• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 28
  • 2
  • Tagged with
  • 79
  • 79
  • 37
  • 23
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Récupération de métaux nobles sous forme de nanoparticules par traitement plasma à barrière diélectrique

Sauvageau, Jean-François 07 December 2020 (has links)
Les métaux du groupe du platine (MGP) et les métaux nobles sont utilisés dans des secteurs industriels reliés aux catalyseurs automobiles, aux matériaux semi-conducteurs et même en médecine régénératrice. L’extraction ce ces métaux à partir de minerais et d’effluents est réalisée par divers procédés hydrométallurgiques, tels que la lixiviation et l’adsorption sur charbon activé. Ces procédés sont associés à plusieurs problématiques : les temps de production sont longs, l’extraction sélective des éléments d’intérêt nécessite des produits toxiques (e.g. cyanures) et l’utilisation de charbon activé est à l’origine de l’émission de gaz à effet de serre (GES). La demande croissante pour ces métaux motive le développement de nouvelles technologies permettant de les récupérer plus rapidement et efficacement, tout en minimisant l’impact environnemental de leur production. Les plasmas atmosphériques produits par décharge à barrière diélectrique (DBD) font partie des technologies novatrices qui permettraient de s’affranchir des désavantages reliés aux procédés de récupération conventionnels. En seulement quelques minutes, le traitement des effluents contenant des ions métalliques par l’application de décharges plasmas permet la récupération des métaux nobles sous forme de nanoparticules (NPs). Ce mémoire présente cette technique de récupération plasma appliquée à des effluents synthétiques, miniers, industriels et hospitaliers. En moins de 15 min d’opération, un réacteur plasma DBD permet de récupérer sélectivement 95% de l’or pour des effluents provenant des industries minières et des semi-conducteurs. Cette technologie présente également un potentiel pour la récupération du palladium, qui atteint 60% et ce pour des conditions pouvant être optimisées davantage. De plus, les réactions électrochimiques induites par les décharges plasma sont en mesure de dégrader des contaminants hautement toxiques tels que les cyanures. Ces résultats prometteurs ont motivé la prise de démarches pour implémenter cette technologie à l’échelle industrielle chez différentes compagnies partenaires du domaine minier et des semiconducteurs. / Platinum group metals (PGMs) and noble metals are used in industrial fields related to automotive catalysts, semiconductor materials and even regenerative medicine. The extraction of these metals from ores and effluents is performed by various hydrometallurgical processes, such as leaching and activated carbon adsorption. These processes are associated with several problems: the production times are long, the selective extraction of the elements of interest requires toxic products (e.g. cyanides) and the use of activated carbon is responsible for the emission of greenhouse gases (GHG). The growing demand for these metals stimulates the development of new technologies to recover them more quickly and efficiently, while minimizing the environmental impact of their production. Atmospheric plasmas produced by dielectric barrier discharge (DBD) are among the innovative technologies that can overcome disadvantages related to the conventional recovery processes. In a matter of minutes, the treatment of effluents containing metal ions by the application of plasma discharges allows the recovery of noble metals in the form of nanoparticles(NPs). This thesis presents this recovery technique applied to synthetic, mining, industrial and hospital effluents. In less than 15 min of operation, a DBD plasma treatment can be used to selectively recover 95% of gold from effluents produced by mining and semiconductor industries. This technology also has potential for the recovery of palladium, which reaches 60% for conditions that could be further optimized. Moreover, the electrochemical reactions induced by the plasma discharges can degrade highly toxic contaminants such as cyanides. These promising results stimulated the first steps for the implementation of this technology to the industrial scale in collaboration with various partner companies from the mining and semi-conductor fields.
32

Multifunctional platforms based on upconversion nanoparticles for applications in nanomedicine

