• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 13
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement de nanoparticules de poly(hydroxy)uréthane pH- et thermo-stimulable par nanoprécipitation / Preparation of pH-responsive and thermo-responsive poly(hydroxy)urethane nanoparticles using the nanoprecipitation technique

Querette, Thomas 10 December 2018 (has links)
L’utilisation de nanoparticules de polymère pour l’encapsulation de substances utilisées en médecine, en cosmétique ou en agrochimie suscite un intérêt croissant. Parmi les polymères préparés sous forme de nanoparticules, le polyuréthane présente l’avantage d’être biocompatible, biodégradable et adaptable à de nombreuses applications. L’utilisation de diisocyanates pour sa synthèse pose néanmoins un problème sanitaire et environnemental majeur. Ce travail de thèse consiste en la synthèse d’un polyuréthane sans isocyanate, le poly(hydroxy)uréthane (PHU), puis en la préparation de nanoparticules par nanoprécipitation de ce polymère. Un objectif supplémentaire est le développement de nanoparticules de PHU thermo- et pH-stimulable. Dans une première partie, un PHU modèle a été synthétisé et caractérisé. Ce polymère a été nanoprécipité en l’absence de tensioactif afin de valider la faisabilité du procédé. La seconde partie se focalise sur l’étude approfondie et l’optimisation de la nanoprécipitation du PHU modèle en présence de tensioactif. Afin de caractériser le système polymère-solvant-eau-tensioactif, la micellisation du tensioactif et les interactions polymère-solvant ont été étudiées. Un plan factoriel complet a été réalisé afin d’optimiser le procédé de nanoprécipitation utilisant le DMSO comme solvant. Les effets principaux et d’interactions de la concentration en polymère, du volume d’eau et de la concentration en tensioactif sur la taille et la distribution de taille des nanoparticules ont été déterminés. Afin de permettre l’élimination du solvant par évaporation, la nanoprécipitation du PHU a aussi été réalisée en utilisant du THF comme solvant organique. Dans une troisième partie, trois poly(hydroxy)uréthanes pH- et thermo-stimulables ont été synthétisés et caractérisés. Des nanoparticules de faible taille et distribution de taille ont ensuite été préparées par nanoprécipitation. Une fois le solvant organique éliminé par dialyse, la réponse des nanoparticules de PHUs stimulables à des variations de température et de pH a été étudiée. / The use of polymer nanoparticles for substance encapsulation generates a growing interest in medicine, cosmetics or agro-chemistry. Among the polymers used as nano-encapsulation agents, polyurethane has the advantage to be biocompatible, biodegradable and versatile. However, the use of noxious diisocyanates for polyurethane synthesis is a major drawback. This thesis project consists in synthesizing a non-isocyanate polyurethane, poly(hydroxyl)urethane (PHU), and then preparing nanoparticles by PHU nanoprecipitation. An additional objective is the development of thermos and pH-responsive PHU nanoparticles. In a first section, a model PHU was synthesized and characterized. The polymer was then nanoprecipitated in the absence of surfactant in order to ensure the feasibility of the process. The second section focused on the in-depth study and optimization of the model PHU nanoprecipitation in the presence of a surfactant. To characterize the polymer-solvent-water-surfactant system, surfactant micellization and polymer-solvent interactions were studied. A full-factorial design was performed to optimize the nanoprecipitation process using DMSO as an organic solvent. Main and interaction effects of the polymer concentration, water volume and surfactant concentration on nanoparticle size and size distribution were determined. With the aim of eliminating the organic solvent by evaporation, PHU nanoprecipitation was also carried out using THF as the organic solvent. In the third section, three pH- and thermos-responsive PHUs were synthesized and characterized. Small and monodisperse nanoparticles were then prepared by nanoprecipitation. Once the solvent eliminated, responsive PHU nanoparticles were submitted to pH and temperature changes and size variations were studied.
12

Dielectric investigations on attograms and zeptograms of matter / Etudes diélectriques sur des attogrammes et zeptogrammes de matière

