• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 3
  • 1
  • Tagged with
  • 28
  • 28
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Síntese e caracterização de nanopartículas metálicas e suas aplicações em biologia / Synthesis and characterization of metal nanoparticles and its applications in biology

Santos, Cássio Eráclito Alves dos 27 March 2015 (has links)
The gold nanoparticles (NPAus) and silver (NPAgs) exhibit a variety of effects and applications in the biomedical field. In this study, silver and gold nanoparticles were synthesized and characterized in order to evaluate its effect on wound healing and sensing eotaxin, an analyte of great relevance to inflammatory events. . In a first case, NPAgs were synthesized by chemical reduction method and dispersed in copaiba oil. It was observed that all NPAgs had spherical shapes and dispersed in copaiba oil. This composition NPAgs more copaiba oil was more effective to heal skin wounds than Dermazine, a reference medicinal product. With gold nanoparticles (NPAu) were synthesized by chemical methods by citrate reduction. Then, these nanostructures are functionalized for making a biosensor, with the purpose of identifying the analyte of choice (eotaxin) by identifying the displacement of the surface plasmon resonance band. The results with this prototype of the great potential of biosensor proved to detection of eotaxin in small quantities 15μL. The particles used in this study were characterized by UV-vis spectroscopy and transmission electron microscopy, while those associated with quartz are characterized with UV-vis spectroscopy and atomic force microscopy. Together, this study revealed the potential installed in UFAL for synthesis, characterization and application in the biomedical field of metal nanoparticles. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As nanopartícula de ouro (NPAu) e de prata (NPAg) exibem uma variedade de efeitos e aplicações na área biomédica. No presente estudo, nanopartículas de prata e ouro foram sintetizadas e caracterizadas com objetivo avaliar seu efeito sobre a cicatrização de feridas e sensoriamento de eotaxina, um analito de grande relevância para eventos inflamatórios. Em um primeiro caso, NPAg foram sintetizadas por método químico de redução, e dispersas em óleo de copaiba. Observou-se que todas NPAg tinham formas esféricas e se dispersaram no óleo de copaiba. Essa composição NPAg mais óleo de copaiba mostrou-se mais eficaz para cicatrizar feridas cutâneas do que a Dermazine, um medicamento de referência. Com as nanopartículas de ouro (NPAu) foram sintetizadas por método químico de redução por citrato. Em seguida, estas nanoestruturas foram funcionalizadas para confecção de um biossensor, com finalidade de identificar o analito de escolha (eotaxina) por meio da identificação do deslocamento da banda de ressonância de plasmon de superfície. Os resultados com este prótotipo do biosensor se mostraram de grande potencial para deteccção da eotaxin em pequenas quantidades 15µL. As partículas utilizadas neste estudo foram caracterizadas por espectroscopia de UV-vis e microscopia eletrônica de transmissão, enquanto que aquelas associadas ao quartzo são caracterizadas com espectroscopia UV-vis e microscopia de força atômica. Em conjunto, este estudo revelou o potencial instalado na UFAL para síntese, caracterização e aplicação na área biomédica de nanopartículas metálicas.
12

Síntese e auto-organização de nanopartículas ferromagnéticas metálicas visando aplicações em gravação magnética de ultra-alta densidade e imãs permanentes de elevado desempenho / Synthesis and self-assembling of metallic ferromagnetic nanoparticles for ultrahigh density magnetic recording and high-performance permanent magnets applications

