• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 13
  • 8
  • 1
  • Tagged with
  • 46
  • 19
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Magnetic anisotropies and exchange bias in ultrathin cobalt layers for the tunnel anisotropic magnetoresistance / Anisotropie magnétique et couplage d'échange dans des couches ultramince de cobalt pour la magnétorésistance tunnel anisotrope

Ferraro, Filippo Jacopo 14 December 2015 (has links)
Dans le cadre de l’étude des phénomènes magnétiques et de la spintronique qui sont présents aux échelles nanoscopiques nous avons étudié différents aspects des structures asymétriques de Pt/Co/AlOx. L’un des objectifs de cette thèse est le contrôle de l’oxydation et des propriétés magnétiques de ces multicouches. Nous avons combiné les mesures de structures (réflexion de Rayon-X), transports (Effet Hall anormal), et magnétiques (VSM-SQUID) afin de déterminer les rôles des effets magnétiques et d’interfaces. Un objectif était d’analyser le rôle de quelques monocouches (MCs) de CoO (qui peut se former lors de la sur oxydation de l’Al) sur les propriétés de la multicouche. Nous avons utilisé une technique de déposition avec un gradient d’épaisseur pour contrôler l’oxydation à l’échelle nanométrique. Nous avons établis que quelques monocouches (MCs) de CoO a un impact sur l’anisotropie de a multicouche. Pour approfondir l’effet de la couche de CoO, nous avons construit des bicouches ultrafines de Co(0.6nm)/CoO(0.6nm). Nous avons effectué des mesures refroidi sur champ sur ce système et trouvé un fort effet de couplage d'échange. Ces résultats indiquent que la couche CoO garde une forte anisotropie même en dans la limite des monocouches et permet de réfuter certains modèles sur l’effet d’échange bias et indique que les couches, couramment négligé, de CoO doivent être prises en considération dans le bilan énergétiques du système. Nous avons construits un appareil de mesure perpendiculaire de la magnétorésistance tunnel anisotrope (TAMR) à partir de la structure Pt/Co/AlOx. La TAMR est un effet de spintronique relativement récent dans lequel la rotation d’aimantation dans une électrode magnétique (combiné avec un couplage spin-orbite) peut entrainer un changement de la probabilité de l’effet tunnel, ce qui se manifeste comme un effet de magnétorésistance. Nous avons démontré qu’un contrôle précis de l’état d’oxydation est essentiel pour l’effet TAMR. La forte anisotropie magnétique induite nous permet d’atteindre des valeurs de TAMR plus grande comparée à celle des structures Pt/Co/AlOx. / In the context of studying magnetic and spintronics phenomena occurring at the nanoscale, we investigated several aspects of Pt/Co/AlOx asymmetric structures. One of the objectives of this thesis was the control of the oxidation and the tailoring of the magnetic properties of these multilayers. We combined structural (X-Ray Reflectivity), transport (Anomalous Hall Effect) and magnetic measurements (VSM-SQUID), to study the interplay of magnetic and interfacial effects. One objective was to analyze the role that few monolayers (MLs) of CoO (which can form when overoxidizing the Al layer), could have on the properties of the stack. We used a wedge deposition techniques to control the oxidation on a subnanometer scale. We established that few MLs of CoO largely affect the total anisotropy of the stack. To further investigate the impact of the CoO, we engineered ultrathin Co(0.6nm)/CoO(0.6nm) bilayers. We performed field cooled measurements on this system and we found a large exchange bias anisotropy. These results indicate that the CoO keeps a large anisotropy even in the ML regime, help to rule out some of the models proposed to explain the exchange bias effect and imply that the usually neglected CoO presence must be considered in the energy balance of the system. We build perpendicular Tunneling Anisotropic MagnetoResistance (TAMR) devices based on the Pt/Co/AlOx structure. The TAMR is a relatively new spintronics effect in which the rotation of the magnetization in a single magnetic electrode (combined with the Spin-Orbit Coupling) can cause a change of the tunnel probability, which manifests as a magnetoresistance effect. We demonstrated that a careful control of the interface oxidation is crucial for the TAMR effect. The large induced magnetic anisotropy allowed us to achieve enhanced TAMR values compared to similar Pt/Co/AlOx structures.
32

Quantum transport studies for spintronics implementation : from supramolecular carbon nanotube systems to topological crystalline insulator / Etudes de transport quantique pour la mise en oeuvre de la spintronique : des systèmes de nanotubes de carbone supramoléculaires à l'isolant cristallin topologique