Nigoghossian, Karina 30 May 2018 (has links)
"Thèse en cotutelle, doctorat en chimie :Université Laval, Québec, Canada, Philosophiae doctor (Ph.D.) et São Paulo State University, Araraquara, Brazil, Docteure" / Dans le domaine biomédical, il y a une demande croissante pour les nanosystèmes multifonctionnels pour effectuer simultanément l'imagerie et la thérapie, en visant le diagnostic précoce et apporter du bénéfice thérapeutique maximal. Les nanoparticules à conversion ascendante d’energie (UCNPs) ont été proposés comme une bio-sonde idéale en raison de leurs avantages uniques liés au phénomène d'upconversion présenté par les matériaux contenant des ions lanthanides, c’est-à-dire l’émission visible obtenue sous excitation dans le proche infrarouge (NIR), tels qu’une meilleure pénétration dans les tissus, une bas taux d’autofluorescence et un photo-dommage minimal. De plus, les propriétés luminescentes des ions lanthanides peuvent être utilisées pour la thermométrie en raison de leur forte dépendance sur la température. La thermométrie par luminescence est une technique sans contact et à haute résolution qui a attiré l'attention en nanomédecine puisque la température est un paramètre clé dans le fonctionnement des cellules. Des dommages thermiques aux cellules peuvent être localement photoinduits par l'utilisation de nanostructures métalliques illuminées dans leur bande de résonance plasmon en raison de leur absorptivité élevée. La prémière partie de ce travail implique le développement d'un système multifonctionnel, basé sur des nanocoquilles d’or (AuNSs) décorées avec des UCNPs, pouvant être utilisé pour augmenter et mesurer la température à l'échelle nanométrique. Ce système a été développé dans le but d’éventuelle utilisation comme agent de thérapie photothermique (PTT), dans laquelle la capacité thermométrique des UCNPs permettra d'optimiser les bénéfices thérapeutiques. La synthèse des UCNPs de NaGdF4 dopées avec les ions Yb3+ et Er3+ a été réalisée par décomposition thermique des précurseurs de fluorure de lanthanide à des températures elévées (> 300 °C) en présence d'un ligand de coordination (l’acide oléique). Les UCNPs ont été synthétisées à trois températures différentes (310, 315 et 320 °C) et caractérisées selon leurs propriétés morphologiques, structurelles et émissives. Compte tenu des applications biologiques prévues, la surface hydrophobe des UCNPs recouverte de chaînes oléate a été modifiée par un revêtement de silice par un processus Stöber modifié au moyen d'une méthode de microémulsion inverse afin d'obtenir une dispersion suffisante dans l'eau. Des nanocristaux monodisperses de NaGdF4:Yb3+:Er3+ à conversion ascendante (~ 25 nm de diamètre) ont été obtenus en phases cubique (à 310, 315 °C) et hexagonale (à 320 °C). Les UCNPs dans la phase hexagonale étaient plus appropriés en tant que capteurs de température en raison du rapport faible entre les émissions rouge/vert et une plus grande sensibilité thermique. Le spectre d'émission des UCNP (recouvertes de silice ou d'oléate) a été enregistré à des températures différentes à proximité de la plage physiologique (20–70 °C) et il a présenté des propriétés appropriées pour leur utilisation comme capteur de température, notamment une excellente linéarité (R2 > 0,99) et une bonne sensibilité (>3 × 10−3 K−1). La surface des AuNS a été décorée avec des UCNP recouvertes de silice. La capacité de chauffage des AuNSs@UCNPs a été vérifiée en mesurant l'émission de l'Er3+, ce qui démontre leur potentiel d'application comme agent d'hyperthermie contrôlée par l'utilisation de la fonction de nanothermomètre. La deuxième partie de ce projet de thèse a été consacrée au développement d'un nanosystème multifonctionnel pouvant être utilisé comme un système de double capture de lumière UV et de mesure de température. Le complexe Eu(tta)3 (tta-thénoyltrifluoreacetonate) a été préparé in situ dans la coquille de silice des UCNPs de NaGdF4:Yb3+:Er3+. Un nanothermomètre à double mode a été obtenu à partir du signal de fluorescence généré grâce à la conversion ascendante (proche infrarouge → visible) par les ions Er3+ ainsi que par l’émission par la conversion descendante excitée dans l'UV du complexe Eu(tta)3. Les mesures ont été prises près de la plage de température physiologique (20—50 °C) et montrent une excellente linéarité (R2 > 0,99) et une sensibilité thermique relativement élevée (≥1,5%·K−1). L’utilité du complexe Eu(tta)3 présent dans la coquille de silice comme capteur de la lumière UV a été démontré par la dépendance de la luminescence de l’ion Eu3+ sur la durée de l'exposition à la lumière UV. Le matériau obtenu présente un potentiel d'application dans les thérapies activées par la lumière, telles que la thérapie photodynamique (PDT) et la PTT, qui nécessitent généralement une lumière UV ou bleue pour l'excitation. Le contrôle de la dose de lumière delivrée aux tissus a une grande importance dans ces procédures thérapeutiques pour éviter le photodommage aux tissus environnants. La fonction thermomètre est utile pour guider de tels processus (PDT et PTT) en synergie avec le dosimètre d’UV. / In the biomedical field, there is an increasing demand for multifunctional nanosystems to perform imaging and therapy simultaneously, aiming at early diagnosis and maximum therapeutic benefit. Upconversion nanoparticles (UCNPs) have been proposed as an ideal bio-probe because of their unique advantages related to the upconversion phenomenon presented by materials containing lanthanide ions, e.g. visible emission obtained under near-infrared (NIR) excitation, such as deep tissue penetration, low autofluorescence background and low photo-damage. Moreover, the luminescent properties of lanthanide ions may be used for thermometry because of a strongly temperature-dependent effect. Luminescence nanothermometry is a noncontact and high-resolution technique that has been gaining attention in nanomedicine since temperature is a fundamental parameter in events that occur in cells. The thermal damage of cells may be locally photoinduced by using metal nanostructures illuminated at their localized surface plasmon resonance (LSPR) band because of the enhancement of light absorption. In this work, a multifunctional system was designed combining gold nanoshells (AuNSs) and UCNPs intended as an optical heater and temperature probe at the nanoscale. This system was studied aiming its application as an agent for photothermal therapy (PTT), guided by the thermometer capacity of UCNPs, which allows to optimize the therapeutic benefits. The synthesis of NaGdF4 UCNPs doped with ions Yb3+:Er3+ was performed via the thermal decomposition of lanthanide ion fluoride precursors at high temperatures (>300 °C) in the presence of a coordinating ligand (oleic acid). UCNPs were synthesized at three different temperatures (310, 315 and 320 °C) and characterized in terms of morphological, structural and emission properties. In view of the intended biological