Tiago Luis da Silva 15 May 2015 (has links)
Nanomateriais de fct-FePt, SmCo e Carbeto de Cobalto têm sido bastante estudados para a aplicação em gravação magnética e imãs de elevado desempenho, devido as suas energias magnetocristalinas e coercividades elevadas. Nanopartículas de FePt unidimensionais foram propostas na tentativa de obter melhora no alinhamento magnético das estruturas auto-organizadas. Neste trabalho, a formação de nanobastão e nanofios de FePt foi estudada através da presença de oleilamina e pequena quantidade de monóxido de carbono liberado pelo pentacarbonilferro(0). Estes dois parâmetros foram estudados a fim de analisar a influência no alongamento das nanopartículas e verificou-se que ambos atuam sinergicamente. Foram obtidos tanto nanofios de FePt ramificados de comprimento de 20-100 nm quanto nanobastões de FePt de 20-60 nm de comprimento, ambos com diâmetro de 2-3 nm. Todas as nanopartículas sintetizadas foram obtidas na fase cúbica de face centrada e o processo de tratamento térmico nas temperaturas de 450 oC e 560 oC levou a conversão para a fase tetragonal de face centrada, com custo da sinterização das nanopartículas. Os nanobastões, entretanto, apresentaram maior estabilidade térmica se comparado com o nanofio ramificado, obtendo propriedade ferromagnética na amostra. Alternativamente, têm sido obtidos satisfatoriamente nanobastões de platina para posterior recobrimento com ferro para a formação da liga FePt após o processo de recozimento. Na síntese de SmCo, foi estudada a formação da liga diretamente por via química através do uso de redutores comumente utilizandos em síntese de nanopartículas, porém foi possível observar apenas uma pequena quantidade da liga Sm2Co17 quando se utiliza o boroidreto de sódio. Isto se deve, principalmente, ao alto potencial de redução de Sm3+ e a sua instabilidade química. Entretanto, foram desenvolvidos métodos promissores para a obtenção de nanopartículas de CoO e SmCoO com tamanho e forma controlada. Além destes sistemas, tem sido obtidas diretamente através de síntese química nanopartículas de carbeto de cobalto com coercividade de até 2,3 kOe e magnetização de 45 emu/g, além de desenvolver um método geral de síntese de carbetos de outros metais. / SmCo, fct-FePt and CoC nanomaterials have been studied for application in magnetic recording and permanent magnets due to theirs high coercivity and magnetocrystalline anisotropy. One-dimensional FePt nanoparticles were proposed to improve the magnetic alignment of self-assembled system. In this work, the formation of FePt nanorods and nanowires was studied by using a small amount of carbon monoxide from the precursor pentacarbonyliron(0) and oleylamine. Both parameters of synthesis were studied and was verified that they influence the one-dimensional growth of FePt. In fact, branched FePt nanowires with 20 - 100 nm of length and nanorods with 20 - 60 nm were obtained, both with 2-3 nm of diameters. The FePt nanoparticles were obtained in face centered cubic phase and the transformation to face centered tetragonal phase was carry out in the temperatures of 450 oC and 560 oC, which led the formation of sintered nanoparticles. FePt nanorods have better thermal stability than nanowires according the results obtained. The platinum nanorods covered with iron oxide also were obtained to formation of FePt by thermal treatment. In concern of SmCo syntheses, the formation of SmCo phase directly by chemical synthesis was investigated by using some reduction agent, but was obtained a small amount of smco phase only if the sodium borohydrate was used in the synthesis. This could be occurred due to high reducing potential of Sm3+ and its chemical instability. However, some methods were obtained to obtain CoO and SmCoO nanoparticles with size and shape control. Furthermore, cobalt carbide nanoparticles were well obtained with coercivity of 2,3 kOe and magnetization of 45 emu/g, and a new general method to obtain metals carbides was developed.
13

Design, Synthesis and Characterization of Multiresponsive Microgels

Nayak, Satish Prakash 26 January 2005 (has links)
This thesis is geared towards using hydrogel nanoparticles in various biotechnological applications. The polymer that was used in making these nanoparticles was poly(N-isopropylacrylamide), which is a thermoresponsive polymer. These particles were used in making fast responsive polymer films, which can be used in optics. It was observed that the rate of deswelling increased as the concentration of the nanoparticles in the film was increased. These particles were also used in making photoresponsive materials. In this case a photoresponsive dye (malachite green) was conjugated to these nanoparticles and in presence of light of appropriate wavelength the particles undergo a phase transition. A core/shell construct was synthesized where the core was composed of degradable cross-links and the shell of composed of non-degradable cross-links. The degradable cross-linker had vicinal diols, which can be cleaved by sodium periodate. Hence after degrading the core, hollow particles were obtained. Zwitterionic particles were made by incorporating a cationic and anionic comonomer. These microgels go from a positively charged state to zwitterionic to negatively charged state on increasing the pH. One of the important potential applications for these microgels is drug delivery. Microgels were used for targeting cancer cells. Folic acid was used as the targeting ligand. The microgels were conjugated with folic acid and were able to target cells that overexpress folate receptors. In one other application core/shell microgels were made which exhibit pore-size dependent permeation of proteins.
14

Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites

Xu, Chunbao 15 August 2006 (has links)
Hydrothermal synthesis is a widely used technique for the preparation of fine particles. It can be carried out in batch or flow systems, although most studies have used batch reactors below 200 C. More recently, however, continuous hydrothermal synthesis has been employed in near- and supercritical water to obtain metal oxide particles. This technique offers tremendous promise for control of particle characteristics due to the rapidly changing properties of water with temperature and pressure in the critical region. However, the role of temperature in this process is not completely understood. Moreover, agglomeration of particles remains a problem in both batch and continuous hydrothermal techniques. This work is concerned with the use of continuous hydrothermal synthesis at near-critical and supercritical conditions to obtain iron oxide and lithium iron phosphate nanoparticles. Factors that affect size, size-distribution, and morphology of nanoparticles were investigated and the results have been used to resolve differences in the literature concerning the effect of temperature on particle size. It was shown that agglomeration can be minimized by using a protective polymer coating and this appears to be an effective method to control particle size. The continuous hydrothermal technique was also extended to materials other than metal oxides by synthesizing lithium iron phosphate. Differences in the particle sizes obtained using the batch and continuous methods were shown to be due to the different mechanisms of particle formation in the two techniques. Better particle characteristics (size, size distribution and morphology) were obtained using the continuous hydrothermal technique than using the batch hydrothermal method. Iron oxide nanoparticles were also deposited on the surface and in the pores of activated carbon pellets in a batch reactor in order to minimize agglomeration of particles. The resulting iron oxide activated carbon nanocomposites exhibited significant catalytic performance in the oxidation of propanal. Therefore, the use of supercritical water to deposit metal oxide particles on hydrophobic surfaces offers promise for carbon-supported catalyst preparation without the use of toxic or noxious solvents.
15

Synthesis of zinc oxide nanoparticles with different morphologies by wet chemistry routes

Young, Michael I. January 2016 (has links)
The objectives of this project were to synthesise semi-conducting ceramic nanoparticles including zinc oxide (ZnO) and aluminium doped zinc oxide (AZO) through a wet chemistry route to obtain nanoparticles with a controlled size and morphology. Wet chemistry methods (co-precipitation method and hydrothermal method) were used to synthesise ZnO and AZO particles. In the synthesis, various compounds and morphologies were synthesised. ZnO, Zn(OH)2 and unknown phases were co-precipitated, with only ZnO obtained following hydrothermal treatment. Morphologies ranging from platelets, flower-like, nanorods and microflowers were obtained. Particle sizes as small as 11 nm were characterised. Nanorod and nanosphere AZO particles were also synthesised with the results indicated the average grain size decreasing with increasing Al atomic content. Three orthogonal arrays were carried out to investigate the effects of the reaction parameters on the size and morphology of ZnO particles. The applicability of the orthogonal array was successful, with the optimum parameters of both hydrothermal experiments showing an increase in aspect ratio. The L/D ratio of ZnO nanorods obtained in the confirmation experiment increased to 9.4 which was larger than the ZnO synthesised using other reaction conditions (1.0 8.0). Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterise the properties of the obtained particles. Morphology, crystallinity and particle size were all characterised.
16

Nanoparticle-assisted diffusion brazing of metal microchannel arrays : nanoparticle synthesis, deposition, and characterization