Schönle, Joachim 29 June 2018 (has links)
L'électronique moléculaire est l'un des domaines les plus intrigants de la recherche moderne. Ce domaine pourrait produire un système de construction modulaire et évolutif pour des applications spintroniques à l'échelle nanométrique. Un exemple particulièrement prometteur est celui des aimants à une seule molécule, qui se sont déjà avérés être appropriés pour des la réalisation de spin valve et de qubit de spin. L'un des plus grands défis du domaine est l'intégration de ces objets de taille nanométrique dans des circuits complexes afin de permettre la détection et la manipulation d'états de spin moléculaires. Comme l'ont montré ces dernières années le groupe NanoSpin, les nanotubes de carbone (CNTs) peuvent servir de support pour les aimants à une seule molécule, en combinant les caractéristiques des deux constituants.Une pierre angulaire de ce projet de thèse a donc été le développement d'une technique de fabrication fiable pour des dispositifs de CNTs de haute qualité, contrôlables par de multiples électrodes de grille locales afin de permettre le contrôle local des systèmes hybrides moléculaires. Un procédé basé sur la fabrication conventionnelle à un substrat a été développé à partir de zéro, pour lequel l'optimisation de la conception des échantillons, les techniques de lithographie et de dépôt ainsi que les choix de matériaux ont dû être soigneusement incorporés afin de respecter les restrictions imposées par les conditions de croissance. Nous avons d'abord réussi à produire des échantillons CNT propres, permettant de mettre en évidence une configuration à double boite quantique, tout en ajustant des caractéristiques de type p à n. Les segments créés de cette manière peuvent être contrôlés de manière stable sur toute la longueur du dispositif et devraient donc constituer une base appropriée pour l'étude de la physique moléculaire.La matière topologique non triviale constitue une plate-forme séduisante pour étudier à la fois les principes fondamentaux et les applications possibles de la spintronique au calcul quantique. Les isolants cristallins topologiques, avec tellurure d'étain (SnTe) comme exemple principal, représentent un nouvel état au sein de ce zoo des matériaux topologiques 3D. Peu de temps après les premières réalisations expérimentales, des suggestions ont été faites sur la possibilité d’un type de supraconductivité non conventionnelle hébergé à l'interface entre la matière topologique et les supraconducteurs classiques. Les implications possibles de ces systèmes comprennent l'appariement de Cooper avec une quantité de mouvement finie dans la phase FFLO ou l’ordinateur quantique topologique, basé sur des excitations particulières, appelé quasi-particule Majorana.Ce projet de thèse visait à participer à l'enquête sur les signes de supraconductivité non conventionnelle dans SnTe. Les expériences de transport sur des couches pures dans les géométries de la barre de Hall et des dispositifs hybrides supraconducteurs, réalisés à la fois comme jonctions Josephson et SQUID, sont discutés. Un couplage étonnamment fort de SnTe au supraconducteur a été trouvé et dépendances de la supraconductivité sur les géométries des échantillons, la température et le champ magnétique ont été étudiées. La relation courant-phase a été analysée dans la limite d’effets cinétiques forts. Le couplage électrostatique et l'exposition à des micro-ondes ont été explorée, mais la physique prédominante dans de telles configurations s'est avéré être de type purement conventionnel, soulignant l’importance des améliorations sur le côté matériaux.Des mesures de champ magnétique dans le plan ont donné lieu à la signature d’un φ0-SQUID avec des transitions 0-π accordables, fournissant des preuves de possibles de transitions contrôlées de la supraconductivité triviale aux régimes de couplage non conventionnels dans SnTe. / Molecular electronics is one of the most intriguing fields of modern research, which could bring forth a modular and scalable building system for nanoscale spintronics applications. A particularly promising example are single-molecule magnets, which have already successfully shown to be suitable for spin valve or spin qubit operations. One of the biggest challenges of the field is the integration of these nanometer-sized objects in complex circuits in order to allow for detection and manipulation of moleculear spin states. As shown in recent years by the NanoSpin group, carbon nanotubes (CNTs) can serve as such type of carrier for the single-molecule magnets, combining features of both constituents.A corner stone of this thesis project was hence the development of a dependable fabrication technique for high-quality CNT devices, controllable by multiple local gate electrodes in order to enable local control of molecular hybrid systems. A process based on conventional one-chip fabrication was developed from scratch, for which optimization of sample design, lithography and deposition techniques as well as material choices had to be carefully incorporated, in order to accomodate the restrictions imposed by the CNT growth conditions on the prevention of leakage currents. We succeeded in producing clean CNT devices, which could support a double dot configuration, tunable from p- to n-type characteristics. The segments created in this way can be stabily controlled over the entire device length and should hence provide a suitable backbone to study molecular physics.Topological matter constitutes an enticing platform to investigate both fundamental principles as well as possible applications from spintronics to quantum computation. Topological crystalline insulators, with tin telluride ( SnTe ) as a prime example, represent a new state of matter within this zoo of 3D topological materials. Soon after first experimental realizations, suggestions were made about the possibility of an unconventional type of superconductivity hosted at the interface between topological matter and conventional superconductors. Possible implications of such systems include Cooper pairing with finite momentum, the FFLO phase, or topological quantum computing, based on peculiar excitations, called Majorana bound states.This thesis project aimed to participate in the investigation of signs of unconventional superconductivity in SnTe . Transport experiments on bare films in Hall bar geometries and superconducting hybrid devices, realized as both Josephson junctions and SQUIDs, are discussed. A surprisingly strong coupling of SnTe to Ta superconductor was found and dependencies of superconductivity on sample geometries, temperature and magnetic field were investigated. The current-phase relation was analyzed in the limit of strong kinetic effects. Electrostatic gating and rf exposure was explored, but predominant physics in such configurations turned out to be of purely conventional type, pointing out the importance of improvements on the material side.In-plane magnetic field measurements gave rise to the manifestation of ϕ0-SQUIDs with tunable 0−π-transitions, providing evidence for possible controlled transitions from trivial superconductivity to unconventional coupling regimes in SnTe.
33