applications, the surface of hydrophobic oleate-capped UCNPs was modified by a silica coating to achieve sufficient water dispersibility, through a modified Stöber process by a reverse micro-emulsion method. Monodisperse NaGdF4:Yb3+:Er3+ upconverting nanocrystals (~25 nm dia.) were obtained in cubic (at 310, 315 °C) and hexagonal phase (at 320 °C). The UCNPs in the hexagonal phase showed to be more suitable for application as a temperature sensor, because of its lower red-to-green emission ratio and higher thermal sensitivity. The emission spectra of NaGdF4:Yb3+:Er3+ (oleate- or silica-coated) UCNPs were measured at different temperatures in the vicinity of the physiological temperature range (20-70 °C) and presented suitable properties for application as a temperature sensor, such as excellent linearity (R2 >0.99) and sensitivity (>3 × 10−3 K−1). The surface of AuNSs were decorated with silica-coated UCNPs. The heating capacity of such nanocomposites (AuNSs@UCNPs) was verified by monitoring the Er3+ emission, enabling potential application as a hyperthermia agent controlled by the nanothermometer function. In a second part of this thesis, a multifunctional nanosystem was designed and applied as a dual sensor of ultraviolet (UV) light and temperature. Eu(tta)3 (tta-thenoyltrifluoroacetonate) complex was prepared in situ over the silica shell of NaGdF4:Yb3+:Er3+ UCNPs. A dual-mode nanothermometer-UV sensor was obtained from the combination of NIR to visible upconversion fluorescence signal of Er3+ ions and the UV-excited downshifted emission from the Eu(tta)3 complex. Measurements were performed near the physiological temperature range (2050 °C) revealing excellent linearity (R2 > 0.99) and relatively high thermal sensitivities (>1.5%·K−1). The Eu(tta)3 complex present in the silica shell was also demonstrated as a UV sensor because of the Eu3+ luminescence dependence on UV light exposure. The obtained material shows potential for application in light activated therapies, such as photodynamic therapy (PDT) and PTT, which typically require UV or blue light for excitation. The control of light dose released to the tissue is of great importance in these therapeutic procedures to avoid photodamage to the surroundings. The thermometer function is useful to guide such therapeutic processes (PDT and PTT) synergistically with the UV dosimeter. / Na área biomédica, existe uma crescente demanda por nanossistemas multifuncionais para realização de imageamento e terapia simultaneamente, visando um diagnóstico precoce e máximo benefício terapêutico. Nanopartículas para conversão ascendente de energia (UCNPs) vêm sendo propostas como a sonda biológica ideal devido às suas vantagens únicas relacionadas ao fenômeno de upconversion apresentado por materiais contendo íons lantanídeos, isto é, emissão no visível obtida sob excitação no infravermelho, tais como penetração profunda nos tecidos, uma baixa taxa de autofluorescência e um fotodano mínimo. Além disso, as propriedades luminescentes dos íons lantanídeos podem ser usadas para termometria por serem fortemente dependentes da temperatura. A termometria luminescente é uma técnica de não-contato e alta resolução que vem ganhando atenção na nanomedicina uma vez que a temperatura é um parâmetro fundamental para o funcionamento das células. Danos térmicos às células podem ser localmente fotoinduzidos pelo uso de nanoestruturas metálicas iluminadas em sua banda de ressonância plasmônica por causa da sua elevada absortividade. A primeira parte deste trabalho consiste no desenvolvimento de um sistema multifuncional baseado em nanocascas de ouro (AuNSs) decoradas com UCNPs podendo ser utilizadas para aumentar e medir a temperatura em escala nanométrica. Este sistema foi desenvolvido com a finalidade de uma eventual utilização como agente em terapia fototérmica (PTT), na qual a capacidade termométrica das UCNPs permitirá otimizar os benefícios terapêuticos. A síntese das UCNPs de NaGdF4 dopadas com os íons Yb3+ e Er3+ foi realizada via decomposição térmica de precursores de fluoreto de lantanídeo a altas temperaturas (> 300 °C) na presença de um ligante coordenante (o ácido oleico). As UCNPs foram sintetizadas em três diferentes temperaturas (310, 315 e 320 °C) e caracterizadas segundo suas propriedades morfológicas, estruturais e emissivas. Levando-se em conta as aplicações biológicas pretendidas, a superfície hidrofóbica das UCNPs recoberta por cadeias de oleato foi modificada utilizando um revestimento de sílica via um processo Stõber modificado por meio de um método de microemulsão reversa para obter uma dispersão suficiente em água. Nanocristais monodispersos de NaGdF4:Yb3+:Er3+ para conversão ascendente (~ 25 nm de diâmetro) foram obtidos nas fases cúbica (a 310, 315 °C) e hexagonal (a 320 °C). As UCNPs na fase hexagonal mostraram-se mais apropriadas como sensores de temperatura, devido a menor razão entre as emissões vermelho/verde e maior sensibilidade térmica. O espectro de emissão das UCNPs (recobertas por sílica ou por oleato) foi registrado a diferentes temperaturas na proximidade do intervalo fisiológico (20–70 °C) e apresentou propriedades adequadas para sua aplicação como sensor de temperatura, especialmente uma excelente linearidade (R2 > 0,99) e uma boa sensibilidade (>3 × 10−3 K−1). A superfície das AuNSs foi decorada com UCNPs recobertas por sílica. A capacidade de aquecimento das AuNSs@UCNPs foi verificada medindo-se a emissão do Er3+, a qual demonstra seu potencial como agente em hipertermia controlada pela utilização da função de nanotermômetro. A segunda parte deste projeto de tese foi dedicada ao desenvolvimento de um nanosistema multifuncional podendo ser utilizado como um sistema de dupla captura de luz UV e medida de temperatura. O complexo Eu(tta)3 (tta-tenoiltrifluoroacetonato) foi preparado in situ na casca de sílica das UCNPs de NaGdF4:Yb3+:Er3+. Um nanotermômetro de modo duplo foi obtido a partir do sinal de fluorescência gerado graças à conversão ascendente (infravermelho próximo → visível) pelos íons Er3+ juntamente à emissão por conversão descendente excitada no UV do complexo Eu(tta)3. As medidas foram realizadas próximo à faixa de temperatura fisiológica (20—50 °C) revelando uma excelente linearidade (R2 > 0,99) e uma sensibilidade térmica relativamente alta (≥1,5%·K−1). A utilidade do complexo de Eu(tta)3 presente na casca de sílica como sensor de luz UV foi demonstrado pela dependência da luminescência do íon Eu3+ sob a duração da exposição à luz UV. O material obtido apresenta potencial para aplicação em terapias ativadas pela luz, tais como a terapia fotodinâmica (PDT) e a PTT, as quais tipicamente requerem luz UV ou azul para excitação. O controle da dose de luz liberada para os tecidos tem grande importância nestes procedimentos terapêuticos para evitar o fotodano aos tecidos circundantes. A função de termômetro é útil para guiar tais processos (PDT e PTT) simultaneamente com o dosímetro de UV.
33