Eluri, Ravindranadh T. 30 March 2012 (has links)
Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties. In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (~5 nm and ~50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 μm. Further suppression of the brazing temperature to 500ºC was achieved by sputtering a 1 µm thick layer of Cu before depositing a 5 nm thick film of AgNPs resulting in a lap shear strength of 45.3±0.2 MPa. In the middle section of this thesis, several techniques are investigated for the synthesis of sub 10 nm diameter nickel nanoparticles (NiNPs) to be used in the diffusion brazing of 316L stainless steel. The average NiNP size was varied from 9.2 nm to 3.9 nm based on the synthesis technique, solvent and reducing agent used. Conventional wet-chemical synthesis using NiCl₂.6H₂O in ethylene glycol (solvent) and N₂H₄.H₂O (reducing agent) resulted in the formation of 5.4 ± 0.9 nm NiNPs. Continuous flow synthesis using a microchannel T-mixer (barrel diameter of 521µm) and a 10 second residence time of reactants in a bath temperature of 130ºC resulted in a particle size of with 5.3 ± 1 nm. To make the synthesis safer and less energy intense, microwave heating was used along with less toxic Ni(CH₃CO₂)₂·4H₂O (nickel salt), propylene glycol (solvent) and NaPH₂O₂ (reducing agent) yielding 3.9 ± 0.8 nm diameter NiNPs. For the final section, nickel nanoparticles were synthesized using NiCl₂.6H₂O (nickel salt), de-ionized water (solvent), NaBH₄ (co-reducing agent), N₂H₄.H₂O (reducing agent) and polyvinylpyrolidone (capping agent) yielding 4.2 ± 0.6 nm NiNP. Several deposition techniques were investigated for controlling film thickness and uniformity in the diffusion brazing of 316L stainless steel (SS). Using in-house prepared NiNP and automated dispensing, a hermetic joint up to 70 psi (tested pressure) was obtained in 316L SS substrates under brazing conditions of 800ºC, 2 MPa and 30 min. Throughout the course of this thesis, techniques used for characterizing nanoparticles, films and joints included FT-IR, XRD, SEM, TEM, HRTEM, EDS, EPMA, DSC, mass spectrometry, and lap-shear testing. / Graduation date: 2012
17

Probing The Origin Of Second Harmonic Generation From Copper Nanoparticles In Solution By Hyper-Rayleigh Scattering

Chandra, Manabendra 09 1900 (has links)
In recent years, coinage metal nanoparticles have emerged as materials with largest quadratic optical nonlinearity. Their first hyperpolarizabilities (β) are very high (105-106 x 10-30 esu) but such large values were quite unexpected because of their apparently centrosymmetric bulk structure. Only a small second harmonic generation (SHG) from coinage metal nanoparticles is expected through higher order multipolar (e.g., quadrupolar) polarization mechanisms. Various possible reasons have been attributed to the observation of large β values in coinage metal nanoparticles. They are: 1) Particles may not be overall centrosymmetric (as appears from the TEM pictures) which, in turn, can make SHG electric dipole allowed, 2) Several polarization mechanisms (dipolar, quadrupolar, retardation, etc.) may be operating simultaneously to render SHG very efficient, 3) SHG can be resonance enhanced if the incident or SH photons fall within the surface plasmon resonance (SPR) absorption bands or higher energy interband transitions in the metal particles, and 4) Surface capping agents used for stabilization of the nanoparticles in solution alter the SH response. It is, therefore, important to experimentally find out which of the above mentioned possibilities are dominant and under what conditions we can identify the contribution of various mechanisms to the overall SHG response of the coinage metal nanoparticles. In this thesis work, the origin of SHG from copper (one of the coinage metals) nanoparticles has been investigated using hyper-Rayleigh scattering (HRS). In chapter 1, an introduction to metal nanoparticles and their optical properties have been presented. A general introduction to second order nonlinear optics and various methods for the determination of first hyperpolarizability are provided. A literature survey on the second order NLO properties of metal nanoparticles is also done. At the end of the chapter, the motivation of the work done is outlined. In chapter 2, the experimental set-ups for unpolarized and polarization resolved hyper-Rayleigh scattering (HRS) measurements at different wavelengths are described. Generation of IR wavelength of 1543 and 1907 nm using stimulated Raman scattering in gases have been presented in this chapter. In chapter 3, synthesis and characterization of copper nanoparticles are described. Four different size copper nanoparticles (5, 9, 25, and 55 nm) were prepared by laser ablation. Size dependencies of first hyperpolarizability were investigated at different wavelengths and it was found that β increases with increasing size of the particle and that the SHG originates mainly from the surface of the particle. Dispersion in first hyperpolarizabilities of the copper nanoparticles has also been investigated and we find that at incident and SH wavelengths far from the SPR absorption band, the hyperpolarizability is large compared to molecular hyperpolarizabilities. In chapter 4, the results of polarization resolved HRS measurements on copper nanoparticles of five different sizes at four different wavelengths (738, 1064, 1543 and 1907 nm) are reported. Polarization analyses show that at small particle size to wavelength (d/λ) ratio the dipolar contribution to SHG is dominant whereas the quadrupolar and retardation effects become important at larger d/λ values. The “small particle limit” in the SHG from coinage metal nanoparticles has been assessed based on our results on copper and others’ results on silver and gold nanoparticles. In chapter 5, the effect of surface capping on the first hyperpolarizability of copper nanoparticles is investigated. Polyvinyl pyrrolidone (PVP) has been used as a capping agent. The results obtained for bare and capped copper nanoparticles show that capping enhances the hyperpolarizability by a factor of 2. In the last chapter 6, general conclusions drawn on SHG from coinage metal nanoparticles based on this work are presented along with future perspectives.
18

