• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 13
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 68
  • 52
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Diffusive and ballistic transport channels in epitaxial graphene nanoribbons

Aprojanz, Johannes 27 August 2019 (has links)
Graphene nanoribbons (GNRs) are considered as major building blocks of future carbon-based electronics, in which the termination of the edges essentially defines the electronic properties. Theoretical predictions, such as tunable band gaps in armchair orientated GNRs, and the existence of topologically protected metallic states located at zigzag edges, make them a potential candidate for transistor applications as well as a new class of fully coherent devices. In this context, the fabrication of high-quality GNRs with precise edge geometries is of great interest. Atomistic details and the interaction with its support crucially influence and determine the charge propagation within such graphene nanostructures. Hence, the understanding of transport mechanisms on the nanoscale is indispensable in order to integrate GNRs in future nanoelectronics. This thesis presents a detailed study of the sublimation-assisted growth of different types of self-assembled GNRs on SiC crystals using scanning probe, electron microscopy, and electron diffraction experiments. First, natural SiC steps will be shown to trigger the formation of µm-long epitaxial monolayer GNRs (ML-GNRs), which laterally expand on the flat SiC(0001) surface. These ribbons can be transformed into bilayer GNRs (BL-GNRs) by annealing in air. During this process, oxygen-intercalation takes place, forming an oxide layer below the BL-GNRs. Charge transfer into the oxide layer results in strong p-type doping. Based on local multi-probe experiments, ML-GNRs and BL-GNRs revealed 1D diffusive transport characteristics inherent in the comparably high charge carrier densities in both types of ribbon. Moreover, temperature activated interlayer hopping was identified as an effective transport mechanism in BL-GNRs. Graphene nanoribbons grown on pre-processed SiC sidewalls exhibited superior crystalline and electronic quality on wafer-scales. Sidewalls aligned parallel to the [11-20] SiC direction are composed of a periodic array of mini-terraces hosting several approximately (3+-1) nm wide armchair terminated GNRs (ac-GNRs) at their step edges. By using a combined nanoprobe and conductive atomic force microscopy study, ac-GNRs revealed semi-conducting transport characteristics with band gaps of ~300 meV. Such debunching effects can be suppressed in sidewalls along the [1-100] SiC direction. Here, the graphene completely overgrows the sidewall resulting in ~40 nm wide freestanding zigzag GNRs (zz-GNRs). A robust ballistic edge channel was found to be the hallmark of zz-GNRs, which persists on µm-scales at room temperature suggesting the existence of a perfectly conducting channel. However, the roughness of the SiC and the mesa sidewalls limit the charge propagation in this edge mode due to strong short-range interactions. Moreover, ballistic transport was independently proven by utilizing non-invasive and invasive voltage probes. Tuning of the invasiveness was achieved using cleaning procedures of the tips, which lead to a subsequent decrease of contact resistance due to the removal of oxide from the tip surface. The measured resistance of the ballistic conductor was shown to be directly dependent on the invasiveness of the tips, pointing out the importance of the interplay between the probes and the GNR. Finally, spatially-resolved nanoprobe experiments with ultra-small probe spacings revealed several quantized conduction plateaus across zz-GNRs. These plateaus were attributed to edge and bulk transport channels, respectively. Based on tight-binding calculations, the occurrence of spatially-segregated ballistic channels was explained by transversal electric fields originating from asymmetric edge terminations on both sides of the GNR. These findings highlight that edge morphology is an essential