• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 22
  • 16
  • 8
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 62
  • 35
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 18
  • 17
  • 15
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Ação sinérgica entre terapia fotodinâmica e terapia hipertérmica utilizando nanobarras de ouro / Synergic action between photodynamic therapy and hyperthermic therapy using gold nanorods

Freitas, Lucas Freitas de 26 February 2016 (has links)
Estudos com tratamento hipertérmico de tumores utilizando nanopartículas metálicas têm sido realizados durante as últimas décadas e mostram resultados bons quanto à remissão de tumores, por vezes chegando à cura completa. O mesmo acontece em relação aos tratamentos baseados em ação fotodinâmica de fotossensibilizadores. Tratamentos aliando a terapia hipertérmica com nanopartículas de ouro e a terapia fotodinâmica com diversos fotossensibilizadores tem efeito sinérgico e apresenta excelente potencial terapêutico, em que pese serem necessários mais estudos para que uma nova terapia conjunta possa ser implementada. A proposta deste trabalho foi investigar esse efeito sinérgico utilizando nanobastões de ouro complexados com fotossensibilizadores. Após a síntese dos nanobastões pelo método de seeding, a eficácia do tratamento fotodinâmico e da terapia hipertérmica, separadamente, foi investigada. A metodologia do recobrimento dos nanobastões por fotossensibilizador, em um primeiro momento, não logrou êxito com a porfirina, porém com a ftalocianina tetracarboxilada se mostrou mais eficaz. A taxa de fotodegradação da ftalocianina em solução foi investigada como parâmetro para a eficiência em geração de oxigênio singlete. Após centrifugação e lavagem das nanopartículas, no entanto, evidenciou-se por espectrofotometria que o fotossensibilizador não permaneceu aderido aos nanobastões. Em um segundo momento, optamos por recobrir os nanobastões por porfirinas tetrassulfonadas, com ou sem grupamentos metil-glucamina. Após o processo de recobrimento, essas ftalocianinas formaram complexos iônicos com o CTAB que recobre os nanobastões. Os complexos nanobastões-ftalocianinas foram analisados por microscopia eletrônica de transmissão e as taxas de geração de oxigênio singlete e de radical hidroxil foram investigadas. Além disso, foram utilizadas para testes in vivo e in vitro com células de melanoma melanótico (B16F10) ou amelanótico (B16G4F). As células tumorais em cultura ou os tumores em camundongos C57BL6 foram irradiados com luz em 635 nm e os tumores foram observados por 15 dias após o tratamento. Houve evidente aumento na geração de oxigênio singlete por ambos fotossensibilizadores, e maior geração de radicais livres por parte do fotossensibilizador metilglucaminado. O oposto ocorre com o fotossensibilizador sem metilglucamina. Houve, também, moderada citotoxicidade no escuro quando células foram incubadas com nanopartículas recobertas por ftalocianinas ou não. Quando ativados pela luz, os complexos ftalocianinas-nanobastões desencadearam um aumento de 5ºC no meio de cultura das células, e a morte celular observada foi extensa (91% para a linhagem B16G4F e 95% para a linhagem B16F10). Tanto os resultados in vitro quanto os in vivo indicam que as propriedades das ftalocianinas testadas são melhoradas significativamente quando elas estão complexadas aos nanobastões. Este é um estudo pioneiro por utilizar duas porfirinas tetrassulfonadas específicas e por utilizar o mesmo comprimento de onda para a ativação dos fotossensibilizadores e nanobastões. / Studies with hyperthermic tumor ablation using metallic nanoparticles have been performed on the last decades, and show promising results on tumor remission, sometimes achieving the complete cancer elimination. The same occurs regarding on treatments based on photodynamic activity of photosensitizer compounds. Studies indicate that those therapeutic interventions - hyperthermic therapy using gold nanorods and photodynamic activity with many photosensitizers - together can present a synergistic effect, and offer a great therapeutic potential, although more investigation needs to be performed before such approach could be implemented. We proposed to investigate the effect of the attachment of photosensitizers onto the surface of gold nanorods (well-characterized devices for hyperthermia generation). After nanorods synthesis through a seed-mediated method, the PDT and hyperthermia\'s efficacy was assessed separately. The method used for covering the gold nanorods with photosensitizers did not permit, in a first approach, the attachment of porphyrins onto the nanoparticles surface, but the attachment of tetrasulfonated phthalocyanines was more successful. The phthalocyanine\'s degradation rate was assessed as an indirect parameter of singlet oxygen generation. After centrifuging and washing the nanoparticles, we saw that the photosensitizers do not keep attached to the nanorods. On a second approach, we chose to recover the nanorods with two zinc phthalocyanines - with or without methyl-glucamine groups. After the recovering process, the phthalocyanines formed ionic complexes with the CTAB that is previously recovering the nanoparticles. The nanorod-phthalocyanines complexes were analyzed by TEM, and their singlet oxygen and hydroxyl radical generation yield were assessed. Furthermore, they were tested in vitro in melanoticB16F10 and amelanotic B16G4F melanoma cells, and in vivo. The tumor cells (in vitro) and the tumor tissue (in vivo) with nanoparticles were irradiated with laser (at 635 nm), and the tumor growth in mice was observed for 15 days after the laser irradiation. It is evident the increase in the singlet oxygen generation, and higher HPF activation for the glucaminated Pc, but the inverse for the other photosensitizer. It seems like there is a type I to type II switch on the action mechanism of the latter Pc. A mild cytoxocity was observed with the nanorods conjugated with photosensitizer in the dark, but when they are activated by light (and taken into account a 5ºC rise in the temperature because of the surface plasmon resonance from the gold nanorods), the cell killing is intense (91% for B16G4F cell line, and 95% for B16F10 cell line). Both in vitro and in vivo results indicate that the photodynamic properties of the phthalocyanines tested are enhanced when they are attached onto the nanorods surface. This is a novel study because we used two tetrasulfonated phthalocyanines and because we used the same wavelength to activate both the nanorods and the photosensitizers.
42