Rational Synthesis, Stabilization, and Functional Properties of Metal and Intermetallic Nanoparticles

Arora, Neha January 2013 (has links) (PDF)
The confluence of intriguing size and morphology dependent optical and chemical properties with versatile application in various fields, such as energetic and magnetic makes monometallic nonmaterial of high fundamental scientific interest. However, the challenge that needs to be addressed is to achieve their synthesis with a rational control on their dimensions, morphology and dispersion for the widespread applications of these materials. In addition to synthesis, achieving long-lasting stability of nonmaterial becomes imperative in order to realize their potential applications. Miniaturization in size of particles results in an increased surface to volume ratio, conducing especially reactive metal nanoparticals prone to oxidation. This thesis describes the synthesis of nearly monodiperse colloids of metallic and intermetallic nanoparticles using solvated metal atom dispersion method and digestive ripening facilitated interatomic diffusion process. Our aim is to understand the combinatiorial effects of nanosizing and stability on the functional properties of these nanomaterials. Towards this Direction, we investigated Co, A1 and Mg monometallic, and Au/Ag-In and Au-Sn intermetallic nanoparticle systems. Chapter 2 Describes the synthesis, detailed characterizations and magnetic properties of nearly monodisperse cobolt nanoparticles(<5nm) synthesized using a hydride synthetic protocol, solvated metal atom diserion method. The as-prepared cobalt nanoparticles in this size range exhibit intrinsic instability towards Oxidations. After 30 day of exposure to air, magnetic measurements showed drastic degration in saturation magnetization and complete conversion to antiferromagnetic cobalt oxide was confirmed. In order to achieve their stability, a heat treatment was applied to decompose the organic solvent and capping agent, resulting in carbonization of solvent/ligand around the surface of cobolt nano particles. Controlled and optimized annealing at different temperatures resulted in the formation of hexagonal closed packed (hcp) and fape-centered cubic (fcc) phases of metallic cobalt. Remarkably, the corresponding heat treated samples retained their rich magnetic behavior even after exposure to air for a duration of one year. Compared to un-annealed samples, magnetization values increased two-fold and the corecivity of nanoparticles exhibited strong dependence on the phase transformation of cobolt. Chapter 3 Deal with an exploratory study of the synthesis, characterization, and stabilization of nanometer-sized enegetic material, aluminum. Highly monodisperse colloidal aluminum nanoparticles (3.1‡ 0.6 mm) were prepared by using hexadecy amine (HAD) as the capping agent tetrahydrofurma as a coordinating solvent in the SMAD method. Since such small particles are highly prone to oxidation, a support materials is required for their stabilization. Stability has been achived by carbonization of the capping agent on the surface of A1 nanoparticles by carrying out thermal treatment of A1-HAD nanoparticles at a modest temperature. Presence of corbon was confirmed using Raman spectroscopy and TEM measurements evidencing that annealed A1 nanoparticles are encapsulated