parameter in order to understand electronic transport in GNRs. / Nanometerbreite Streifen aus Graphen, sogenannte Graphen-Nanoribbons (GNRs), gelten als wichtiges Bauelement in zukünftigen, kohlenstoffbasierten Elektroniken. Dabei sind die elektronischen Eigenschaften der GNRs wesentlich durch die Geometrie ihrer Kanten bestimmt. Basierend auf theoretischen Modellen, werden skalierbare Bandlücken in armchair-GNRs, sowie lokalisierte, metallische Kantenzustände in zigzag-GNRs vorhergesagt. Diese Eigenschaften könnten für Transistoranwendugen oder sogar für die Realisierung von Bauelementen, die auf kohärentem Ladungstransport basieren, genutzt werden. Dementsprechend ist die Herstellung hochwertiger GNRs mit präzisen Kantengeometrien sowie das Verständnis der zugrundeliegenden Transportmechanismen von großem Interesse. Die vorliegende Arbeit umfasst eine detaillierte Charakterisierung der strukturellen Eigenschaften verschiedener GNR-Typen, die mittels Sublimationsepitaxie auf SiC Kristallen hergestellt wurden. Es wird gezeigt, dass sich μm-lange Monolagen-GNRs (ML-GNRs) an natürlichen SiC Stufenkanten ausbilden, die durch Tempern an Luft zu Bilagen-GNRs (BL-GNRs) transformiert werden können. Während des Temperns findet die Interkalation von Sauerstoff statt, sodass sich unterhalb des BL-GNRs eine Oxidschicht bildet. Der Ladungstransfer in diese Oxidschicht führt zu einer starken p-Dotierung. Lokale Transportmessungen mittels eines 4-Spitzen STM/SEM zeigen, dass sowohl ML-GNRs als auch BL-GNRs 1D diffuse Leiter sind, deren Transporteigenschaften durch die hohen Ladungsträgerdichten dominiert werden. Darüber hinaus wird gezeigt, dass das thermisch aktivierte Tunneln zwischen Graphenlagen ein effektiver Transportmechanismus in BL-GNRs ist. Graphen-Nanoribbons, die durch präferenzielles Wachstum auf SiC-Seitenwänden hergestellt wurden, zeichnen sich durch herausragende strukturelle sowie elektronische Eigenschaften aus. Seitenwände parallel zur [11-20] Richtung wiesen hierbei eine periodische Struktur von Mini-Terrassen auf, an deren Stufen sich mehrere (3 ± 1) nm breite armchair-GNRs (ac-GNRs) ausbilden. Durch die Kombination von 4-Spitzen STM/SEM und Rasterkraftmikroskopie mit leitfähigen Spitzen wurde festgestellt, dass ac-GNRs halbleitende Eigenschaften aufweisen. Die Größe der ermittelten Bandlücken beträgt ∼ 300 meV. Das Zerfallen in Mini-Terrassen kann bei Seitenwänden entlang der [1-100] SiC Richtung unterdrückt werden. Hierbei wird die Seitenwand vollständig vom Graphen überwachsen, sodass sich ∼ 40 nm breite zigzag-GNRs (zz-GNRs) ausbilden. Diese zeichnen sich durch einen robusten, ballistischen (Kanten-) Transportkanal aus, der bei Raumtemperatur auf μm-Skalen nachweißbar ist. Lediglich Rauigkeiten des Substrats sowie der Seitenwände, die als starke Streuzentren dienen, limitieren die Ausbreitung der Ladungsträger in diesem Kantenzustand. Der ballistische Transport von Ladungsträgern in zz-GNRs wurde unabhängig, mit Hilfe von nicht-invasiven und invasiven Spannungskontakten (STM-Spitzen) nachgewiesen. Die Invasivität der Kontakte wurde durch spezielle Reinigungsverfahren der Spitzen verändert, die zu geringeren Kontaktwiderständen führten. Hierbei wird gezeigt, dass der gemessene Widerstand des ballistischen Leiters direkt von der Invasivität der Spitzen abhängt. Dies deutet darauf hin, dass die Interaktion zwischen Messspitze und GNR bezüglich der Transporteigenschaften von großer Bedeutung ist. Abschließend werden mittels ortsaufgelöster Transportmessungen mit ultrakleinen Spitzenabständen mehrere, quantisierte Leitungskanäle detektiert, die sich räumlich über die Breite der zz-GNRs verteilen. Diese Kanäle können jeweils Kanten- und Volumen-Zuständen zugeordnet werden. Gestützt durch tight-binding-Berechnungen werden die quantisierten Transportkanäle durch transversale elektrische Felder erklärt, die durch asymmetrische Bindungsverhältnisse der Kanten erzeugt werden. Diese Ergebnisse unterstreichen, dass die Kantenmorphologie ein wesentlicher Parameter ist, um den elektronischen Transport in GNRs zu verstehen.
22

