Spelling suggestions: "subject:"navierstokes equations"" "subject:"avierstokes equations""
311 |
Geração algébrica de malhas bidimensionais /Oliveira, Kéteri Poliane Moraes de. January 2005 (has links)
Resumo: Este trabalho trata da elaboração de um aplicativo computacional em Visual Basic capaz de gerar malhas estruturadas e não estruturadas sobre domínios bidimensionais multiplamente conexos. Esta geração deverá ocorrer de modo bastante automático com pouca intervenção do usuário, a qual será efetuada através de uma interface gráfica amigável. Para armazenamento das malhas definiu-se uma estrutura de dados de fácil compatibilidade com aplicativos computacionais baseados no método dos elementos finitos para solução de problemas do tipo convectivo-difusivo. Os tipos de células (elementos finitos) que foram implementadas são: células triangulares lineares e células quadrilaterais quadráticas. Adicionalmente gerou-se malhas bidimensionais para solução de problemas clássicos do tipo convectivo-difusivo, utilizando-se códigos de elementos finitos já desenvolvidos por pesquisadores do grupo de pesquisa. / Abstract: The mesh generation is needed in many applications of numerical methods such as finite difference, finite volume and finite element methods. In this work the algebraic method has been applied to generate 2D structured and unstructured mesh of quadrilateral and triangular elements by using Visual Basic. Both linear and quadratic elements can be generated. The connectivity, the nodes coordinates and contour nodes can be saved in an automatic way for a posterior use in, for example, a solver of finite element methods. A friendly interface has been developed for easy usage by users. Some tests have been done in applications of convective-diffusive fluid flows problems using solvers previously constructed, based on finite elements methods to demonstrate the capabilities of the mesh generator. / Orientador: João Batista Aparecido / Coorientador: João Batista Campos Silva / Banca: Amarildo Tabone Paschoalini / Banca: Carlos Roberto Ribeiro / Mestre
|
312 |
Simulação numérica de escoamentos de fluidos pelo método de elementos finitos de mínimos quadrados /Pereira, Vanessa Davanço January 2005 (has links)
Orientador: João Batista Campos Silva / Banca: João Batista Aparecido / Banca: Luiz Felipe Mendes de Moura / Resumo: Neste trabalho foram feitas simulações de escoamentos incompressiveis por um método de elementos finitos de mínimos quadrados (LSFEM - Least Squares Finite Element Method), usando as formulações velocidade-pressão-vorticidade e velocidade-pressão-tensão, denominadas na literatura de formulações u − p −ω e u = p −τ respectivamente. Estas formulações são preferidas por resultarem em sistemas de equações diferenciais de primeira ordem, o que é mais conveniente para implementação pelo LSFEM. O objetivo principal deste trabalho é a simulação computacional de escoamentos laminares, transicionais e turbulentos através da aplicação da metodologia de simulação de grandes escalas (LES - Large Eddy Simulation) com o modelo de viscosidade turbulenta de Smagorinky para modelar as tensões submalha. Alguns problemas padrões foram resolvidos para validar um código computacional desenvolvido e os resultados são apresentados e comparados com resultados disponíveis na literatura. / Abstract: In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using the velocity-pressure-vorticity and velocity-pressurestress formulations, named, in the literature, u − p −ω and u = p −τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is more convenient for implementation by LSFEM. The main purpose of this work are the numerical computations of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier- Stokes equations in u − p −ω and u = p −τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate a developed numerical code and the preliminary results are presented and compared with available results from the literature. / Mestre
|
313 |
Sobre a existência e unicidade de solução para as equações de Navier-StokesSilva, Hudson Cavalcante da 26 September 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:21Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1219498 bytes, checksum: d931fbd819e737ae31a593f5c64c55e0 (MD5)
Previous issue date: 2014-09-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study the Navier-Stokes equations in bounded domains of Rn.
Initially we the case n = 2 and we show that its variational formulation is well put (in
case the Hadamard). We show the existence of solution for the case n  4 . In both
cases we use the Faedo-Galerkin method. / Neste trabalho estudamos as equações de Navier-Stokes em domínios limitados do
Rn. Inicialmente consideramos o caso n = 2emostramos que sua formulação variacional
est´a bem posta (no sentido de Hadamard). Em seguida, mostramos a existência de
solução para o caso n  4. Em ambos os casos utilizamos o método de Faedo-Galerkin.