in a corbon matrix. The exhibition of robust stability was established using thermal analysis (TGA/DTA) wherein, oxidation of aluminum in air did not occur upto 500 0C. Indirectly, the successful passivation was further exploited in the synthesis and characterization of small sized monodisperse magnesium nanoparticles. The resulting samples were hybrided and nanosized MgH2 released hydrogen at much lower temperature than that of the bulk MgH2 (573 K). The observed hydrogen release was only partially reversible. This partial reversibility could be attributed to the coalescence of small sized Mg nanoparticles upon subsequent charging/discharging hydrogen cycles. In the next step, we exploed the intermetallic systes which are composed of more than one metallic species. Chapter 4 describes the synthesis and characterization of small sized, monodisperse (<10 nm) colloidal AuIn2 and Ag3In intermetallic nanoparticles. The formation of intermetallic nanoparticles could be explained by invoking digestive ripening facilitated atomic diffusion of Au/Ag and In nanoparticles followed simultaneously by their growth in te solution. The course of the reaction was followed using optical spectroscopy where the changes in UV-visible absorption band were correlated to the formation of AuIn/Ag3In intermetallic. Structural characterization, Performed using powder X-ray diffraction, brought out the formation of phase pure AuIn2 and Ag3In intermetallic compounds. Digestive ripening effects were clearly observed using transmission electron microscopy which showed the transformation of polydisperse physical mixture colloid of nanometallic species to uniform sized intermetallic nanoparticles. By invoking the phenomenon of interatomic diffusion at nanoscale favored by feasible thermodynamics ( G being negative) we were successful inrealizing the formation of these intermetallic nanoparticles. Optimization of temperature at which digestive ripening was performed, turned out to be a crucial factor in the successful synthesis of phase pure intermetallic nanoparticles. These promising results inspired us to study further the preparation of Au-Sn intermetallic system which is described in Chapter 5. The potential of such an unprecedented approach has been exploited in the synthesis of homogeneous intermetallic nanaocrystals of Au5Sn and AuSn. The two monometallic collids (Au and Sn), mixed in a stoichiometric amount were subjected to digestive ripening process. 1:1 stichiometry always led to the formation of eutectic mixture (Au5Sn and AUSn), The stoichiometry of monometallic nanocrystals. Therefore, by taking an extra equivalent of Au and Sn in two different experiments, phase pure Au5Sn and AuSn intermatillic nanocrsytals were obtained, respectively. This is the first observation that has been reported regarding the phase pure synthesis if Au5Sn intermetallic nanocrystals using solution based approach. Formation of different phases was established by structural characterization which elicited srystalline nature of the samples. A combination of TEM, HRTEM, and STEM-EDS mapping techniques employed here, brought and tailored phase. In conclusion, the careful selection of solvent, stoichiometry and growth directing agents is an important prerequisite for realizing distinct phases of Au-Sn system with a controlled morphology.
19