Nanoparticules métalliques en matrices vitreuses pour l'amplification Raman

Nardou, Éric 20 October 2011 (has links) (PDF)
Les fibres optiques utilisées pour le transfert d'information présentent des pertes de signal pendant leur propagation. Ainsi, ces signaux ont besoin d'être régulièrement amplifiés. De nos jours, l'Amplification Raman, basée sur le principe de diffusion Raman stimulée, est une des techniques utilisées pour réaliser ces amplifications. Les nanoparticules de métaux nobles ont des propriétés optiques uniques provenant de l'oscillation collective des électrons lorsqu'elles interagissent avec une onde électromagnétique. Ces particules absorbent fortement le champ électromagnétique à une fréquence appelée fréquence de résonance de plasmon de surface. Ce travail de thèse concerne l'influence des nanoparticules métalliques sur l'amélioration de l'Amplification Raman. Il s'inscrit dans le cadre du projet ANR Fenoptic (2010-2012), réunissant l'entreprise Draka et plusieurs laboratoires français (ICB Dijon, CMCP Paris, LPCML Lyon), qui s'intéressent à l'intégration des nanoparticules de métaux nobles à l'intérieur des fibres optiques afin d'utiliser la résonance de plasmon de surface pour améliorer l'efficacité des amplificateurs optiques. Dans ce travail, différentes sources de nanoparticules métalliques ont été examinées (suspensions, couches, préformes de fibre optique). Les expériences ont porté sur la caractérisation (forme et position du plasmon) de nanoparticules de métaux nobles incluses en matrices vitreuses ainsi que sur des mesures de spectroscopie Raman au travers desquelles le phénomène de Diffusion Raman Exaltée de Surface (SERS) a particulièrement été étudié. Pour la première fois, nous avons mis en évidence l'exaltation du signal Raman d'une matrice vitreuse.
34

Assemblages hybrides porphyrines-polyoxométallates : étude électrochimique, photochimique et photocatalytique