Estudo termodinâmico de gelos de spin em uma geometria do tipo malha / Themodynamic study of spin ice in a mesh type geometry

Gobbi, Robson Santos 28 November 2014 (has links)
Made available in DSpace on 2015-03-26T13:35:24Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1135209 bytes, checksum: 81b23e6d1a4f8748158a992000fadff7 (MD5) Previous issue date: 2014-11-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation is the study of materials called spin ice, the among several properties they exhibit magnetic excitations that behave like magnetic monopoles. However, these monopolesalways come in pairs and having a binding energy (string) between them that prevents their division. In this paper we proposed a new geometry in order to examine the possibility of separation of such pairs, this geometry is built on the basis of increasing frustration among the entities of the system. We also studied the thermodynamic properties of the system as well as energy, magnetization, magnetic susceptibility and specific heat. These quantities were calculated for different network sizes and under two boundary conditions, one open and one closed. For the calculation of these quantities the Monte Carlo methods (Metropolis algorithm) and Sum of Ewald were used. Some of the results obtained were the emergence of vortex as ground state of the system with open boundary conditions, the dependence of the energy of the ground state with the network size and distinction between phases, one ordered and one disordered. / Esta dissertação Consiste no estudo de materiais denominados gelos de spin, os quais en- tre Várias propriedades exibem excitações magnéticas que se Comportam Como monopo- los magnéticos. Porém, estes monópolos surgem sempre aos pares e Com uma energia de ligação (string) entre eles que impedem sua separaçãa Neste trabalho foi proposta uma nova geometria Com intuito de analisar a possibilidade de separação entre tais pares, esta geometria é Construída tomando Como base 0 aumento da frustação entre os entes do sistema. Além disso, foram estudadas as propriedades termodinâmicas do sisterna bem Comoz energia, magnetização, susceptibilidade magnética e Calor especíñco. Estas grandezas foram Calculadas em tamanhos de rede distintos e sob duas Condições de Con- torno, uma aberta e Outra fechada. Para 0 Cálculo destas grandezas foram utilizados os métodos de Monte Carlo (algoritmo de Metropolis) e sorna de Ewald Alguns dos re- sultados Obtidos foram 0 aparecimento de um Vórtice Como estado fundamental da rede Com Condições de Contorno aberta, a dependência da energia do estado fundamental Com 0 tamanho da rede e distinção entre fases, uma ordenada e Outra desordenada.
34

Observação de vórtices magnéticos em calotas tridimensionais submicrométricas / Magnetic vortex observation in sub-micrometric tri-dimensional caps