Ablação tumoral fototérmica in vivo utilizando nanobarras de ouro / Photothermal tumor ablation in vivo using gold nanorods

Freitas, Lucas Freitas de 02 February 2012 (has links)
Ultimamente têm-se buscado tratamentos menos invasivos para o câncer, como os que utilizam campos magnéticos ou luz, e dentre esses últimos, aqueles que fazem uso de materiais, geralmente metálicos, com propriedade de ressonância plasmônica de superfície. O tratamento hipertérmico encaixa-se neste perfil e já apresenta resultados promissores com nanoshells de sílica recoberta por ouro e com nanobarras de ouro maciço, apesar de pouco se saber sobre o mecanismo de ação e sobre como as vias de morte celular são ativadas em tal tratamento. A síntese das nanobarras envolve o uso do composto brometo de cetiltrimetilamônio (CTAB), o qual permanece aderido à superfície das mesmas, porém é caracterizado por apresentar extrema citotoxicidade, fato que incita a modificação do recobrimento das nanopartículas por um biopolímero mais compatível. Estudos recentes indicam que o CTAB aderido à membrana não apresenta citotoxicidade considerável, porém há poucos dados que confirmem tal hipótese na literatura. Este trabalho se propôs a investigar a via de ativação da morte celular, bem como confirmar a hipótese de que as partículas recobertas por CTAB podem ser utilizadas para tratamento antitumoral fototérmico in vivo de forma segura. Para isso, nanobarras de ouro foram sintetizadas pelo método de seeding, sendo parte delas centrifugadas e lavadas com água deionizada por três vezes para retirar o CTAB e a outra parte deixada com CTAB no meio. As partículas foram testadas in vitro pelo teste de citotoxicidade pelo [brometo de 3-(4, 5-dimetiltiazol-2-yl)-2,5-difeniltetrazólio] (MTT) nas linhagens celulares HTC, HepG2, HT-29 e 786-O, e também foram testadas quanto à sua viabilidade com o tempo decorrido desde sua síntese. Após confirmar que as nanobarras centrifugadas e lavadas podem ser utilizadas no tratamento hipertérmico sem riscos à saúde e após verificar que as seeds e as nanobarras devem ser utilizadas até 48 horas depois de sua síntese, as nanopartículas foram utilizadas para tratamento de tumor de Ehrlich (induzido no dorso de camundongos). Para isso, foram organizados quatro grupos experimentais: L (camundongos não receberam nanopartículas, irradiados com laser em 808 nm), N (camundongos receberam nanopartículas, não irradiados com laser), H (camundongos receberam nanopartículas e irradiados com laser em 808 nm) e Controles (camundongos não receberam nanopartículas nem irradiação por laser). O material tumoral foi coletado após a irradiação e submetido à análise histológica, ao teste de quimiluminescência para avaliar a lipoperoxidação de membrana e ao teste de TRAP (do inglês, Total Radical-Trapping Antioxidant Parameter) para avaliar a capacidade antioxidante total. Após a irradiação com 2 W/\'CM POT.2\' ou 720 mW/\'CM POT.2\' de intensidade, houve evidente redução do volume tumoral nos animais do grupo H tratados com laser na maior potência utilizada, com um aumento de 47ºC (temperatura final de 79ºC) observado localmente. Nos animais do grupo H tratados com laser na menor potência utilizada, os danos foram menores. Os animais dos grupos L e H apresentaram semelhante lipoperoxidação, maior que no grupo N (estatisticamente significante somente nos animais tratados com laser em intensidade de 2 W/\'CM POT.2\'), e a capacidade antioxidante