Optical heating of gold nanoparticles and thermal microscopy : applications in hydrothermal chemistry and single cell biology / Chauffage optique de nanoparticules d'or et microscopie thermique : application en chimie hydrothermale et en biologie cellulaire

Robert, Hadrien 09 May 2018 (has links)
L’étude de phénomènes thermiques à l’échelle microscopique peut s’avérer compliquée à mettre en place, principalement à cause de l’absence de technique de mesure de température fiable. Dans ce contexte, une technique de mesure de température appelée TIQSI a été développée au sein de l’Institut Fresnel. Dans l’objectif d’étudier des phénomènes thermo-induit à l’échelle microscopique, j’ai monté un microscope capable de contrôler et de quantifier une élévation de température à l'aide de TIQSI et de nanoparticules d’or. Différents phénomènes ont ainsi pu être étudiés.La synthèse hydrothermale regroupe les réactions chimiques utilisant de l’eau liquide à des températures plus élevées que la température d’ébullition. L’utilisation de nanoparticules permet d’avoir de l’eau liquide à des températures supérieures à 100°C (état métastable). J’ai pu ainsi effectuer des réactions de synthèse hydrothermale sans autoclave ce qui constitue un nouveau concept en chimie de synthèse.Une cellule vivante peut-être endommagée par un stress de chaleur ce qui peut détériorer ses protéines. En réponse à ce stress, la synthèse de HSP permet la réparation des protéines endommagées. J’ai pu étudier la dynamique de réponse des HSP ce qui a permis d’illustrer l’intérêt d’une chauffe locale et de TIQSI pour ce genre d’expérience.Une autre application mêlant le surchauffage de l’eau liquide et la biologie a été abordée. Les organismes hyperthermophiles vivent à de très hautes températures (80-110◦C). J’ai pu durant mes expériences observer le déplacement d’hyperthermophiles. Cette avancée constitue les prémices d’expériences plus ambitieuses comme l’étude de l’interaction entre hyperthermophiles. / Nowadays, thermal experiments at the microscopic scale remain challenging to conduct due to the lack of reliable temperature measurment techniques. To solve these problems, a label-free temperature measurement technique called TIQSI has been developed in the Institut Fresnel.With the objective to study new thermal-induced effects on the microscale using TIQSI, I built a microscope aimed to control heat diffusion on the microscale using nanoparticle. Thus, I could study different phenomena in chemistry and biology.Hydrothermal methods in chemical synthesis rely on the use of superheated liquid water as a solvent. It has been shown that gold nanoparticles can be used superheated water in a metastable state. I managed to conduct hydrothermal chemistry experiments using thermoplasmonics without autoclave which represents a new paradigm in chemistry.A living cell can be damaged by a heat stress which can misfold its proteins. To response to this stress, the HSP synthesis enables the reparation of misfolded proteins. I could study the heat stress response of HSP at short time scale which allowed me to illustrate the interest of using TIQSI and a local heat.As an application mixing superheating water and biology, I studied organisms that are able to live at high temperature (80-110°C) namely hyperthermophiles. Motion of these organisms has been studied without autoclave which paves the way to more sophisticated experiments such as the interaction between hyperthermophiles.
20

FePt magnetic nanoparticles : syntheses, functionalisation and characterisation for biomedical applications

Chen, Shu January 2011 (has links)
Iron platinum (FePt) has attracted growing interest because of its high Curie temperature, magneto-crystalline anisotropy and chemical stability. Nanoparticles (NPs) made of this alloy are promising candidates for a wide range of biomedical applications including magnetic separation, magnetic targeted drug delivery, hyperthermia for cancer therapy and also as magnetic resonance imaging (MRI) contrast agents. This thesis presents the synthesis, functionalization and characterization of FePt NPs along with a toxicity study and an investigation into their application as MRI contrast agents. Regarding their synthesis, different approaches have been explored including the co-reduction of Fe and Pt precursors in an aqueous media, the thermal decomposition in a conventional high-boiling solvent such as benzyl ether, and in low-melting organic salts (ionic liquids). The data revealed an inhomogeneous composition distribution of Fe and Pt between particles obtained in aqueous media, due to the iron salts hydrolysis, and a mismatch in the co-reduction kinetic of the two metal precursors. While the iron content in the NPs could be increased by using more hydrolytically stable iron precursors or stronger reducing agents, there are remaining limiting parameters which prevent further Fe content increase in NPs. In contrast, by excluding the water from the reaction system and using a Fe²⁻ iron precursor, homogenous 1:1 Fe to Pt ratio NPs can be obtained through a modified thermal decomposition pathway in benzyl ether. Based on the study of synthesis in this conventional chemical, the potential of ionic liquids (ILs) to be used as novel solvents for FePt NPs synthesis was further explored. It was then demonstrated that ionic liquids (ILs) can not only be used as a solvent for synthesis of FePt NPs, but also can provide an exciting alternative pathway to direct synthesis fct-FePt NPs. In the context of the bioapplication of FePt NPs, a family of FePt NPs was specifically designed to enhance their MRI contrast agents properties. In contrast with previous reports, this thesis demonstrates that FePt NPs can be made non-toxic and provides the first data on their cellular uptake mechanisms. A six times increase in the FePt based T₂ contrast properties compared to clinical iron oxide NPs is reported. The relationship between the MRI contrast properties and the NPs architecture is explored and rationalised as the basis for the design of NPs as enhanced MRI contrast agents. Finally, the first observations of cellular and in vivo MR imaging with FePt NPs is also reported. This study opens the way for several applications of FePt NPs such as regenerative medicine and stem cell therapy, thus providing a bio-platform to develop novel diagnostic and therapeutic agents.

Page generated in 0.0986 seconds