect to downscaling the geometrical limits, entering the nanoscale for first-level interconnects is nothing more than a consequence. This thesis proposes a new strategy for highly resolved vertical interconnects that are realized by metallic nanowires (NWs). These are embedded inside a dielectric matrix enabling the further raster size reduction for chip interconnects. The creation of NW arrays in self-ordering templates (anodized Al2O3 (AAO) and track-etched poly carbonate) by electrochemical deposition of Ag and Ni inside the pores of these as well as the characterisation of the NWs' properties with respect to the film's applicability are to the fore. Electrical properties are shown to be sensitive to the mode of deposition. Crystallographic properties do not seem to be responsible for this while the NWs' morphology slightly differs and is therefore expected to remarkably influence electron transport. Additionally, the deposition mechanism in high-aspect-ratio pores of AAO is in another focus of investigation. This process was in the past described as diffusively controlled, but this assertion was not further evaluated.
The presence of a gradient in the diffusion coefficient as well as the presence and expansion of an electrochemical double layer located at the template's inner surface are responsible limiting the deposition process. An existing model of porous electrodes is compared to the measured data and found not to be valid for the system of highly recessed ultramicroelectrode arrays by which this system is described. Therefore a new model that differentiates between charge-transfer and diffusive motion is proposed and shown to fit to the system's properties. Apart from mechanistic investigations, the implementation of the obtained NW arrays as an interconnector film proposes these to be applied best by adhesive bonding. Bonding properties were found to be well realizable by the additional coverage of the filled membranes with a polymer thin film. This can easily be attached onto the film by spin-coating the corresponding monomer and reactive curing while already being embedded in the package. Alternative methods for contact formation, such as non-reactive bonding and nanosoldering using segmented NWs, are proposed. The strategy is shown to still lack important technological questions while the findings with respect to fabrication, growth and implementation are very promising.:List of Figures