dos tumores dos animais do grupo H foi elevada no protocolo com laser em 2 W/\'CM POT.2\'. Os resultados indicam que a necrose é a via de morte ativada prioritariamente neste caso e que o tratamento com as nanobarras se mostrou eficaz. / Less invasive cancer treatments, likewise those based on magnetic fields or light, are in the most common aims of researchers nowadays. Regarding light based treatments, those in which metallic, plasmonic materials are highlighted in research field. Hiperthermic treatment fits this profile, once it already presents promising results with gold-coated silica nanoshells and with gold nanorods, although little is known about its action mechanism or about how cell death pathways are activated. The compound cetyltrimethylammonium bromide (CTAB) is necessary for the nanorods synthesis, but is known to be extremely cytotoxic, fact that instigates the modification of nanorods surface coating by a compatible biopolymer. Recent studies indicate that surface-adhered CTAB does not present significant cytotoxicity, but there are few evidences to confirm this hypothesis in the literature. This study aims to investigate the cell death pathway that can be activated, as well as to confirm the possibility of safe CTAB-coated nanoparticles use in antitumor in vivo treatments. For that, gold nanorods were synthesized by the seeding method and part of them were centrifuged and washed with deionized water to eliminate CTAB of the solution and the rest remained with CTAB. The particles were tested in vitro by [3-(4, 5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cytotoxicity test, in HTC, HepG2, HT-29 and 786-O cancer cell lines, and investigated regarding their viability through time after their synthesis. After confirming that centrifuged and washed nanorods can be used in hiperthermic therapy without health risks, and after find out that seeds and nanorods must be used within 48 hours after their synthesis, those nanoparticles were used for in vivo hyperthermic Ehrlich tumor (induced on the back of mices) treatment. Four experimental groups were organized: L (mice did not receive nanoparticles, treated with laser at 808 nm), N (mice received nanoparticles, not treated with laser), and H (mice received nanoparticles and treated with laser at 808 nm) and Controls (mice did not receive nanoparticles and were not treated with laser). A tumor biopsy was taken after laser irradiation and was subjected to histological analysis, by a chemiluminescence assay to evaluate membrane lipoperoxidation, and by Total Radical-Trapping Antioxidant Parameter (TRAP) assay as well, to evaluate total antioxidant capacity. After irradiation with laser (intensities of 2 W/\'CM POT.2\' or 720 mW/\'CM POT.2\'), there was an evident tumor volume reduction in animals of H group treated with higher power laser, with a 47ºC rise in temperature (final temperature was 79ºC) observed locally. The damages in the tumors irradiated with lower power laser were less intense. The animals of L and H groups showed similar membrane lipoperoxidation, which was more intense than in N animals (statistically significant just in the animals treated with higher intensity of radiation). The antioxidant capacity of H animals tumor was elevated also in the animals treated with higher energy. Our results indicate that necrosis is the main activated cell death pathway in this case, and that nanorods treatment is worth it.
43