Soares, Marcio Medeiros 28 March 2008 (has links)
Orientadores: Flavio Garcia, Eduardo Granado Monteiro da Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-10T05:04:16Z (GMT). No. of bitstreams: 1 Soares_MarcioMedeiros_M.pdf: 20040711 bytes, checksum: 307f0dbee3ef2d92b25427c28d39c7d6 (MD5) Previous issue date: 2008 / Resumo: Neste trabalho fizemos um estudo sistemático de filmes compostos por multicamadas Co/Pd depositados sobre arranjos auto-organizados de esferas de látex submicrométricas (50 ¿ 1000 nm). O filme depositado sobre a esfera (não-magnética) forma uma calota magnética com espessura variável. As espessuras de Co e Pd foram escolhidas de modo a obter duas classes de multicamadas, uma com anisotropia intrínseca perpendicular e outra com anisotropia intrínseca planar, quando depositadas sobre um substrato plano. Os arranjos de calotas com anisotropia intrínseca perpendicular que produzimos têm um comportamento magnético que reproduz resultados publicados recentemente na literatura. Para os sistemas com anisotropia intrínseca planar a microestrutura magnética é profundamente dependente da forma tridimensional da calota, assim como do seu tamanho. A investigação destas calotas envolveu caracterizações magnéticas por efeito Hall extraordinário, efeito Kerr magneto-ótico e SQUID, análise estrutural por microscopia eletrônica de transmissão (TEM) e sondagem da configuração da magnetização por microscopia de força magnética (MFM). Para esferas menores (diâmetros de 50 e 100 nm), as imagens de TEM mostram que as calotas segmentam-se em nanopilares orientados radialmente. Em concordância com as caracterizações magnéticas, propomos que a segmentação em pilares induz uma anisotropia efetiva radial nessas calotas menores. Nas calotas maiores (500 e 1000 nm) estudamos a influência do gradiente de espessura, medido por TEM, sobre a anisotropia efetiva ao longo da esfera. Nestas calotas as multicamadas são contínuas e, correlacionando caracterizações magnéticas, imagens de TEM, medidas de MFM e simulações micromagnéticas, chegamos à conclusão de que a magnetização forma um vórtice em seu topo, influenciada pela forma tridimensional da calota. O núcleo dos vórtices que observamos é razoavelmente maior do que aqueles mostrados na literatura para vórtices em discos, indicando que tal sistema de calotas pode ser promissor para aplicações em mídias de gravação magnética / Abstract: In this work we have performed a systematic study on Co/Pd multilayers deposited over self-assembled polystyrene nanospheres (with diameter ranging from 50 to 1000 nm). The film deposited over the nonmagnetic nanosphere forms a magnetic cap with variable thickness. The Co and Pd layer thicknesses were chosen in order to obtain two classes of multilayers, one exhibiting intrinsic in-plane anisotropy and the other exhibiting intrinsic out-of-plane anisotropy, when deposited on flat substrates. The magnetic behavior of the caps¿ arrays with intrinsic out-of-plane anisotropy which we have produced agrees with results recently reported in the literature. The magnetic microstructure of the systems with intrinsic in-plane anisotropy is mainly influenced by three-dimensional shape and size of the caps. The study of those caps included magnetic characterization by Extraordinary Hall Effect, Magneto-Optic Kerr Effect and SQUID, structural analysis by Transmission Electron Microscopy (TEM) and magnetic configuration probing by Magnetic Force Microscopy (MFM). For the smallest spheres (50 and 100 nm in diameter) TEM images show that the cap is segmented into radial nanopillar like structures. Agreeing with our magnetic measurements, we propose that this segmentation induces an effective radial anisotropy in the smallest caps. For the largest caps (500 and 1000 nm in diameter) we have studied the influence of the thickness gradient (probed by TEM) on the effective anisotropy along de cap. In those caps the multilayers are continuous and, correlating magnetic characterizations, TEM images, MFM profiles and micromagnetic simulations, we concluded that the magnetization forms a curling structure in the top of the caps. The so formed magnetic vortex is strongly influenced by the cap¿s shape. We observed that the magnetic vortex core is considerably larger than the ones shown in the literature for vortex in planar discs, indicating that this cap system may be promising for applications in magnetic recording medias / Mestrado / Materiais Magneticos e Propriedades Magneticas / Mestre em Física
35

Estudo das propriedades magnéticas de nanopartículas de AuPd / Study of the magnetic properties of AuPd nanoparticles