N-DOPED MULTIWALLED CARBON NANOTUBES: FUNCTIONALIZATION, CHARACTERIZATION AND APPLICATION IN LI ION BATTERIES

Kaur, Aman Preet 01 January 2013 (has links)
The focus of this dissertation is to utilize chemical functionalization as a probe to investigate the reactivity of N-doped multiwalled carbon nanotubes (N-MWCNTs). The surface of N-MWCNTs, being a set of potentially reactive graphene edges, provides a large number of reactive sites for chemical modification, so considerable changes in chemical and physical properties can be envisaged. We observed that both reduction (dissolving metal reduction/alkylation) and oxidation (H2SO4/HNO3 and H2SO4/KMnO4 mixtures) of N-MWCNTs lead to formation of interesting spiral channels and spiraled carbon nanoribbons. A variety of techniques, including TGA, SEM, TEM, XRD and surface area measurements were used to analyze these new textural changes. We have developed methods to demonstrate that specific chemistry has occurred on these new structures. To this end, we introduced metal-binding ligands that could be used as probes in imaging and spectroscopic techniques including TEM, STEM, EDX, and EELS. A proposal for the underlying structure of N-MWCNTs responsible for the formation of the new textures is presented. We have investigated the performance of our materials as potential negative electrodes for rechargeable lithium ion batteries.
23

Effect of Substrate on Bottom-Up Fabrication and Electronic Properties of Graphene Nanoribbons

Simonov, Konstantin January 2016 (has links)
Taking into account the technological demand for the controlled preparation of atomically precise graphene nanoribbons (GNRs) with well-defined properties, the present thesis is focused on the investigation of the role of the underlying metal substrate in the process of building GNRs using bottom-up strategy and on the changes in the electronic structure of GNRs induced by the GNR-metal interaction. The combination of surface sensitive synchrotron-radiation-based spectroscopic techniques and scanning tunneling microscopy with in situ sample preparation allowed to trace evolution of the structural and electronic properties of the investigated systems. Significant impact of the substrate activity on the growth dynamics of armchair GNRs of width N = 7 (7-AGNRs) prepared on inert Au(111) and active Cu(111) was demonstrated. It was shown that unlike inert Au(111) substrate, the mechanism of GNRs formation on Ag(111) and Cu(111) includes the formation of organometallic intermediates based on the carbon-metal-carbon bonds. Experiments performed on Cu(111) and Cu(110), showed that a change of the balance between molecular diffusion and intermolecular interaction significantly affects the on-surface reaction mechanism making it impossible to grow GNRs on Cu(110). It was demonstrated that deposition of metals on spatially aligned GNRs prepared on stepped Au(788) substrate allows to investigate GNR-metal interaction using angle-resolved photoelectron spectroscopy. In particular intercalation of one monolayer of copper beneath 7-AGNRs leads to significant electron injection into the nanoribbons, indicating that charge doping by metal contacts must be taken into account when designing GNR/electrode systems. Alloying of intercalated copper with gold substrate upon post-annealing at 200°C leads to a recovery of the initial position of GNR-related bands with respect to the Fermi level, thus proving tunability of the induced n-doping. Contrary, changes in the electronic structure of 7-AGNRs induced by the deposition of Li are not reversible.  It is demonstrated that via lithium doping 7-AGNRs can be transformed from a semiconductor into a metal state due to the partial filling of the conduction band. The band gap of Li-doped GNRs is reduced and the effective mass of the conduction band carriers is increased.
24

Etude théorique des propriétés thermiques et thermoelectriques des nanorubans de graphène / Theoretical study of thermal and thermoelectric properties of graphene nanoribbons