Biossensores eletroquímicos para fins ambientais e medicinais / Electrochemical biosensors to medical and environmental applications

Ribovski, Laís 19 February 2015 (has links)
Embora exista considerável progresso na área de biossensores, ainda é primordial aprimorar muitos desses dispositivos. Este trabalho tem por objetivo contribuir para o contínuo crescimento dos biossensores a base de enzimas e de moléculas de DNA, sendo dois biossensores eletroquímicos descritos. O primeiro trata-se de um biossensor enzimático utilizando tirosinase (Tyr) imobilizada por intermédio de cistamina (CYS) e glutaraldeído (GA) para a detecção de compostos fenólicos. Eletrodos de carbono impressos (SPCE) foram modificados com nanobastões de ouro (AuNRs) em filme de poli(amido amina) (PAMAM) geração 4 para o favorecimento da transferência direta de elétrons (DET) entre o eletrodo e o sítio ativo da enzima. Para caracterizar os AuNRs e AuNRs-PAMAM, espectroscopia de absorção no UV-Visível, espalhamento de luz dinâmico (DLS) e microscopia eletrônica de varredura (SEM) foram empregadas. As etapas do biossensor foram estudadas por voltametria cíclica e linear, amperometria e microscopia de força atômica (AFM) na presença de dois analitos: catecol (CAT) e dopamina (DA). A faixa linear para CAT foi de 2,8 a 30,3 μmol L-1 com um limite de detecção (LD) de 1,0μmol L-1 enquanto para a DA, a faixa linear foi de 27,8 a 448,7 μmol L-1 e LD de 10,0 μmol L-1. Além de apresentar ótima resposta frente a possíveis interferentes, o sensor também mostrou excelente desempenho em amostras reais, que atrelados aos testes de repetibilidade e reprodutibilidade mostram a estabilidade e acurácia do biossensor. O segundo sensor, trata-se de um sensor de DNA impedimétrico em eletrodo de ouro para a detecção da mutação c.68_69del relacionada à predisposição ao câncer de mama. A imobilização da sequência de captura (SH-ssDNA) no eletrodo ocorreu pela ligação ouro-enxofre (Au-S) e o modelo de hibridização escolhido foi a hibridização direta. O genossensor distinguiu eficientemente entre as sequências alvo (tarDNA) e não-complementar (ncsDNA), apresentando faixa linear de 1,0 a 200,0 nmol L-1 e LD de 0,14 nmol L-1. Os resultados sugerem que ambos biossensores têm potencial e que as estratégias propostas são promissoras para o desenvolvimento de outros biossensores. / Despite a considerable progress in the area of biosensors, it is still crucial to improve most of these sensors. This study aims to contribute to the ongoing growth of enzyme- and DNA-based biosensors, being described two electrochemical biosensors. The first one is an enzyme-based biosensor with immobilized Tyrosinase (Tyr), through cystamine (CYS) and glutaraldehyde (GA), for detection of phenolic compounds. Screen-printed carbon electrodes (SPCE) were modified by gold nanorods (AuNRs) stabilized with poly(amide amine) PAMAM generation 4 to facilitate direct electron transfer (DET) between electrode and enzyme active site. AuNRs and AuNRs-PAMAM were characterized using UV-Visible absorption spectroscopy, dynamic light scattering (DLS) e scanning electron microscopy (SEM). Biosensor stages were studied by cyclic and linear voltametry, amperommetry and atomic force microscopy (AFM) and tested agains two analytes: catechol (CAT) and dopamine (DA). Detection limit (LD) for CAT is 1 μmol L-1 and linear range from 2.8 to 30.3 μmol L-1, for DA, LD is 10.0 μmol L-1 and linear range 27.8 to 448.7 μmol L-1. Besides, the biosensor shows great response in the presence of interferents, it also had an excellent performance in real samples that along with repeatability and reproducibility tests indicate stability and accuracy of the biosensor. The second sensor is an impedimetric DNA sensor prepared on gold electrode to detect c.68_69del mutation related to breast cancer predisposition. Capture sequence (HS-ssDNA) immobilization occurred due to gold-sulfur bond (Au-S) and direct hybridization was the chosen hybridization model. The genosensor was able to distinguishing between target sequence (tarDNA) and non-complementary sequence (ncsDNA) and linear range and LD were found to be 1.0 to 200.0 nmol L-1 and 0.14 nmol L-1, respectively. Results suggest both biosensors have potential and proposed strategies are promising for other biosensors development.
44