Figueiredo, José Jadsom Sampaio de 11 July 2008 (has links)
Orientadores: Abner de Siervo e Flavio Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin. / Made available in DSpace on 2018-08-12T11:00:44Z (GMT). No. of bitstreams: 1 Figueiredo_JoseJadsomSampaiode_M.pdf: 4194889 bytes, checksum: 489e23ac30c4fa90808ef2de00ae46d4 (MD5) Previous issue date: 2008 / Resumo: Nanopartículas (NPs) metálicas, filmes ultrafinos e sistemas nano-estruturados têm motivado vários estudos teóricos e experimentais devido a novas propriedades eletrônicas, óticas e magnéticas destes materiais. Nas NPs, tais propriedades estão diretamente relacionadas aos efeitos de tamanho (size effect) e superfície, os quais afetam suas estruturas eletrônica e cristalográfica, concentrando um maior número de átomos na superfície em relação ao seu volume. Estudos recentes têm sugerido que alguns metais nobres sem nenhum tipo de ordenamento ferromagnético espontâneo podem apresentá-lo, mesmo a temperatura ambiente, quando segmentados em forma de nanopartículas. Exemplos desses metais são Au e Pd. Apesar dos esforços para provar a existência de comportamento ferromagnético nestes materiais, não existem medidas que demonstrem de forma não ambígua a polarização ferromagnética nos átomos de Pd. Na maioria dos trabalhos mostrados na literatura, o ferromagnetismo é quantificado por magnetometria SQUID. Faz-se necessário, portanto, verificar a existência de ferromagnetismo nestes materiais utilizando-se de técnicas elemento específicas, tais como XMCD (dicroísmo circular magnético de raios X). Esta técnica é muito importante para determinação quantitativa e seletiva dos momentos magnéticos de spin e orbital para cada elemento separadamente. O nosso trabalho se diferencia em relação a estes, pois ao invés de estudarmos cada elemento individualmente trabalhamos com nanopartículas do composto bimetálico Aux Pd1-x (x =0,00, 0,25, 0,50, 0,75) passivadas por tiol. Medidas de SQUID indicaram claramente um sinal magnético nestas nanopartículas, inclusive à temperatura ambiente. Neste trabalho apresentaremos os resultados preliminares da caracterização destas nanopartículas por medidas de SQUID, XANES, XPS, bem como XMCD nas bordas L2,3 do Pd e L3 do Au . Ressaltamos também, o desenvolvimento de uma instrumentação para medidas de XMCD em ambientes de UHV onde é possível submeter às amostras a altos campos magnéticos e condições de baixas temperaturas. Com base nos resultados obtidos discutiremos a possibilidade de ferromagnetismo nestas nanopartículas e sua origem. / Abstract: Metallic Nanoparticles (NP's), ultra-thin films and nano-structured systems have motivated several theoretical and experimental works because of their new electronic optical and magnetic properties of these materials. In NP's, such properties are directly related to the size and surface effects, which affect its electronic and crystallographic structures, by concentrating a larger number of atoms on the surface in relation to their volume. Recent studies have suggested that some noble metals without any kind of spontaneous ferromagnetic order can exhibit it, even at room temperature, when segmented as nanoparticles. Examples of these metals are Au and Pd. Despite the efforts to prove the existence of a ferromagnetic behavior in such materials, there are no measurements that demonstrate unambiguously the ferromagnetic polarization in Pd atoms, for example. Most of the works shown in the literature have used SQUID measurements to characterize the ferromagnetism in these materials. It is therefore necessary to verify the existence of ferromagnetism in these materials by using element specific techniques, such as XMCD (X-ray magnetic circular dichroism). XMCD is a very important technique, which is element selective and performs quantitative determination of the spin and orbital magnetic contributions for each element separately. Our work has a particular difference when compared to others in literature because instead of studying each element individually we have worked with NP's of the bimetallic compound Aux Pd1-x (x = 0.00, 0.25, 0.50, 0.75) capped by thiol. SQUID measurements clearly showed ferromagnetic behavior in these nanoparticles, even at room temperature. In this thesis we will present results of a systematic characterization of these nanoparticles by a multi-technique approach which involves measurements with SQUID, XANES, XPS and XMCD in the L2,3 edges of the Pd and Au L3 edge. We also emphasize the development of a new instrumentation for XMCD measurements at UHV where samples can be submitted to high magnetic fields and conditions of low temperatures. Based on these findings we discuss the possibility of ferromagnetism in these nanoparticles and its origin. / Mestrado / Física da Matéria Condensada / Mestre em Física
36

Study of magnetic properties of nanostructures on self-assembled patterns

Malwela, Thomas January 2010 (has links)
>Magister Scientiae - MSc / In the current study, we give a report when oxalic acid was used as an electrolyte to synthesize an AAO template with hexagonal pore array. Optimum parameters were observed as 0.4 M of oxalic acid, anodizing voltage of 45 V, temperature of approximately 8 °C and the period of 120 minutes. Atomic force microscope (AFM) and High resolution scanning electron microscope (HRSEM) showed that template has an average pore diameter of 103 nm. Co and MnOx (x = 1,2) nanostructures were selectively deposited in the pores of the template using a novel atomic layer deposition (ALD) technique. The diameter sizes and the array of the nanostructures and the template were corresponding. Energy dispersive xrays (EDX) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Co and MnOx (x =1,2) on the samples while x-ray diffraction (XRD) provided an indication of their orientations. Magnetic force microscopy as main characterization tool showed the existence of multi-domains on both Co and MnOx (x =1,2) nanostructures. / South Africa
37

Un microscope de champ magnétique basé sur le défaut azote-lacune du diamant : réalisation et application à l'étude de couches ferromagnétiques ultraminces / A magnetic field microscope based on the nitrogen-vacancy defect in diamond : realisation and application to the study of ultrathin ferromagnets