Mazzamuto, Fulvio 24 November 2011 (has links)
Le graphène planaire se présente comme un des matériaux les plus prometteurs pour la nanoélectronique de demain, grâce particulièrement à sa conductivité thermique et sa mobilité électronique qui sont les plus élevées jamais mesurées dans un solide. Parmi ses allotropes, le graphène découpé en nanorubans est une des formes les plus intéressantes, notamment pour les possibilités d'ingénierie de bandes qu'il offre. Ses propriétés électroniques et vibrationnelles sont fortement influencées par la présence des bords et s’éloignent de celles du graphène planaire. A ce jour, ses propriétés thermiques et thermoélectriques ont été encore peu explorées. Dans ce travail de thèse, grâce à une modélisation atomistique du réseau cristallin, les modes de vibration caractéristiques de chaque type de ruban ont été identifiés et, dans le cadre du formalisme des fonctions de Green hors équilibre, le transport de ces modes a été simulé. On a ainsi évalué les propriétés thermiques des nanorubans en identifiant les types de rubans offrant la plus forte conductance thermique pour envisager une meilleure gestion de la chaleur dans les dispositifs du futur. Dans la direction opposée, des techniques de nanostructuration du ruban permettent de dégrader le transport des phonons et d’amplifier la figure de mérite thermoélectrique en bénéficiant simultanément d'un phénomène de transport électronique résonant. En exploitant ces techniques, un premier dispositif thermoélectrique basé sur les nanorubans de graphène a été conçu et ses performances ont été évaluées par une approche multi-échelle. La possibilité de très forte densité d’intégration du graphène fait l’intérêt d’un tel dispositif qui pourrait fournir des puissances électriques ou de refroidissement très supérieures à celles des dispositifs thermoélectriques actuels. / 2D graphene is one of the most promising materials for nanoelectronics; its thermal conductivity and electronic mobility are the highest ever measured in solids. Among its allotropes, graphene cut in nanoribbons (GNRs) is one of the most interesting structures because it offers possibilities of bandgap engineering. Electronic and vibrational properties of GNRs are strongly affected by the presence of the edges and can differ significantly from those of 2D graphene. Up to now, their thermal and thermoelectric properties have been rarely explored. In this thesis, using an atomistic model of crystal lattice, the vibrational modes associated to each type of ribbon have been identified and via the formalism of nonequilibrium Green’s functions, the transport of these modes has been simulated. We have evaluated the better ribbon structures in terms of thermal conductance for a better heat management in future devices and circuits. On the other side we have identified some particular nanostructured ribbons where the thermoelectric figure of merit is strongly amplified thanks to both the degradation of phonon conductance and the occurring of resonant electron transport. A first thermoelectric device based on such GNRs has been designed and its performance has been evaluated using a multi-scale approach. This device becomes interesting in the case of high integration density of GNRs.
25

Propriedades eletrÃnicas de tricamada de grafeno e nanofitas de carbono tensionadas / Electronic properties of trilayer graphene and strained carbon nanoribbons