Schaming, Delphine 24 June 2010 (has links) (PDF)
Les polyoxométallates (POM) constituent une classe unique de clusters inorganiques du type métal-oxygène possédant des propriétés remarquables. Ils ont par exemple de bons atouts pour des applications en photocatalyse, notamment pour la réduction de cations métalliques, comme en témoignent les nombreux travaux présents dans la littérature. Néanmoins, un inconvénient majeur réside en le fait que cette famille de composés absorbe principalement dans l'UV, nécessitant par conséquent une activation lumineuse dans ce domaine spectral. L'objectif de ce travail de thèse a alors été de montrer qu'il est possible d'utiliser les propriétés catalytiques des POM tout en utilisant la lumière visible, en leur associant des photosensibilisateurs absorbant dans le domaine du visible. Le choix s'est porté sur des chromophores de type porphyrine. Plusieurs assemblages hybrides porphyrines-POM ont alors été étudiés successivement au cours de ce travail. Tout d'abord, nous avons voulu étudier les propriétés catalytiques de ce type de systèmes en milieu homogène. Pour cela, trois types d'assemblages porphyrine(s)-POM ont été envisagés, basés chacun sur des interactions ou liaisons de natures différentes : des interactions électrostatiques, des interactions de coordination, ou encore des liaisons covalentes. Puis nous avons souhaité étendre notre étude à des systèmes supportés, en vue d'applications en catalyse hétérogène. Dans ce but, deux types de systèmes supportés ont été étudiés : des systèmes multicouches basés sur des interactions électrostatiques et des copolymères porphyrine-POM obtenus par voie électrochimique. Tous ces systèmes développés ont fait l'objet d'une étude physico-chimique approfondie, notamment par électrochimie, photochimie (systèmes en solution), microscopie à force atomique (systèmes supportés... Concernant les études photocatalytiques, la plupart de ces systèmes ont fait l'objet de tests envers la photoréduction d'ions Ag(I), choisis dans un premier temps comme système modèle. Des nanoparticules d'argent de tailles et de formes variées ont ainsi été obtenues.
35

Optique linéaire et non linéaire de films de nano particules métalliques

El Harfouch, Yara 19 October 2009 (has links) (PDF)
La technique de la génération de second harmonique (SHG) a été employée pour étudier la réponse non linéaire des assemblées de nano particules métalliques aux interfaces liquides. Les nanoparticules ont d'abord été caractérisées en utilisant la génération de second harmonique incohérente, également nommée diffusion hyper Rayleigh. L'étude de particules d'or et d'argent, nanosphères et des nanobâtonnets, ont permis de mettre en évidence l'influence de la couche protectrice de surfactants sur l'hyperpolarisabilité quadratique de ces particules. Ces particules ont ensuite été placées à l'interface air/eau dans une cuve de Langmuir afin d'étudier le rôle des interactions entre les particules sur la réponse optique linéaire et non linéaire. Celle-ci a révélé dans ces films formés à l'interface la présence de couplages forts entre les particules lors de la compression de la surface. Cela conduit à une transition dans le film une fois que la distance entre les particules passe en dessous d'une distance critique. Ces études ont été complétées par des expériences réalisées à l'interface liquide/liquide et sur une électrode de carbone vitreux pour examiner plus en détail le rôle de la rugosité à l'échelle nanométrique dans l'exaltation de la réponse non linéaire SHG
36

Utilisation de nanotubes de carbone pour la préparation de catalyseurs confinés / Use of carbon nanotubes for the preparation of confined catalysts

Nguyen, Tuyet Trang 23 July 2013 (has links)
Ce travail de thèse est d’utilisation de nanotubes de carbon (NTCs) comme support pour confiner de nanoparticules métalliques ou comme gabarit pour le confinement de la phase active. Le chapitre I présente l’état actuel des connaissances sur les effets de confinement dans les NTCs. Le chapitre II décrit la préparation et la caractérisation de catalyseurs métalliques à base de ruthénium, de cobalt et de palladium, confinées à l’intérieur de NTCs. Dans ce cadre, l’étude de l’influence de différents paramètres tels que les conditions opératoires, la nature du métal ou du précurseur, ou un prétraitement du support NTC, sur la sélectivité du confinement est présentée. Le chapitre III comporte deux parties : l’une est consacrée à l’utilisation de NTCs comme gabarit pour la synthèse de nanotubes de silice (NTSs, en présence ou non de particules de ruthénium confinées dans leur canal). L’autre partie concerne l’immobilisation du catalyseur (complexe métallique de rhodium) dans une phase liquide ionique comme phase catalytique active avant le remplissage dans les NTCs. Le chapitre IV concerne l’application tous les systèmes catalytiques à base de catalyseurs confinés à l’intérieur de nanotubes dans les réactions d’hydrogénation du cinnamaldéhyde et du 1-hexène. L’effet de confinement sur les performances catalytiques est présenté. / This thesis is refer of carbon nanotubes (CNTs) as a support to confine metal nanoparticles or as a template for the confinement of the active phase. Chapter I give a comprehensive review of the state of knowledge on the effects of confinement in CNTs. Chapter II describes the preparation and characterization of the metals (ruthenium, palladium and cobalt) confined inside CNTs catalysts. In this context, the study of the influence of various parameters such as operating conditions, nature of the metal or precursor or nanosupport pretreatment, on the selectivity of confinement is presented. Chapter III consists of two parts: one is devoted to the using of CNTs as a template for the synthesis of silica nanotubes (SNTs in the presence or absence of ruthenium particles confined in their channel). The other part is the immobilization of the catalyst (rhodium metallic complex) in an ionic liquid phase as active catalytic phase before filling in CNTs. Chapter IV concernes the application all catalyst-filled CNTs systems in the hydrogenation of cinnamaldehyde and 1-hexene reaction. The confinement effect on the catalytic performance is presented.
37