List of Tables
List of Acronyms
List of Symbols
1 Nanoscale interconnects 1
1.1 Introduction
1.2 Electronic device development and its consequences
1.3 The need for and the design of a nanoscale wiring film
1.3.1 Nanomaterials for packaging - Some examples
1.3.2 Preconsiderations for designing nanoscale interconnects
1.3.3 Compatitibility of ACANWF to industrial applications
1.3.4 Demands to the film
1.4 Resumée - Strategy
2 NW fabrication by electodeposition and synthesis-property relationships
2.1 Templates for NW electrodeposition
2.1.1 Anodized Al2O3 (AAO)
2.1.2 Track-etched polymer membranes
2.2 Template-assisted Electrochemical Deposition (ECD) of NWs
2.2.1 Concept
2.2.2 Deposition modes
2.2.3 In_uences of other physical parameters
2.2.4 Errors and error mechanisms
2.2.5 Deposition in chemically functionalized AAO
2.3 Synthesis-property relationships for single NWs
2.3.1 NiNWs
2.3.2 AgNWs
2.4 Resumée .
3 Growth processes in mesoporous templates
3.1 Relevance for mechanistic investigations
3.2 Processes during NW growth
3.2.1 Electrode kinetics
3.2.2 Diffusion
3.2.3 Interactions with pore walls
3.3 Model systems
3.3.1 DeLevie's model for porous electrodes
3.3.2 Model verification
3.3.3 Model adaptation to non-ideal behaviour
3.4 Resumée
4 Implementation of nanowire arrays into microelectronic packaging
4.1 Adhesive Bonding
4.1.1 Adhesion by thin adhesive layers
4.1.2 Thermocompression bonds
4.2 Nanosoldering
4.2.1 Deposition of low melting point materials
4.2.2 Segmented nanowires
4.3 Resumée
5 Conclusion and perspectives
5.1 Conclusion
5.2 Perspectives on further investigations
6 Appendices
6.1 Technical equipment
6.2 Experimental methods
6.3 Selected characterisation techniques
6.4 Supplementary Information
6.5 Glossary
6.6 List of publications & presentations
Bibliography / Die Aufbau- und Verbindungstechnik der Elektronik wird in absehbarer Zeit Größenskalen erreichen, bei denen die verwendeten Materialien in der ersten Kontaktierungsebene als Nanomaterialien zu bezeichnen sind, das heißt ≤ 100 nm sind. Des Weiteren bestehen momentan nur bedingt viele Ansätze zu deren Implementierung in Vertikalverbindungsstrukturen (zum Beispiel für die dreidimensionale Integration). Die vorliegende Dissertation schlägt daher vor, die vertikale Verbindung über einen zwischen die Chips laminierbaren Film mit hochdichten und vertikal ausgerichteten nanoskaligen Drähten (NWs) zu realisieren. Diese sind in einer dielektrischen Matrix fixiert und gewährleisten die elektrische Anisotropie des Kontaktfilms. Innerhalb dieser Matrix werden die metallischen Drähte durch elektrochemische Abscheidung erzeugt. Der Fokus dieser Arbeit liegt somit auf der Charakterisierung des reduktiven Wachstumsprozesses von Ag und Ni innerhalb dünner Poren. Dabei können die Eigenschaften durch verschiedene Abscheidemodi gezielt beeinflusst werden. Hinsichtlich der elektrischen Eigenschaften ergibt sich im Vergleich zu der zugrundeliegenden Kristallographie ein wesentlich stärkerer Einfluss der Draht-Morphologie. Der Prozess der Porenfüllung wird im Allgemeinen als stark diffusionskontrolliert angenommen, wurde jedoch bisher nicht weiter quantifiziert. Die der Abscheidung zugrundeliegenden Prozesse Elektrolytdiffusion, Ladungstransfer an der Elektrode und Migrationsbeeinflussung durch die Porengeometrie werden daher voneinander getrennt und einzeln charakterisiert.
Das vorliegende System kann als Matrix von stark versenkten Ultramikroelektroden abstrahiert werden. Existente Modelle zur Beschreibung derartiger Systeme treffen auf den vorliegenden Fall im Allgemeinen nicht zu, sodass basierend auf elektrochemischen Untersuchungen ein variiertes Abscheidemodell vorgeschlagen wird. Dieses berücksichtigt die Nicht-Linearität der elektrochemischen Doppelschicht, die von der Porenoberfläche ausgeht sowie deren Frequenzabhängigkeit. Neben mechanistischen Untersuchungen schließen sich Versuche an, deren Fokus auf der direkten Anwendung der mit Nanodrähten gefüllten Membranen liegt. Dabei wird vornehmlich deren Fixierung per Klebeverbindung angestrebt. Die Realisierung klebbarer Filme gelingt über die Auftragung von polymeren Dünnfilmen durch Spin-Coating des jeweiligen Monomeren. Diese Filme werden hinsichtlich ihrer Klebeeigenschaften charakterisiert. Abschließend werden alternative Kontaktiermethoden wie die Thermokompression oder das nanoskalige Löten basierend auf der Herstellung von segmentierten Nanodrähten demonstriert und hinsichtlich ihrer Applizierbarkeit diskutiert. Die erreichten Ergebnisse zeigen den noch vorhandenen Bedarf an technologischer Optimierung sowie Kompatibilisierung auf. Die Erkenntnisse hinsichtlich der Herstellung, des Wachstums sowie der Implementierungsansätze sind jedoch vielversprechend.:List of Figures