Silvia Helena Roberto de Sena 19 December 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Grafeno à um cristal bidimensional cujo espectro eletrÃnico a baixas energias (E <1 eV) apresenta dispersÃo linear e ausÃncia de gap que, juntamente com a natureza quiral dos portadores de carga, sÃo responsÃveis por uma variedade de propriedades incomuns. Como resultado da sua natureza singular, um grande esforÃo tem sido feito para entender todas as suas propriedades fundamentais e tentar gerar uma nova tecnologia baseada nesse material. Nesta tese, nÃs realizamos um estudo teÃrico de dois tipos de sistemas: nanofitas de grafeno e tricamadas grafeno (TCG). No que diz respeito ao primeiro sistema, um modelo de ligaÃÃo forte (tight-binding) à utilizado para estudar as bandas de energia do grafeno e fitas de grafeno sujeitas a uma tensÃo de cisalhamento. A fita à constituÃda por linhas de Ãtomos de carbono cujas bordas estÃo orientadas nas direÃÃes conhecidas como âarmchairâ ou âzigzagâ. Uma tensÃo de cisalhamento simples à aplicada na direÃÃo x de forma que as distÃncias interatÃmicas na direÃÃo y sÃo mantidas inalteradas. Esta modificaÃÃo na rede cristalina origina bandas de energia que diferem em vÃrios aspectos do sistema original sem qualquer deformaÃÃo. As mudanÃas no espectro dependem do deslocamento entre linhas adjacentes da fita, bem como do parÃmetro de âhoppingâ modificado. Mostra-se tambÃm que este cisalhamento simples modifica as propriedades eletrÃnicas de ambos os sistemas, fitas de grafeno e grafeno, abrindo e fechando gaps de energia para diferentes deslocamentos do sistema. A densidade de estados modificada tambÃm à mostrada. Por fim, o modelo contÃnuo à utilizado a fim de investigar o espectro electrÃnico de trÃs camadas de grafeno acopladas (tricamada de grafeno), na presenÃa de um campo magnÃtico externo. Nesse contexto, obtemos expressÃes analÃticas para os nveis de Landau para ambos os tipos de empilhamento: Bernal (ABA) e romboÃdrico (ABC), verificando-se uma forte dependÃncia dos nÃveis de energia com o tipo de empilhamento. Embora o espectro de Landau para tricamadas ABA seja uma sobreposiÃÃo dos espectros de uma monocamada e de uma bicamada, tricamadas com empilhamento ABC apresentam uma dispersÃo do tipo B3/2 com o campo magnÃtico. Foi mostrado que uma assimetria entre as camadas, que pode ser introduzida por um potencial externo, pode influenciar fortemente as propriedades do sistema. AlÃm disso, as energias de ressonÃncia cÃclotron, assim como forÃas de oscilador correspondentes, e o espectro de absorÃÃo para tricamadas de grafeno sÃo calculadas para ambos os tipos de empilhamento. Verificou-se que um potencial de porta aplicado atravÃs das camadas leva a (1) uma reduÃÃo das energias de transiÃÃo, (2) um levantamento da degenerescÃncia do nÃvel de Landau n=0, e (3) a quebra de simetria entre elÃtrons e buracos. / Graphene is a truly two-dimensional crystal with a gapless linear electronic spectrum at low energies (E<1 eV) which, along with the chiral nature of its charge carriers, is responsible for a variety of unusual properties. As a result of its uniqueness, a great effort has been made in order to understand all its fundamental properties and try to generate a new technology of them. In this thesis we theoretically study two types of graphene-related systems: graphene nanoribbons and trilayer graphene (TLG). Concerning the former, a tight-binding model is used to study the energy band of graphene and graphene ribbon under simple shear strain. The ribbon consists of lines of carbon atoms in an armchair or zigzag orientation where a simple shear strain is applied in the $x$-direction keeping the atomic distances in the $y$-direction unchanged. Such modification in the lattice gives an energy band that differs in several aspects from the one without any shear and with pure shear. The changes in the spectrum depend on the line displacement of the ribbon, and also on the modified hopping parameter. It is also shown that this simple shear strain tunes the electronic properties of both graphene and graphene ribbon, opening and closing energy gaps for different displacements of the system. The modified density of states is also shown. On the latter subject, the continuum model is used in order to investigate the electronic spectrum of three coupled graphene layers (graphene trilayers) in the presence of an external magnetic field. We obtain analytical expressions for the Landau level (LL) spectrum for both the ABA and ABC types of stacking, which exhibit very different dependence on the magnetic field. While the LL spectrum of ABA TLG is found to be a superposition of a monolayer-like and bilayer-like spectra, the ABC TLG present a nearly B^{3/2} field dependence. We show that layer asymmetry and an external gate voltage can strongly influence the properties of the system. In addition, the cyclotron resonance energies, the corresponding oscillator strengths, and the cyclotron absorption spectrum for trilayer graphene are calculated for both ABA and ABC stacking. A gate potential across the stacked layers leads to (1) a reduction of the transition energies, (2) a lifting of the degeneracy of the zero Landau level, and (3) the removal of the electron-hole symmetry.
26

Graphene based supramolecular architectures and devices / Dispositifs et architectures supramoléculaires électroactives à base de graphène

El Gemayel, Mirella 19 June 2014 (has links)
Cette thèse démontre le potentiel d'utilisation du graphène pour la fabrication de transistors à effet de champ à couche mince. Celui-ci est préparé par exfoliation en phase liquide et co-déposé avec un polymère semiconducteur du type n. Cette stratégie montre que le graphène améliore le comportement ambipolaire du polymère et plus particulièrement le transport des trous ce qui renforce l'application des matériaux composites au graphène dans les circuits logiques.Par la même approche de mélange, de nouveaux nanorubans de graphène dispersés en solution, ont été utilisés pour améliorer la performance des dispositifs basés sur un polymère amorphe de type p. Ces nanorubans forment une voie de percolation pour les charges améliorant ainsi la performance des dispositifs dans l'obscurité ainsi que sous illumination. Finalement, les dispositifs photosensibles multifonctionnels ont été examinés par l'introduction de molécules photochromiques avec différents substituants au sein des films semi-conducteurs à base de polymère ou de molécules de petite taille qui ont été trouvés influer la photocommutation. / This thesis demonstrates that graphene produced by liquid-phase exfoliation can be co-deposited with a polymerie semiconductor for the fabrication of thin film field-effect transistors. The introduction of graphene to the n-type polymeric matrix enhances not only the electrical characteristics of the devices, but also the ambipolar behavior and the hole transport in particular. This provides a prospective pathway for the application of graphene composites for logic circuits.The same approach of blending was adopted to enhance the electrical characteristics of an amorphous p-type polymer semiconductor by addition of an unprecedented solution processable ultra-narrow graphene nanoribbon. GNRs form percolation pathway for the charges resulting in enhanced deviee performance in daras weil as under illumination therefore paving the way for applications in (opto)electronics.Finally, multifunctional photoresponsive devices were examined by introducing photochromic molecules exposing different substituents into small molecule or polymeric semiconductor films that were found to affect the photoswitching behavior.
27