Ceramic nanostructured catalysts

Gilbank, Alexander January 2015 (has links)
Catalysis has an effect on almost every aspect of our lives. They are used to help grow the food we eat, clean the water we drink and produce the fuels our civilisation is so dependent upon. Homogeneous catalysts, those in the same phase as the reaction medium, are highly selective as a result of their tuneable nature, for example through changes to ligands in a metal complex. However, their separation from the reaction medium can become a problematic, costly, non-green issue, overcome through the use of heterogeneous catalysts which can be removed and recycled by simple separation techniques such as filtering and sedimentation. A major limitation on understanding the behaviour of heterogeneous catalysts is the presence of different active sites due to different exposed crystal surface, concentration of defects and morphological variations. With such considerations, the first section of this thesis focuses on the synthesis of discrete and well-defined nanostructured materials (ceria and titanate) using a single-step hydrothermal method. Nanostructured ceria with different morphologies (particles, rods and cubes), present a high oxygen storage capacity and thermal stability. Their oxidation catalytic activity was assessed using CO oxidation as a model reaction as a function of their physical and chemical properties, tuned by morphological control at the nanoscale. An inverse relationship is observed between crystallite size and rates of reaction normalised per surface area. Smaller crystallites present a constrained geometry resulting in a higher concentration of defects, highly active catalytically due to their unsatisfied coordination and high surface energy. The surface to bulk oxygen ratio generally increased as the surface area increased, however, ceria nanorods present a higher surface oxygen content than that which would be predicted according to their surface area, likely due to the selective exposure of the (110) and (100) dominating crystal surfaces presenting more facile oxygen atoms in their surface. Additionally a relationship between surface to bulk oxygen ratios and activation energies was also ascribed to the more facile nature of oxygen atoms on these surfaces and their more readily formed oxygen vacancies as a result. This activity is as a result of the formation of oxygen vacancies being the rate-controlling step. The thermal stability of nanostructured ceria (particles, rods and cubes) was also studied to investigate their performance under cyclic high temperature applications. For this, the materials were pre-treated at 1000 °C under different atmospheres (inert, oxidative and reducing). In all cases, the materials sinter, consequently resulting in a dramatic decrease in surface area. Interestingly, their catalytic activity per surface area towards CO oxidation, seems to be maintained, although those materials pre-treated under inert and oxidising atmospheres became inactive in consecutive catalytic runs. However, nanostructured ceria pre-treated at 1000 °C under hydrogen appeared to maintain its activity per surface area. The presence of hydrogen during thermal treatment does not only facilitate the removal of surface oxygen, but also the bulk oxygen, resulting in a rearrangement of the structure that facilitates its catalytic stability. Titanate nanotubes were shown to be inactive for CO oxidation and thus were used in the second part of this thesis as a support for platinum nanoparticles to study the effect of the structure and metal-support interaction on the resulting catalytic activity. The study focuses on the effect of different loading methods (ion exchange and incipient wetness impregnation) of platinum nanoparticles on the resulting metal particle size, dispersion, metal-support interaction and consequently their resulting catalytic activity. Ion exchange consistently resulted in smaller nanoparticles with a lower dispersion of sizes and more active catalyst, both in terms of turnover frequency values and activation energy, compared with incipient wetness impregnation. The catalytic activity of the platinum supported on titanate nanotubes increases as the metal particle size decreases to a size value (between 1 and 2.5 nm) below which a dramatic decrease in activity is observed. Despite initial differences in catalytic activity between the different catalysts, it was observed that after initial reactions to 400 °C, the activation energy was independent of metal loading weight and was instead inherent of the loading method, suggesting the presence of similar active sites.
45