Tetienne, Jean-Philippe 13 November 2014 (has links)
La capacité à cartographier le champ magnétique à l'échelle nanométrique serait un atout crucial pour étudier les propriétés magnétiques des solides ainsi que certains phénomènes de transport, mais aussi pour des études fondamentales en biologie. Cette thèse porte sur la réalisation d'un microscope de champ magnétique d'un genre nouveau, qui promet une résolution spatiale de quelques nanomètres, une sensibilité de l'ordre du nanotesla, et fonctionne aux conditions ambiantes. Ce microscope est basé sur le défaut azote-lacune du diamant, dont les propriétés quantiques peuvent être exploitées pour en faire un magnétomètre ultrasensible de taille atomique. Dans un premier temps, nous présenterons le fonctionnement et la réalisation du microscope à défaut azote-lacune, qui consiste essentiellement en un microscope à force atomique sur la pointe duquel un nanocristal de diamant est attaché. Nous testerons le microscope en imageant le champ de fuite généré par un cœur de vortex dans un microdisque ferromagnétique. Dans un second temps, nous appliquerons le microscope à l'étude de couches ferromagnétiques ultraminces. Ces systèmes présentent un intérêt à la fois fondamental, les effets d'interfaces restant encore largement inexplorés à ce jour, et technologique, puisqu'ils sont à la base de propositions pour la réalisation de nouvelles mémoires magnétiques à basse consommation d'énergie. Nous étudierons d'abord la nature des parois de domaines dans ces couches ultraminces, ce qui nous permettra de révéler l'existence d'une interaction Dzyaloshinskii-Moriya d'origine interfaciale dans certains échantillons. Nous étudierons ensuite les sauts nanométriques d'une paroi de domaine induits par l'agitation thermique. Nous démontrerons en particulier le contrôle de ces sauts par un laser, ce qui nous permettra de visualiser et explorer le paysage énergétique de la paroi. / The ability to map the magnetic field at the nanometer scale would be a crucial advance to study the magnetic properties of solids as well as some transport phenomena, but also for fundamental studies in biology. This thesis deals with the realisation of a magnetic field microscope of a new kind, which promises a spatial resolution down to a few nanometres, a sensitivity of the order of a few nanoteslas, and operates under ambient conditions. This microscope is based on the nitrogen-vacancy defect in diamond, whose quantum properties can be harnessed to make an ultrasensitive, atomic-size magnetometre. In the first part, we will present the basic principles and the realisation of the nitrogen-vacancy defect microscope, which consists essentially in an atomic force microscope on the tip of which a diamond nanocrystal is grafted. We will test the microscope by imaging the stray field generated by a vortex core in a ferromagnetic microdisk. In the second part, we will apply the microscope to the study of ultrathin ferromagnets. These systems are interesting both from the physical point of view, as interface effects have been little explored so far, and for technology, as they are the cornerstone of several proposals for realising novel magnetic memory devices with low energy consumption. We will first study the nature of domain walls in these ultrathin ferromagnets, which will enable us to reveal the existence of an interface-related Dzyaloshinskii-Moriya interaction in some samples. Next, we will study the nanometric jumps of a domain wall induced by thermal fluctuations. In particular, we will demonstrate control over these jumps using a laser, which will allow us to visualise and explore the wall's energy landscape.
38

Nanoscale investigation of superconductivity and magnetism using neutrons and muons