Investigation Of The Structural Properties Of Silicene Nanoribbons By Molecular Dynamics Simulations

Ince, Alper 01 June 2012 (has links) (PDF)
With the emergence of nanotechnology, mankind has obtained the capability to manipulate materials at nanoscale and this led to the invention of a new group of novel materials like carbon nanotubes, graphene and quantum nanodots. Silicene nanoribbons (SiNRs) are one of the newest members of this nanomaterial family which has been synthesized very recently by deposition on silver substrates. A SiNR sheet is made up of a layer of two dimensional honeycomb structure solely composed of silicon atoms. In this thesis, structural and mechanical properties of SiNR are being investigated with the help of classical empirical molecular dynamics simulation technique. In the first part of this thesis, structural properties of SiNR sheets have been investigated. This investigation has been carried out by performing classical molecular dynamics simulations using atomistic many-body potential energy functions at many different SiNR sheet lengths and widths, at low and room temperatures with and without periodic boundaries. It has been found that SiNR sheets do not have perfectly flat honeycomb geometry. It has also been found that finite length models are more likely to form tubular structures resembling distorted silicon nanotubes at room temperature. In the second part of this thesis, mechanical properties of SiNRs have been investigated. Mechanical properties of silicene nanoribbons of varying width have been investigated under 5% and 10% uniaxial strain via classical Molecular-Dynamics simulations at 1 K&deg / and 300 K&deg / temperatures by the aid of atomistic many-body potential energy functions. It has been found that under strain, SiNRs show such material properties: they are very ductile, they have considerable toughness and despite their low elasticity, they have a very long plastic range before fragmentation.
28

Graphene based supramolecular architectures and devices

El Gemayel, Mirella 19 June 2014 (has links) (PDF)
This thesis demonstrates that graphene produced by liquid-phase exfoliation can be co-deposited with a polymerie semiconductor for the fabrication of thin film field-effect transistors. The introduction of graphene to the n-type polymeric matrix enhances not only the electrical characteristics of the devices, but also the ambipolar behavior and the hole transport in particular. This provides a prospective pathway for the application of graphene composites for logic circuits.The same approach of blending was adopted to enhance the electrical characteristics of an amorphous p-type polymer semiconductor by addition of an unprecedented solution processable ultra-narrow graphene nanoribbon. GNRs form percolation pathway for the charges resulting in enhanced deviee performance in daras weil as under illumination therefore paving the way for applications in (opto)electronics.Finally, multifunctional photoresponsive devices were examined by introducing photochromic molecules exposing different substituents into small molecule or polymeric semiconductor films that were found to affect the photoswitching behavior.
29

Propriedades eletrônicas e estruturais de nanoestruturas de carbono funcionalizadas para aplicação em sensores / Electronic and structural properties of functionalized carbon nanostrucutures for sensors applications