Stabilisation of metal nanoparticles by confinement on curved supports

Bell, Tamsin Elizabeth January 2019 (has links)
Supported metal nanoparticles present unique chemical and physical properties compared to their bulk counterparts. Their high surface energy provides outstanding catalytic activities, opening the door not only to improved catalytic systems but also to new catalytic routes. However, their high surface energy and liquid-like properties are responsible for their instability, usually leading to agglomeration under reaction conditions. This thesis seeks to investigate a novel nanoparticle stabilisation approach by physical confinement on curved supports. Specifically, the project focusses on the stabilisation of cobalt and gold nanoparticles on nanostructured -Al2O3 supports, motivated by the industrial interest of Sasol UK. The research hypothesis is validated by detailed characterisation and catalytic testing of a range of catalysts using different metal loadings and support morphologies. To enable this study, the mechanism of the hydrothermal synthesis of a series of nanostructured -Al2O3 supports with either flat or curved surfaces and differing degrees of curvature has been elucidated, leading to the development of a semi-continuous manufacturing process. Varying the method for loading cobalt onto -Al2O3 supports highlights the implications of method selection on the particle size, reducibility, composition and the tendency to form irreducible cobalt oxides, all of which affect the catalytic activity. The ability to obtain and stabilise small nanoparticles with low loading (1 wt% Co) without the formation of irreducible cobalt oxides exposes the beneficial effect of the support curvature. Specifically, the stabilisation effect is theorised to be effective under the condition where the ratio of the diameter of the nanoparticle (P) and the nanorod (R) is less than one, P:R < 1. In several cases, after cobalt or gold reduction, elongation of the nanoparticles, as opposed to agglomeration, is observed by electron microscopy confirming that the particles are physical confined by the curved surface in all directions except along the nanorod axis. In these cases, highly active Co/-Al2O3 and Au/-Al2O3 catalysts are reported for NH3 decomposition and CO oxidation respectively. For higher metal loadings (> 5 wt% Co), where the particles are the same size or larger than the diameter of the nanorod cross-section, no noticeable stabilisation effect is reported. The results of this thesis are scientifically and industrially important. If applied correctly, this novel nanoparticle stabilisation strategy could be used to design catalysts with improved activity and stability, resulting in lower operational costs and improved resource efficiency.
46