List of Tables
List of Acronyms
List of Symbols
1 Nanoscale interconnects 1
1.1 Introduction
1.2 Electronic device development and its consequences
1.3 The need for and the design of a nanoscale wiring film
1.3.1 Nanomaterials for packaging - Some examples
1.3.2 Preconsiderations for designing nanoscale interconnects
1.3.3 Compatitibility of ACANWF to industrial applications
1.3.4 Demands to the film
1.4 Resumée - Strategy
2 NW fabrication by electodeposition and synthesis-property relationships
2.1 Templates for NW electrodeposition
2.1.1 Anodized Al2O3 (AAO)
2.1.2 Track-etched polymer membranes
2.2 Template-assisted Electrochemical Deposition (ECD) of NWs
2.2.1 Concept
2.2.2 Deposition modes
2.2.3 In_uences of other physical parameters
2.2.4 Errors and error mechanisms
2.2.5 Deposition in chemically functionalized AAO
2.3 Synthesis-property relationships for single NWs
2.3.1 NiNWs
2.3.2 AgNWs
2.4 Resumée .
3 Growth processes in mesoporous templates
3.1 Relevance for mechanistic investigations
3.2 Processes during NW growth
3.2.1 Electrode kinetics
3.2.2 Diffusion
3.2.3 Interactions with pore walls
3.3 Model systems
3.3.1 DeLevie's model for porous electrodes
3.3.2 Model verification
3.3.3 Model adaptation to non-ideal behaviour
3.4 Resumée
4 Implementation of nanowire arrays into microelectronic packaging
4.1 Adhesive Bonding
4.1.1 Adhesion by thin adhesive layers
4.1.2 Thermocompression bonds
4.2 Nanosoldering
4.2.1 Deposition of low melting point materials
4.2.2 Segmented nanowires
4.3 Resumée
5 Conclusion and perspectives
5.1 Conclusion
5.2 Perspectives on further investigations
6 Appendices
6.1 Technical equipment
6.2 Experimental methods
6.3 Selected characterisation techniques
6.4 Supplementary Information
6.5 Glossary
6.6 List of publications & presentations
Bibliography
|
29 |
Ab initio Beschreibung der elektronischen Struktur und der Transporteigenschaften von metallischen NanodrähtenOpitz, Jörg 02 September 2002 (has links)
Ab initio calculations of the electronic structure of freestanding Cu and Na nanowires with a diameter of few atoms are presented. The calculations are based on density functional theory in local density approximation using a Screened Korringa-Kohn-Rostoker-Green's function method. The method was extended for the description of quasi-onedimensional systems. Translational invariance in direction of the wire is assumed. The dependence of the bandstructure and the density of states from thickness and shape of the cross-section is discussed. The quantum confinement of the eigenstates is analysed. By comparing the results of the Na and Cu wires, the influence of the d-electrons is shown. Based on the Landauer theory of transport the conductance is obtained within a Green's function formalism. The numerical description of the conductance is tested for ideal translationally invariant Na and Cu wires. The influence of substitutional transition metal impurities on the electronic structure and the conductance of the 2x2 Cu wire is studied. A spin-dependent discussion is given for magnetic impurities. / Es werden ab initio Berechnungen der elektronischen Struktur freistehender Na- und Cu-Nanodrähte mit einem Durchmesser von wenigen Atomen präsentiert. Für die Berechnung wird eine Screened Korringa-Kohn-Rostoker-Grennsche Funktionsmethode genutzt, die auf der Spindichtefunktionaltheorie in lokaler-Spindichtenäherung basiert. Diese Methode wurde für die Beschreibung von quasieindimensionalen Systemen erweitert. Die Drähte werden als translationsinvariant in Drahtrichtung beschrieben. Es wird die Abhängigkeit der Bandstruktur und der Zustandsdichte von der Dicke und der Form des Querschnitts diskutiert. Das Quantenconfinement der Eigenzustände wird analysiert. Durch den Vergleich der Resultate für den Na- und den Cu-Draht kann der Einfluss der d-Elektronen gezeigt werden. Ausgehend von der Landauer-Theorie des Transports wird der Leitwert im Rahmen eines Greenschen Funktions-Formalismus berechnet. Diese neue numerische Beschreibung des Leitwertes wird an idealen translationsinvarianten Drähten getestet. Es wird der Einfluss von substitutionellen 3d-Übergangsmetall-Störungen auf die elektronische Struktur und auf den Leitwert von 2x2-Cu-Drähten studiert. Im Fall magnetischer Defekte wird dieser Einfluss spinabhängig diskutiert.
|
30 |
Assessment of Lead Chalcogenide Nanostructures as Possible Thermoelectric MaterialsGabriel, Stefanie 12 November 2013 (has links)
The assembly of nanostructures into “multi”-dimensional materials is one of the main topics occurring in nanoscience today. It is now possible to produce high quality nanostructures reproducibly but for their further application larger structures that are easier to handle are required. Nevertheless during their assembly their nanometer size and accompanying properties must be maintained. This challenge was addressed in this work. Lead chalcogenides have been chosen as an example system because they are expected to offer great opportunities as thermoelectric materials. Three different ways to achieve assemblies of lead chalcogenide nanostructures were used and the resulting structures characterized with respect to their potential application as thermoelectric material.