Ray, Soumya Jyoti January 2012 (has links)
The work presented in this thesis was broadly focussed on the investigation of the magnetic behaviour of different superconducting materials in the form of bulk (singe crystals and pellets) and thin films (nanomagnetic devices like superconducting spin valves etc). Neutrons and muons were extensively used to probe the structural and magnetic behaviour of these systems at the nanoscale along with bulk characterisation techniques like high-sensitive magnetic property measurements, scanning probe microscopy and magneto-transport measurements etc. The nanoscale interplay of Superconductivity and Ferromagnetism was studied in the thin film structures using a combination of Polarised Neutron Reflectivity (PNR) and Low Energy Muon Spin Rotation (LE-µSR) techniques while bulk Muon Spin Rotation (µSR) technique was used for microscopic magnetic investigation in the bulk materials. In the Fe/Pb heterostructure, evidence of the Proximity Effect was observed in the form of an enhancement of the superconducting penetration depth (λs) with an increase in the ferromagnetic layer thickness (dF) in both the bilayered and the trilayered structures. The existence of an Inverted Magnetic Region was also detected at the Ferromagnet-Superconductor (F/S) interface in the normal state possibly originating from the induced spin polarisation within the Pb layer in the presence of the neighbouring Fe layer(s). The spatial size (height and width) of the Inverted Magnetic Region did not change much while cooling the sample below the superconducting transition temperature(Tc)and it also stayed unaffected by an increase in the Fe layer thickness and by a change of the applied magnetic field. In the superconducting spin valve structure containing Permalloy (Py) as ferromagnetic layer and Nb as the superconducting layer, LE-µSR measurements revealed the evidence of the decay of magnetic flux density (as a function of thickness) within the Nb layer symmetrically from the Py/Nb interfaces towards the centre of the Nb layer in the normal state. The thickness dependent magnetisation decay occurred over two characteristic length scales in the normal state that stayed of similar values in the superconducting state also. In the superconducting state, an additional contribution towards the magnetisation was found in the vicinity of the Py/Nb interfaces possibly originating from the spin polarisation of the singlet Cooper pairs in these areas. The nanoscale magnetic investigation on a highly engineered F/S/F structure (where each of the F blocks made of multiple Co/Pd layers with magnetic moments aligned perpendicular to the plane of these layers and neighbouring magnetic blocks separated by Ru layers giving rise to antiferromagnetic alignment) using LE-µSR showed an antisymmetric thickness dependent magnetic flux density profile with two characteristic length scales. In the superconducting state, the magnetic flux density profile got modified within the superconducting Nb₆₇Ti₃₃ layer near the F/S interfaces in a way similar to that of observed in the case of Py/Nb system, most likely because of the spin polarisation of the superconducting electron pairs. The vortex magnetic phase diagram of Bi₂Sr₂Ca₂Cu₃O10-δ was studied using the Muon Spin Rotation (µSR) technique to explore the effects of vortex lattice melting and rearrangements for vortex transitions and crossover as a function of magnetic field and temperatures. At low magnetic fields, the flux vortices undergo a first order melting transition from a vortex lattice to a vortex liquid state with increasing temperature while another transition also occurred with increasing field at fixed temperature to a vortex glass phase at the lowest temperatures. Evidence of a frozen liquid phase was found in the intermediate field region at low temperature in the form of a lagoon in the superconducting vortex state which is in agreement with earlier observations made in BiSCCO-2212. The magnetic behaviour of the unconventional superconductor Sr₂RuO₄ was investigated using µSR to find the evidence of normal state magnetism and the nature of the vortex state. In the normal state, a weak hysteretic magnetic signal was detected over a wide temperature and field range believed to be supporting the evidence of a chiral order parameter. The nature of the vortex lattice structure was obtained in different parts of the magnetic phase diagram and the evidence of magnetic field driven transition in the lattice structure was detected from a Triangular→Square structure while the vortex lattice stayed Triangular over the entire temperature region below Tc at low fields with a disappearance of pinning at higher temperatures.
39

Magnetic quantum dots in II-VI semiconductor nanowires / Boîtes quantiques magnétiques dans des nanofils de semiconducteurs II-VI