Calixarenes and Nanoparticles : Synthesis, Properties and Applications / Calixarènes et nanoparticules : synthèse, propriétés et applications

Ray, Priyanka 16 July 2013 (has links)
Le travail présenté dans ce manuscrit inclut la synthèse organique des différents types de calixarènes, l'étude de leurs propriétés optiques, des simulations théoriques pour déterminer leurs conformations favorables et leurs utilisations pour stabiliser des nanoparticules. Des nanoparticules d’argent, d’or, de platine et des nanoparticules bimétalliques (Ag-Au) ont été synthétisées en utilisant par réduction radiolytique ainsi que la synthèse la photochimique. Ces nanoparticules sont stabilisées en utilisant des calixarènes et divers polymères. Les nanomatériaux ont été caractérisés par spectroscopie d’absorption UV-Visible et spectroscopie de fluorescence et par des observations en microscopie électronique en transmission. Comme les nanoparticules métalliques sont connues pour leurs applications dans divers domaines, des propriétés antibactériennes de nanoparticules d'argent et des propriétés électrocatalytiques des nanoparticules d'or ont été testées. / The work presented in this manuscript includes the organic synthesis of different types of calixarenes, the study of their optical properties, computational studies for determination of their favourable conformations and their use in the stabilisation of nanoparticles. Silver, gold, platinum and bimetallic (Ag-Au) nanoparticles were synthesised using radiolytic reduction as well as photochemical method. These nanoparticles were stabilised by calixarenes and also other ligands which included several polymers. The nanomaterials were characterised using UV-Visible absorption and fluorescence spectroscopy and transmission electron microscopy (TEM) measurements. As metal nanoparticles are known for their applications in various fields, the antibacterial properties of silver nanoparticles and the electrocatalytic properties of gold nanoparticles were tested.
38

Nanoparticules (Bi)métalliques dans le glycérol : synthèse, caractérisation et applications en catalyse / (Bi)metallic nanoparticles in glycerol : synthesis, characterization and catalytic aplications