Metallization of Self-Assembled DNA Templates for Electronic Circuit Fabrication

Uprety, Bibek 01 June 2017 (has links)
This work examines the deposition of metallic and semiconductor elements onto self-assembled DNA templates for the fabrication of nanodevices. Biological molecules like DNA can self-assemble into a variety of complex 2-D and 3-D architectures without the need for expensive patterning tools. In addition, self-assembled DNA templates can be designed to controllably place functional nanomaterials with molecular precision. These characteristics make DNA an attractive template for fabricating electronic circuits from biological molecules. However, electrically conductive structures are required for electronic applications. While metallized DNA nanostructures have been demonstrated, the ability to make thin, continuous wires that are electrically conductive still represents a formidable challenge. DNA-templated wires have generally been granular in appearance with a resistivity approximately two to three orders of magnitude higher than that of the bulk material. An improved method for the metallization of DNA origami is examined in this work that addresses these challenges of size, morphology and conductivity of the metallized structure. Specifically, we demonstrated a metallization process that uses gold nanorod seeds followed by anisotropic electroless (autocatalytic) plating to provide improved morphology and greater control of the final metallized width of conducting metal lines. Importantly, growth during electroless deposition occurs preferentially in the length direction at a rate that is approximately four times the growth rate in the width direction, which enables fabrication of narrow, continuous wires. The electrical properties of 49 nanowires with widths ranging from 13 nm to 29 nm were characterized, and resistivity values as low as 8.9 x 10-7 Ω-m were measured, which represent some of the smallest nanowires and the lowest resistivity values reported in the literature. The metallization procedure developed on smaller templates was also successfully applied to metallize bigger DNA templates of tens of micrometers in length. In addition, a polymer-assisted annealing process was discovered to possibly improve the resistivity of DNA metal nanowires. Following metallization of bigger DNA origami structures, controlled placement of gold nanorods on a DNA breadboard (~100 x 100 nm2) to make rectangular, square and T-shaped metallic structures was also demonstrated. For site-specific placement of nanorods to a DNA template, we modified the surface of the gold nanorods with single-stranded DNA. The rods were then attached to DNA templates via complementary base-pairing between the DNA on the nanorods and the attachment strands engineered into the DNA "breadboard" template. Gaps between the nanorods were then filled controllably via anisotropic plating to make 10 nm diameter continuous metallic structures. Finally, controlled placement of metal (gold) - semiconductor (tellurium) materials on a single DNA origami template was demonstrated as another important step toward the fabrication of DNA-based electronic components. The combination of molecularly directed deposition and anisotropic metallization presented in this work represents important progress towards the creation of nanoelectronic devices from self-assembled biological templates.
47

On the Feasibility of Photoacoustic Guidance of High Intensity Focused Ultrasound

Funke, Arik 22 September 2010 (has links) (PDF)
- An extensive summary in French is available in Appendix E on page 189 -
48

Manipulation and Biological Applications of Gold Nanorods

January 2011 (has links)
This thesis compared anionic polyelectrolyte wrapping stabilization with poly(sodium 4-stryene-sulfonate), (PSS), polyelectrolyte and methoxy (polyethylene glycol)-thiol (mPEG (5000) -SH) strategies. From this data the critical gold nanorod (GNR) and cetyl-trimethylammonium bromide (CTAB) concentration ratio needed for GNR stabilization was determined using optical and chemical extraction methods. This was followed by functionalization with a heterobifunctional Polyethylene glycol (PEG) linker, such as a-thio-w-carboxy poly(ethylene glycol) termed t-PEG-c and carbodiimide chemistries for antibody linkage with Immunoglobulin G (IgG), and epidermal growth factor receptor (EGFR) based Human Epidermal growth factor Receptor 2 (Her2), and Cetuximab (C225) antibodies, for in vitro cancer cell targeting. Confocal, two-photon luminescence (TPL), and dark scattering microscopy, and fluorescence, zeta potential, and Nanoparticle Enzyme-linked immunosorbent assay (ELISA) were used to monitor changes to the GNR surface. An untreatable form of bladder cancer was then studied using the t-GNR-PEG-c-Ab bioconjugates with C225 antibody, which housed a glyceraldehyde-3-phosphate (GAPDH), Fluorescein isothiocyanate (FITC) labeled siRNA, termed GAPDH-siRNA-FITC, which was included within a Luciferase based plasmid. A salt based electrostatic heating method was used to trap the GAPDH-siRNA-FITC from the PEG layer by activating the PEG polymer pour point, while a laser based heating system was used for in vitro release inside cancer cells. The down regulation of the GAPDH gene was targeted by the siRNA. as GAPDH has been shown to be up-regulated in many cancers and down-regulated by chemotherapeutic drugs. Cell culture, and subsequent imaging by transmission electron microscopy (TEM), TPL and confocal microscopy were used to view the internalized conjugates, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to determine if the release of the GAPDH-siRNA caused a reduction in the expression of GAPDH-mRNA. Plasmonic gene silencing of the gene by the GAPDH-siRNA was then compared to a lipid based Dharmafect control in terms of transfection ability. RT-PCR results evidenced gene silencing of the plasmonic-GAPDH-siRNA vector when compared to the Dharmafect control. Silencing likely resulted from the zwitterionic charges of the plasmonic vector and the encapsulated GAPDH-siRNA, which yielded near neutral charge tendencies. This differs significantly from the Dharmafect lipid vector, which is cationic in nature. Endosomal release of the plasmonic vector is further enhanced by the laser excitation of the GNR at the longitudinal surface plasmon resonance (LSPR), which allows for the endosomal release of the GAPDH-siRNA through pore formation leading to cytoplasmic transport and subsequent gene silencing. Near neutral charges were welcomed in this plasmonic gene therapy study as they tend to favor endosomal release, pore formation, and transport.
49