Menezes, Vivian Machado de 12 January 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents a study of properties of functionalized carbon nanotubes and graphene nanoribbons. We studied, by first principles simulations, the structural and electronic properties of functionalized nanotubes and interacting with molecules of biological interest. Furthermore, we analyzed the properties of these systems under the action of applied electric fields, noting changes on their behavior due the external perturbation. In the case of nanotubes interacting with anti-inflammatory nimesulide, the interaction is repulsive, resulting in energetically unstable systems, but which may have their behavior controlled by the external field. We noted that when the carbon nanotube interacts with the antimalarial primaquine, a strong bond between the systems occurs, where the presence of primaquine can modify the electronic properties of nanotubes. In the other hand, for the case of carbon nanostructures interacting with vitamins, the interaction is weak. We also evaluated the structural, electronic and magnetic properties of Ti and Mn doped carbon nanoribbons (or graphene nanoribbons) and properties of defective nanoribbons, by first principles simulations (code SIESTA), and analyzed the electronic transport properties of some of these systems, by tight-binding methods associated with Green s functions. We noted that there is an edge and sublattice effect in zigzag edged nanoribbons, where the properties of the systems can be modified depending on the defect location with respect to the edge. We demonstrate that carbon nanostructures can act as selective sensors of atoms or adsorbed molecules, besides representing a route to drug delivery. / Este trabalho apresenta um estudo de propriedades de nanotubos e nanofitas de carbono funcionalizados. Estudamos, via simulação de primeiros princípios, as propriedades estruturais e eletrônicas de nanotubos funcionalizados e interagindo com moléculas de interesse biológico. Analisamos, ainda, as propriedades destes sistemas sob a ação de campos elétricos aplicados, observando alterações em seus comportamentos devido à perturbação externa. No caso dos nanotubos interagindo com o anti-inflamatório nimesulida, a interação é repulsiva, resultando em sistemas energeticamente instáveis, mas que podem ter seu comportamento controlado pelo campo externo. Notamos que quando o nanotubo de carbono interage com o antimalárico primaquina, ocorre uma ligação forte entre estes sistemas, onde a presença da primaquina pode alterar as propriedades eletrônicas dos nanotubos. Já para o caso de nanoestruturas de carbono interagindo com vitaminas, a interação é fraca. Avaliamos também as propriedades estruturais, eletrônicas e magnéticas de nanofitas de carbono (ou nanofitas de grafeno) dopadas por átomos de Ti e Mn e propriedades de nanofitas defeituosas, por meio de simulações de primeiros princípios (código SIESTA), e avaliamos as propriedades de transporte eletrônico de alguns destes sistemas, por métodos tight-binding associados a funções de Green. Observamos que existe um efeito de borda e de sub-rede nas nanofitas de borda zigzag, onde as propriedades dos sistemas podem ser alteradas de acordo com a localização do defeito com relação à borda. Nós mostramos que as nanoestruturas de carbono podem agir como sensores seletivos de átomos ou moléculas adsorvidos, além de representarem uma rota de carreamento de fármacos.
30

Conductance Fluctuations in GaAs Nanowires and Graphene Nanoribbons

January 2015 (has links)
abstract: In mesoscopic physics, conductance fluctuations are a quantum interference phenomenon that comes from the phase interference of electron wave functions scattered by the impurity disorder. During the past few decades, conductance fluctuations have been studied in various materials including metals, semiconductors and graphene. Since the patterns of conductance fluctuations is related to the distributions and configurations of the impurity scatterers, each sample has its unique pattern of fluctuations, which is considered as a sample fingerprint. Thus, research on conductance fluctuations attracts attention worldwide for its importance in both fundamental physics and potential technical applications. Since early experimental measurements of conductance fluctuations showed that the amplitudes of the fluctuations are on order of a universal value (e2/h), theorists proposed the hypothesis of ergodicity, e.g. the amplitudes of the conductance fluctuations by varying impurity configurations is the same as that from varying the Fermi energy or varying the magnetic field. They also proposed the principle of universality; e.g., that the observed fluctuations would appear the same in all materials. Recently, transport experiments in graphene reveal a deviation of fluctuation amplitudes from those expected from ergodicity. Thus, in my thesis work, I have carried out numerical research on the conductance fluctuations in GaAs nanowires and graphene nanoribbons in order to examine whether or not the theoretical principles of universality and ergodicity hold. Finite difference methods are employed to study the conductance fluctuations in GaAs nanowires, but an atomic basis tight-binding model is used in calculations of graphene nanoribbons. Both short-range disorder and long-range disorder are considered in the simulations of graphene. A stabilized recursive scattering matrix technique is used to calculate the conductance. In particular, the dependence of the observed fluctuations on the amplitude of the disorder has been investigated. Finally, the root-mean-square values of the amplitude of conductance fluctuations are calculated as a basis with which to draw the appropriate conclusions. The results for Fermi energy sweeps and magnetic field sweeps are compared and effects of magnetic fields on the conductance fluctuations of Fermi energy sweeps are discussed for both GaAs nanowires and graphene nanoribbons. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015

Page generated in 0.0589 seconds