The first means by which a “multi”-dimensional assembly of lead chalcogenide quantum dots can be produced is the formation of porous structures such as aerogels and xerogels. A procedure, where the addition of an initiator such as oxidizers or incident radiation is unnecessary, is introduced and the formation process studied by absorption spectroscopy. The time-consuming aggregation step could be significantly reduced by employing a slightly elevated temperature during gelation that does not lead to any observable differences within the resulting gel structures. After either supercritical or subcritical drying, highly porous monolithic gel structures can be achieved. During the gel formation the size and the shape of the particles changed and they were directly linked together. Nevertheless the resulting porous structures remain crystalline and size dependent effects of the optical properties could be shown. Gels produced from a mixture of PbS and PbSe QDs show a homogenous distribution of both materials but it is not clear to what extent they form an alloy. Although the particles are directly linked together the resulting porous structures possess a very high resistivity and so it was not possible to characterize the semiconductor aerogels with regard to their thermoelectric properties. To achieve an enhanced conductivity porous structures containing PbS and Au nanoparticles have been produced. As has been seen for the pure semiconductor gels the size of the PbS quantum dots has increased and elongated particles were formed. In contrast to the PbS QDs the Au nanoparticles did not change their size and shape and are unevenly distributed within the PbS network. Through the use of the gold nanoparticles the conductivity could be increased and although the conductivity is still quite small, it was possible to determine Seebeck coefficients near room temperature for a mixed semiconductor-metal gel.
The second means by which QD solids could be formed was by the compaction of the QD building blocks into a material that is still nanostructured. Therefore the synthesis of PbS was optimized to achieve sufficient amounts of PbS quantum dots. The ligands used in the synthesis of the QDs unfortunately act as an insulating layer resulting in QD solids with resistivities as high as 2 Gigaohm. For this reason different surface modification strategies were introduced to minimize the interparticle distance and to increase the coupling between the QDs so as to increase the conductivity of the resulting quantum dot solids. One very promising method was the exchange of the initial ligands by shorter ones that can be destroyed at lower temperatures. By such heat treatments the resistivity could be decreased by up to six orders of magnitude. For the pressing of the quantum dots two different compaction methods (SPS and hydraulic pressing) were compared. While the grain growth within the SPS pressed samples is significantly higher the same densification can be achieved by a cold hydraulic pressing as well as by SPS. The densification could be further increased through the use of preheated PbS QDs due to the destruction of the ligands. Samples which had been surface modified with MPA and subsequently thermally treated show the best results with respect to their thermopower and resistivities. Nevertheless the conductivity of the QD solids is still too high for them to be used as efficient thermoelectric materials.
The final assembly method does not involve QDs but instead with one dimensional nanowires. Therefore a synthesis was developed that enables the formation of PbS nanowires of different diameters and one that is easy up-scalable. By the use of a less reactive sulfur precursor and an additional surfactant the formation of nuclei is significantly retarded and within an annealing time of two hours nanowires can be formed presumably by an oriented attachment mechanism. Single crystalline nanowires with a diameter of 65-105 nm could be achieved with the longest axes of the nanowires being parallel to [100]. The resulting nanowires were used as building blocks for film formation on glass substrates by an easily implemented method that requires no special equipment. To characterize the films with a view to their possible application as a thermoelectric material, surface modifications of the films were performed to improve the charge transfer in the films and the Seebeck coefficients of the resulting films measured. Therefore the previous approach of using MPA was applied and a subsequent thermal treatment demonstrated very promising results. In addition an crosslinking ligand was used for surface treatment that leads to similar results as was observed for the thermally treated MPA approach. Both approaches lead to an order of magnitude decrease in the resistivity and due to the fewer grain boundaries present in the films composed of nanowires as compared to the QD assemblies the conductivity is significantly higher. The Seebeck coefficient measurements show that the thermal treatment only slightly affects the Seebeck coefficients. Therefore a significantly higher power factor could be achieved for the nanowire films than for the QD solids.
|
Page generated in 0.0282 seconds