Dang Bao, Trung 06 June 2018 (has links)
Les nanoparticules métalliques (MNPs) appliquées en catalyse représentent un domaine attractif en raison de leurs propriétés physiques et chimiques intéressantes. D'autre part, l'ajout d'un autre métal au métal hôte (ici nanoparticules bimétalliques, BMNPs) peut modifier les propriétés électroniques (transfert de charge, hybridation d'orbitales, etc.) et/ou géométriques (alliage, coeurcoquille, hétérodimères, etc.), ce qui peut conduire à améliorer le comportement catalytique, voire envisager une nouvelle réactivité. Le glycérol, quant à lui, possède une structure supramoléculaire complexe qui favorise l'immobilisation des MNPs, et évite leur agglomération, et donc facilite le recyclage de la phase catalytique. Des nanoparticules de Cu(0) (CuNPs) immobilisées dans du glycérol ont été synthétisées en présence de poly(vinylpyrrolidone) (PVP) comme stabilisant sous pression d'hydrogène. Les CuNPs dispersées dans le glycérol se sont avérées être un catalyseur robuste pour diverses réactions : formation de liaison C-N, synthèse d'amines propargyliques di- (via couplage croisé déshydrogénant), tri- (via un couplage aldéhyde-amine-alcyne A3) et tétra-substituées (via un couplage cétone-amine-alcyne KA2) ainsi que pour la synthèse d'hétérocycles: indolizines, benzofuranes et quinolines, par des procédés tandem de cycloisomérisation-couplage A3 en utilisant des benzaldéhydes ortho-fonctionnalisés. La phase catalytique de glycérol peut être recyclée plus de cinq fois (formation de liaisons C-N et pour le couplage A3), sans détecter de traces significatives de cuivre dans les produits organiques extraits. Des nanoparticules bimétalliques de palladium-cuivre (PdCuNPs) immobilisées dans le glycérol ont été synthétisées par des méthodes de co-réduction. Selon les différents rapports métalliques, les PdCuNPs peuvent être considérées comme des petits coeurs de Pd enrobés par du Cu (Pd/Cu = 1/1), des alliages aléatoires (Pd/Cu = 1/2) ou un mélange de nanoparticules monométalliques (Pd/Cu = 2/1). Par une voie de synthèse séquentielle, nous obtenons un mélange de nanoparticules monométalliques. La structure des PdCuNPs a également été confirmée par la réactivité observée pour l'hydrogénation des alcynes, montrant Pd1Cu1 et Pd1Cu2 comme structures bimétalliques. Ainsi, ces catalyseurs ont permis d'ajuster la sélectivité des alcènes. En outre, l'influence de Pd incorporé dans le Cu a également été étudiée dans la cycloaddition d'un azidure avec un alcyne (CuAAC). Plus intéressant, des nanoparticules bimétalliques Pd1Cu1 dans le glycérol, agissant comme système catalytique multitâche, ont été utilisées pour les réactions "onepot", notamment la réaction CuAAC et les réactions de couplage croisé C-C (Sonogashira, Suzuki- Miyaura et Heck) (catalysées au Pd). Grâce à des cinétiques différentes entre les réactions CuAAC et couplages C-C, ces procédés tandem ont permis d'obtenir les produits en rendements élevés. De plus, l'hydroaminométhylation d'oléfines catalysée par des complexes de Rh pour synthétiser les amines peut se dérouler dans le glycérol et a montré de meilleures réactivités que dans les solvants organiques. Ces résultats positifs permettent de concevoir un nouveau système biphasique dans le but de recycler la phase catalytique. / Metal nanoparticles (MNPs) applied in catalysis represent an attractive field due to their interesting physical and chemical properties. Besides, the addition of another metal to the host metal in the same entity (bimetallic nanoparticles, BMNPs) can trigger changes in electronic properties (charge transfer, orbital hybridization, etc.) and/or geometric features (alloy, core-shell, heterodimers, etc.), inducing modifications in their catalytic behavior, in terms of activity, selectivity, robustness, or even leading to new reactivity. Concerning the solvent, glycerol, showing a complex supramolecular structure, favors the dispersion of metal nanoparticles, avoiding their agglomeration and then facilitating the recycling of catalytic phase. Small and spherical zero-valent copper nanoparticles (CuNPs) immobilized in glycerol were synthesized using poly(vinylpyrrolidone) (PVP) as stabilizer under hydrogen pressure. CuNPs dispersed in glycerol proved to be a robust and versatile catalyst for a diversity of C-N bond formation reactions, synthesis of di- (via cross-dehydrogenative coupling), tri- (via aldehydeamine- alkyne A3 coupling) and tetra-substituted propargylic amines (via ketone-amine-alkyne KA2 coupling) as well as different types of heterocycles, in particular indolizines, benzofurans and quinolines, by tandem A3-cycloisomerization processes using ortho-functionalized benzaldehydes as substrates. Interestingly, the catalytic glycerol phase could be recycled more than five times in C-N bond formation and A3 coupling reactions, preserving their reactivity, without detecting a significant copper content in the extracted organic products. Bimetallic palladium-copper nanoparticles (PdCuNPs) dispersed in glycerol were prepared by co-reduction methodology. Depending on the different metal ratios used, Pd nanoparticles coated by Cu (Pd/Cu = 1/1), random alloy (Pd/Cu = 1/2) or mainly mixture of monometallic nanoparticles (Pd/Cu = 2/1) were obtained. By a sequential way of synthesis, a mixture of monometallic nanoparticles was mainly observed. In terms of reactivity, the effect of one metal to other one, on catalytic activity and selectivity was evaluated. The structure of the different PdCuNPs was also confirmed by the observed reactivity in the selective formation of alkenes by hydrogenation of alkynes, proving that Pd1Cu1 and Pd1Cu2 correspond to bimetallic structures. Besides, the influence of Pd incorporated into Cu on azide-alkyne cycloaddition (CuAAC) was also studied. Interestingly, Pd1Cu1 in glycerol were applied in one-pot processes acting as multitask catalytic system, involving CuAAC and Pd-catalyzed C-C cross couplings (Sonogashira, Suzuki-Miyaura and Heck). Thanks to the different rates between CuAAC and C-C couplings, these tandem processes permitted to obtain the desired products in high yields. Furthermore, Rh-catalyzed hydroaminomethylation of olefins, in order to synthesize amines, could be carried out in glycerol, generally showing a better reactivity compared to common organic solvents. These preliminary encouraging results permit to plan the design of a new biphasic system, including the recycling of the catalytic phase.
39

Synthèses et caractérisations de nanoparticules métalliques stabilisées en phase aqueuse par des polymères en présence de cyclodextrines : hydrogénation catalytique de composés issus de la biomasse / Synthesis and characterization of metallic nanoparticles stabilized in aqueous media with polymer in presence of cyclodextrins : catalytic hydrogenation of biomass derived compounds