Houachtia, Afef 13 January 2016 (has links)
Les recherches sur des attogrammes (1 attogramme = 10 -18 gramme) et zeptogrammes (1 zeptogramme = 10-21 gramme) de matière offrent la possibilité de mettre en évidence la transition entre la nanoscience et la physique des molécules, ouvrant la porte à des questions fondamentales en physique de la matière molle, comme par exemple ‘’Quelle est la quantité minimale de matière nécessaire pour ‘‘définir’’ les propriétés des matériaux ?’’. Les propriétés électriques et diélectriques des matériaux, à cette échelle, sont étudiées par la spectroscopie diélectrique. Cette technique offre une large gamme de fréquence, pour mesurer les propriétés diélectriques des matériaux, couvrant plus de 10 ordres de grandeur et allant de 10-3 à 10+7 Hz. Cette technique assure une caractérisation précise d’une grande diversité des phénomènes physiques qui se déroulent à des échelles de longueur et de temps différents, tels que: les transitions des phases, les fluctuations de densité, les fluctuations moléculaires, le transport des charges, etc. Les mesures à l’échelle des attogrammes et zeptogrammes nécessitent l’utilisation des cellules ayant des dimensions nanométriques. Basé sur le concept d’utiliser des nano-conteneurs comme des cellules expérimentales, un développement expérimental a été mis en évidence, dans cette thèse, permettant d’étudier la dynamique moléculaire et les transitions des phases des matériaux polymères, allant jusqu’au zeptogrammes de matière. Cette approche permet de cristalliser des très petites quantités des matériaux sous l’application d’un champ électrique élevé, dans le but d’induire une cohérence macroscopique des fonctions moléculaires. Cela peut donner lieu à des nouvelles propriétés des matériaux, qui n’existent pas dans le cas des matériaux en masse / Dielectric investigations on attograms (1 attogram = 10 -18 gram) and zeptograms of matter (1 zeptogram = 10 -21 gram) offer the possibility of exploring the transition between nanoscience and molecule physics, opening the door for fundamental questions in soft-matter physics, such as for instance “What is the minimum amount of matter necessary to “define” the material properties?”. The electric and dielectric properties of materials at this level are investigated by Broadband Dielectric Spectroscopy. This technique provides an extraordinary broad frequency range, for measuring dielectric properties of matter, covering more than 10 orders of magnitude, typically from 10-3 to 10+7Hz. It ensures a precise characterization of large diversity of physical phenomena taking place at different length and time scales such as: phase transitions, density fluctuations, molecular fluctuations, charge transport processes, etc. Measurements on the scale of attograms and zeptograms require sample cells having all three dimensions on the nanometric length-scale. Based on the concept of employing nanocontainers as experimental cells, a novel experimental development allowing investigations on molecular dynamics and phase transitions of polymeric materials down to the level of zeptograms is demonstrated in the present PhD study. This approach enables one to crystallize tiny amounts of matter under high electric fields with the goal of inducing a macroscopic coherence of molecular functionalities. This could give rise to new material properties, not naturally available in the case of bulk materials.
13

Élaboration du Ge mésoporeux et étude de ses propriétés physico-chimiques en vue d’applications photovoltaïques / Elaboration of mesoporous Ge and study of study its physical and chemical properties for photovoltaic applications

Tutashkonko, Sergii 13 September 2013 (has links)
Le sujet de cette thèse porte sur l’élaboration du nouveau nanomatériau par la gravure électrochimique bipolaire (BEE) — le Ge mésoporeux et sur l’analyse de ses propriétés physico-chimiques en vue de son utilisation dans des applications photovoltaïques. La formation du Ge mésoporeux par gravure électrochimique a été précédemment rapportée dans la littérature. Cependant, le verrou technologique important des procédés de fabrication existants consistait à obtenir des couches épaisses (supérieure à 500 nm) du Ge mésoporeux à la morphologie parfaitement contrôlée. En effet, la caractérisation physico-chimique des couches minces est beaucoup plus compliquée et le nombre de leurs applications possibles est fortement limité. Nous avons développé un modèle électrochimique qui décrit les mécanismes principaux de formation des pores ce qui nous a permis de réaliser des structures épaisses du Ge mésoporeux (jusqu’au 10 um) ayant la porosité ajustable dans une large gamme de 15% à 60%. En plus, la formation des nanostructures poreuses aux morphologies variables et bien contrôlées est désormais devenue possible. Enfin, la maitrise de tous ces paramètres a ouvert la voie extrêmement prometteuse vers la réalisation des structures poreuses à multi-couches à base de Ge pour des nombreuses applications innovantes et multidisciplinaires grâce à la flexibilité technologique actuelle atteinte. En particulier, dans le cadre de cette thèse, les couches du Ge mesoporeux ont été optimisées dans le but de réaliser le procédé de transfert de couches minces d’une cellule solaire à triple jonctions via une couche sacrificielle en Ge poreux. / The subject of this thesis is the development of the new nanomaterial by bipolar electrochemical etching (BEE) - the mesoporous Ge and analysis of its physico-chemical properties for use in photovoltaic applications. The formation of mesoporous Ge by electrochemical etching has been previously reported in the literature. However, the important technological barrier of existing manufacturing processes was to obtain thick layers (above 500 nm) of the mesoporous Ge with perfectly controlled morphology. Indeed, the physico-chemical characterization of thin layers is much more complicated and the number of possible applications is very limited. We have developed an electrochemical model that describes the main mechanisms of formation of pores which allowed us to produce thick mesoporous structures of Ge (up to 10 um) with adjustable porosity in a range of 15% to 60% . In addition, the formation of porous nanostructures with well-controlled variable morphologies has now become possible. Finally, the mastery of these parametres has opened the extremely promising path towards the realization of porous multilayer structures based on Ge for many innovative and multidisciplinary applications. In particular, in the context of this thesis, the mesoporous layers of Ge were optimized for the purpose of performing a layer transfer process of a triple-junction solar cell via a sacrificial layer of porous Ge.

Page generated in 0.0767 seconds