Rueda-Fonseca, Pamela 16 February 2015 (has links)
Dans ce travail de thèse a été développé et étudié un nouveau type d'objet semiconducteur magnétique : des boîtes quantiques de CdMnTe insérées dans des nanofils de ZnTe/ZnMgTe constituant une structure de type cœur-coquille. L'objectif était d'étudier la croissance par épitaxie par jets moléculaires et les propriétés fondamentales de ces hétéro-structures complexes. Dans ce but deux aspects principaux ont été abordés : i) la qualité et le contrôle des propriétés structurales, électroniques et magnétiques de ces objets, grâce à une maîtrise de leur croissance et ii) l'obtention d'informations quantitatives locales sur la composition chimique de ces nanostructures inhomogènes. Pour atteindre ces objectifs, nous avons divisé notre étude en quatre étapes. La première étape de ce travail a été concentrée sur l'étude quantitative de la formation des particules d'or servant de catalyseurs à la croissance des nanofils. La seconde étape a porté sur l'analyse des mécanismes de croissance et des paramètres gouvernant la croissance des fils de ZnTe. En particulier deux types de fils ont été observés : des fils cylindriques de structure wurtzite et des fils coniques de structures zinc-blende. Un modèle de croissance guidée par la diffusion a été utilisé pour rendre compte de certains des résultats quantitatifs présentés dans cette partie. La troisième étape a concerné l'insertion de boîtes quantiques de CdMnTe dans des nanofils de structure cœur-coquille ZnTe/ZnMgTe. Une étude préalable des paramètres pertinents influençant les propriétés magnéto-optiques de ces objets, tels que le confinement de la boîte quantique, l'incorporation du Mn et l'anisotropie de contrainte créée par la structure, a été menée. La quatrième et dernière étape de ce travail a porté sur l'interprétation quantitative de mesures d'analyse dispersive en énergie effectuées sur des nanofils de structure cœur-multicoquille. Un modèle géométrique a été proposé, permettant de retrouver la forme, les dimensions et la composition chimique des boîtes quantiques et des coquilles. Cette étude a été couplée à des mesures de caractérisation telles que la cathodo-luminescence, la micro-photo-luminescence et la spectroscopie magnéto-optique effectuées sur le même nanofil. / In this PhD work a novel type of magnetic semiconductor object has been developed: Cd(Mn)Te quantum dots embedded in ZnTe/ZnMgTe core-shell nanowires. The goal was to investigate the growth, by molecular beam epitaxy, and the fundamental properties of these complex heterostructures. For that purpose, two main issues were addressed: i) gaining control of the structural, electronic and magnetic properties of these quantum objects by mastering their growth; and ii) obtaining quantitative local knowledge on the chemical composition of those non-homogeneous nanostructures. To tackle these topics, our research was divided into four stages. The first stage was devoted to perform a quantitative study of the formation process of the Au particles that catalyze the growth of nanowires. The second stage involved the analysis of the mechanisms and parameters governing the growth of ZnTe nanowires. In particular, two different types of nanowires were found: cone-shaped nanowires with the zinc-blende crystal structure and cylinder-shaped nanowires with the hexagonal wurtzite structure. A diffusion-driven growth model is employed to fit some of the quantitative results presented in this part. The third stage focused on the insertion of pure CdTe quantum dots containing Mn ions in the core-shell nanowires. An initial study of the relevant parameters influencing the magneto-optical properties of these objects, such as the quantum dot confinement, the Mn incorporation, and the strain anisotropy, was performed. The four and last stage of this work concerned the quantitative interpretation of Energy-Dispersive X-ray spectroscopy measurements performed on single core-multishell nanowires. A geometrical model was proposed to retrieve the shape, the size and the local composition of the quantum dot insertions and of the multiple layers of the heterostructures. This study was coupled to other complementary characterization measurements on the same nanowire, such as cathodo-luminescence, micro-photo-luminescence and magneto-optical spectroscopy.
40

Magnetic properties of individual iron filled carbon nanotubes and their application as probes for magnetic force microscopy / Magnetische Eigenschaften von einzelnen eisengefüllten Kohlenstoffnanoröhren und deren Anwendung als Sonden für die Magnetkraftmikroskopie

Wolny, Franziska 20 October 2011 (has links) (PDF)
Iron filled carbon nanotubes (FeCNT) can be described as carbon nanotubes which contain an iron nanowire of several micrometers length and a diameter of approximately 10-100 nm. The carbon shells protect the iron core from oxidation and mechanical damage thus enabling a wide range of applications that require a long-term stability. The magnetic properties of the enclosed nanowire are in part determined by its small size and elongated shape. Magnetic force microscopy (MFM) measurements show that the iron wire exhibits a single domain behavior. Due to the large shape anisotropy it is magnetized along the long wire axis in the remanent state. Two magnetic monopoles of opposing polarity are located at the wire extremities. Depending on the structure and geometry of the individual nanowire, switching fields in the range of 100-400 mT can be found when the external field is applied along the FeCNT’s easy axis. Cantilever magnetometry shows that the switching can be attributed to a thermally assisted magnetization reversal mechanism with the nucleation and propagation of a domain wall. The defined magnetic properties of individual FeCNT combined with their mechanical strength make them ideal candidates for an application as high resolution high stability MFM probes. The fabrication of such probes can be achieved with the help of a micromanipulation setup in a scanning electron microscope. FeCNT MFM probes achieve a sub 25 nm lateral magnetic resolution. MFM measurements with FeCNT MFM probes in external fields show that the magnetization of these probes is exceptionally stable compared to conventional coated MFM probes. This greatly simplifies the data evaluation of such applied field MFM measurements. The emphasis of this work was put on the calibration of FeCNT probes to enable straightforward quantitative MFM measurements. The defined shape of the magnetically active iron nanowire allows an application of a point monopole description. Microscale parallel current carrying lines that produce a defined magnetic field are used as calibration structures to determine the effective magnetic moment of different MFM probes. The line geometry is varied in order to produce multiple magnetic field decay lengths and investigate the influence on the effective probe moment. The results show that while the effective magnetic monopole moment of a conventional MFM probe increases with an increasing sample stray field decay length, the effective moment of a FeCNT MFM probe remains constant. This enables a MFM probe calibration that stays valid for a large variety of magnetic samples. Furthermore, the fitted monopole moment of a FeCNT probe (in the order of 10E-9 Am) is consistent with the moment calculated from the nanowire geometry and the saturation magnetization of iron.

Page generated in 0.0603 seconds