Herbois, Rudy 13 December 2013 (has links)
Depuis les années 1990, les nanotechnologies connaissent un essor important. En catalyse notamment, les nanoparticules métalliques suscitent un intérêt croissant en raison de leurs propriétés à l’interface entre catalyse homogène et hétérogène. Durant cette même période, un intérêt accru a été porté sur l’utilisation de procédés catalytiques respectueux de l’environnement en vue de l’obtention de produits à hautes valeurs ajoutés. Afin de répondre à ces considérations environnementales, des nanoparticules métalliques (ruthénium et rhodium) synthétisées en phase aqueuse ont été utilisées, dans des conditions de température et de pression relativement douces, pour l’hydrogénation de dérivés biosourcés hydrosolubles (furfural, 5-hydroxyméthylfurfural) ou non (3-(2-furyl)acroléine). Parmi les différents stabilisants existants, l’utilisation de cyclodextrines associées à des polymères hydrosolubles a été particulièrement étudiée. Ces cyclodextrines ont pu être utilisées dans des mélanges polymère/cyclodextrine, ainsi que dans des polymères de cyclodextrines linéaires ou réticulés pour la stabilisation de nanoparticles. Durant cette thèse, les différents rôles de la cyclodextrine dans ces systèmes ont ainsi pu être mis en évidence : molécules fonctionnelles de polymères, agent de stabilisation, de dispersion ou de nucléation des nanoparticules mais également agent de transfert de phase lors de catalyse biphasique. / Since the beginning of the 90s, nanotechnology has experienced a significant development. In catalysis, in particular, metallic nanoparticles have attracted a growing interest due to their properties at the interface between homogeneous and heterogeneous catalysis. At the same time, chemical reactions regarding the environment were the focus of a growing interest. To answer these environmental considerations, metallic nanoparticles (ruthenium and rhodium) synthesized in aqueous media were used, under mild conditions (temperature and pressure) for the hydrogenation of water-soluble biomass derivatives (furfural or 5-hydroxymethylfurfural) or insoluble (3-(2-furyl)acrolein). Among the different stabilizing agents, the use of cyclodextrins associated with water-soluble polymers was particularly studied. Cyclodextrins could be used in mixtures polymer/cyclodextrin, or in cyclodextrins polymers in two and three dimensions for the nanoparticles synthesis. Throughout this thesis, the various roles of cyclodextrine in these systems will be shown (crosslinking agent of polymers, stabilizing, dispersing or growth controlling agent of the nanoparticles and also phase transfer agent in biphasic catalysis).
40

Étude théorique des résonances plasmon de nanostructures métalliques et leur inscription lithographique par Microscopie à Force Atomique / Theoretical study of the plasmon resonances of metallic nanoparticles and their lithographic inscription using an Atomic Force Microscopy

Bakhti, Saïd 08 December 2014 (has links)
Le travail de thèse présenté dans ce manuscrit concerne d’une part l’étude théorique des résonances plasmon de nanoparticules métalliques, et d’autre part une étude expérimentale d’inscription de nanostructures métalliques basée sur l’utilisation d’un Microscope à Force Atomique. La partie théorique présente une nouvelle approche phénoménologique permettant l’analyse des modes de résonance propres de particules uniques ainsi que de leur couplage dans des structures simples. Des algorithmes numériques ont été développés afin d’extraire les différents paramètres phénoménologiques à partir du calcul rigoureux du champ diffusé par les particules. Cette méthodologie a été appliquée à divers cas allant de la particule unique à des réseaux à deux dimensions de particules. La partie expérimentale développe une méthode d’inscription de nanostructures métalliques basée sur une réduction électrolytique d’ions métalliques présents dans une couche de silice méso-poreuse, en appliquant une différence de potentiel entre une pointe AFM conductrice et le substrat conducteur supportant la couche. Des structures sont formées de part et d’autre de la couche de silice, avec la possibilité de commuter leur position par simple inversion du potentiel appliqué. De plus, il apparait que cette commutation est accompagnée de modifications dans la conductivité locale de la couche de silice. Une conséquence du processus d’inscription est la formation de filaments métalliques à l’extrémité des pointes AFM. En particulier, des filaments d’or sont obtenus avec des dimensions allant de quelques dizaines à quelques centaines de nanomètres de long pour une épaisseur de quelques nanomètres / The thesis presented in this manuscript concerns firstly the theoretical study of plasmon resonances of metal nanoparticles, and also an experimental study metallic nanostructures inscription based on the use of an Atomic Force Microscope. The theoretical part presents a new phenomenological approach for analyzing the resonant modes of unique particles and their coupling in simple structures. Numerical algorithms have been developed to extract the phenomenological parameters from the rigorous calculation of the field scattered by the particles. This methodology has been applied to various cases from the single particle to two dimensional particle arrays. The experimental section develops a metallic nanostructures inscription method based on electrolytic reduction of metal ions in meso-porous silica thin film, by applying a voltage between a conductive AFM tip and the conductive substrate supporting the film. Structures are formed on both sides of the silica layer, with the possibility to switch their position by a simple reversal of the applied potential. Moreover, it appears that this switching is accompanied by changes in the local conductivity of the silica layer. A consequence of the inscription process is the formation of metal filaments at the ends of AFM tips. In particular, gold filaments are obtained with sizes ranging from tens to hundreds of nanometers long with a few nanometers thick

Page generated in 0.4805 seconds