Ordering and motion of anisotropic nanomaterials

January 2012 (has links)
Multi-scale ordering of the components is of utmost importance for the preparation of any functional system. This is particularly interesting for the assembly of plamonic nanoparticles which show drastic differences in their optical properties compared to the individual counterparts, giving rise to the unique opportunity to perform enhanced spectroscopies, sensing, and transporting optical information below the diffraction limitation of light. The control over ordering of nanoscale materials is therefore of paramount importance. Template based bottom up approaches such as using nematic liquid crystals promise a long range, reversible ordering of nanomaterials. It also promises active control over plasmonic properties of metal nanoparticles due to the electric field induced reorientation of liquid crystals, resulting in a change of the local refractive index. This thesis discusses the possibility of ordering anisotropic metal nanoparticles and performing active modulaton of the plasmonics response using a nematic liquid crystals. While long polymer chains can be solvated and aligned in liquid crystal solvents, anisotropic metal nanoparticles could not be dissolved in the nematic liquid crystal phase because of their poor solubility. Here, I show that appropriate surface functionalization can increase the otherwise low solubility of plasmonic nanoparticles in a nematic liquid crystal matrix. I also show that it is possible to reversibly modulate the polarized scattering of individual gold nanorods through an electric field induced phase transition of the liquid crystal. In this thesis, I also studied the motion of a molecular machine, commonly known as nanocars, over different solid surface. I show that individual nanocars, which consist of four carborane wheels attached to an aromatic backbone chassis, can move up to several micrometers over a glass surface at ambient temperature. Their movement is consistent with the rolling of the carborane wheels and can be controlled by tuning the interaction between the surface and the wheels.
50

Synthesis, Characterization, and Self-Assembly of Size Tunable Gold Nanorods

Park, Kyoungweon 20 November 2006 (has links)
The successful applications of nanoparticles require the ability to tune their properties by controlling size and shape at the nanoscale. In metal nanomaterial research, the optical properties have been of interest especially because of the applications to medical diagnostics and nanooptics. It is important to prepare nanoparticles of well-defined shape and size for properly characterizing the optical properties. We describe improved seed mediated synthesis of gold nanorods (GNRs) producing a high yield of NRs with low polydispersity and few byproducts. The efficient separation of GNRs from mixture of shapes is achieved by understanding the hydrodynamics of nanoparticles undergoing centrifugation. The optical properties of resulting refined GNRs are compared to predictions of existing theories, and the main parameters affecting them are discussed. GNRs with well defined aspect ratios are introduced into a polyvinyl alcohol matrix by means of solution-casting techniques. The film is drawn to induce the uniaxial alignment of GNRs to be used as color polarizing filters. We prepare GNR polarizing filter with different peak positions ranging from visible to near infra red by using different aspect ratio of NRs. To utilize GNRs to make nanoscale devices, spatial organization is required. We characterize the self-assembly of GNRs observed on a TEM grid. The drying process is accompanied by complex hydrodynamic and thermodynamic events, which create rich range of patterns observed. Being anisotropic in shape, the rods can form liquid crystal (LC) assemblies above a certain concentration. We observed LC phase of GNRs by resorting to an evaporation of aqueous NR solution. The convective flow caused by the solvent evaporation carries NRs from the bulk solution to solid-liquid-air interface, which makes the solution locally very concentrated driving the phase transition of NRs. We calculate the order parameter from various assemblies observed, and compare the observed phase behavior to the one expected on the basis of theory.

Page generated in 0.0666 seconds