|
314 |
Efeito de localização para as equações estacionarias classicas de Boussinesq em um canal / Localization effect for the classic stationary Boussinesq equations in a channelNascimento, Clair do 13 August 2018 (has links)
Orientador: Jose Luiz Boldrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-13T20:05:11Z (GMT). No. of bitstreams: 1
Nascimento_Clairdo_D.pdf: 817500 bytes, checksum: 8cae8875eee76f5eafd08bb9814e4bff (MD5)
Previous issue date: 2009 / Resumo: Consideramos o fluxo de um fluido viscoso e incompressível em um canal bidimensional
semi-infinito, dadas velocidade e temperatura possivelmente nao nulas na entrada deste
canal. Assumindo que este fluido e governado pelas equações estacionarias classicas de
Boussinesq, sob hipoteses adequadas sobre as condições de fronteira, mostramos que pela
aplicação de certas forças sublineares (que dependendem da velocidade e da temperatura
do fluido) é possíivel parar o fluxo a uma distancia finita da entrada do canal. Mais
especificamente, a uma distancia finita da entrada do canal a velocidade e a temperatura
do fluido se anulam e assim temos o chamado efeito de localização (ou que a solução e
localizada). Este trabalho e feito em duas etapas. Primeiramente, usando um argumento de ponto
fixo com o auxilio do teorema de Leray-Schauder, mostramos a existencia de uma solução
fraca. Na segunda etapa provamos que tal solução é localizada usando estimativas do tipo
energia adequadas similares aquelas utilizadas por Bernis. Devido ao fato de que o nosso
dominio (o canal) é ilimitado, por razões tecnica, as etapas anteriores são feitas primeiramente
considerando soluções aproximadas em dominios limitados obtidos pelo truncamento
do canal; o resultado desejado 'e então obtido tomando o limite destas soluções
aproximadas usando cuidadosamente que certas estimativas são uniformes com respeito
a tais dominios truncados. / Abstract: We consider the flow of an incompressible viscous fluid in a bidimensional semi-infinity
strip, given possible non-zero velocities and temperatures at the strip entrance. Assuming
that flow is governed by the Boussinesq classic stationary equations, under suitable hypotheses
on the boundary conditions, we show that by applying certain sub-linear forces
(depending of velocity and temperature) it is possible to stop the flow at a finite distance
of the strip entrance. More specifically, at finite distance of the strip entrance, the velocity
and temperature become zero, and thus we have what is called the localization effect (or
that the solution is localized).
This work is done in two stages. First, by using a fixed point argument with help
of Leray-Schauder theorem, we show the existence of a weak solution of the system of
equations describing the flow. Second, we proof that such solution is localized by using
suitable energy estimates similar to those used by Bernis. Due the fact our domain, the
strip, is unbounded, for technical reasons the previous stages are firstly done by considering
associated approximate solutions on bounded domains, obtained by truncation of the
strip; the desired result is obtained by taking the limit of these approximate solutions by
using carefully that some estimates are uniform with respect to such truncated strips. / Doutorado / Equações Diferenciais Parciais / Doutor em Matemática Aplicada
|
315 |
Simulação numerica de dispersão de poluentes pelo metodo de elementos finitos baseado em volumes de contole / Numerical simulation of pollutants dispersion by a finite element method based on control volumesNeves, Odacir Almeida 30 July 2007 (has links)
Orientadores: Luiz Felipe Mendes de Moura, João Batista Campos Silva / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-11T03:48:42Z (GMT). No. of bitstreams: 1
Neves_OdacirAlmeida_D.pdf: 6827359 bytes, checksum: 60bc2e2f77ef7b0b26652ede77d3dac3 (MD5)
Previous issue date: 2007 / Resumo: A dispersão de poluentes no meio ambiente é um problema de grande interesse, por afetar diretamente a qualidade do ar, principalmente, nas grandes cidades. Ferramentas experimentais e numéricas têm sido utilizadas para prever o comportamento da dispersão de espécies poluentes na atmosfera. Códigos computacionais escritos na linguagem de programação fortran 90 foram desenvolvidos para obter simulações bidimensionais das equações de Navier-Stokes e de transporte de calor ou massa em regiões com obstáculos, variando a posição da fonte poluidora e simulações tridimensionais de equações de transporte arbitrando um campo de velocidade. Utilizaram-se, no primeiro caso, elementos finitos lagrangeanos quadrilaterais de quatro e de nove pontos nodais e no segundo, elementos lagrangeanos hexaedrais de oito e de vinte e sete pontos nodais. Os resultados numéricos de algumas aplicações foram obtidos e, quando possível, comparados com resultados da literatura apresentando concordância sastisfatória / Abstract: The dispersion of pollutant species in the environment is a problem of interest due to the bad quality of the air that this can originate, mainly, in big cities. Numerical and experimental tools have been developed and used to predict the behavior of the dispersion of pollutants in the atmosphere. In this work, computational codes have been developed in Fortran 90 language to simulate the flow with heat and mass transfer by solving the Navier-Stokes equations and the transport equations in two-dimensional domains with obstacles inserted in the media representing for example an urban canyon. Simulations of the three-dimensional transport equations for a given profile of velocity have also been done. In the two-dimensional simulations, it was utilized finite element quadrilateral Lagrangians of four and nine nodes; and in the three-dimensional simulations, it was utilized hexaedral finite elements Lagrangians of eight and twenty-seven nodes. The numerical results of some applications have been obtained and, when possible, compared to results from the literature. Both presented satisfactory concordance / Doutorado / Termica e Fluidos / Doutor em Engenharia Mecânica
|
316 |
Continuous data assimilation for Navier-Stokes-alpha model = Assimilação contínua de dados para o modelo Navier-Stokes-alpha / Assimilação contínua de dados para o modelo Navier-Stokes-alphaAlbanez, Débora Aparecida Francisco, 1984- 04 October 2014 (has links)
Orientadores: Milton da Costa Lopes Filho, Helena Judith Nussenzveig Lopes / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T00:41:15Z (GMT). No. of bitstreams: 1
Albanez_DeboraAparecidaFrancisco_D.pdf: 3117782 bytes, checksum: 4f8e30c3d217ed3a6d26e9924d4df7ab (MD5)
Previous issue date: 2014 / Resumo: Motivados pela existênca de um número finito de parâmetros determinantes (graus de liberdade), tais como modos, nós e médias espaciais locais para sistemas dinâmicos dissipativos, principalmente as equações de Navier-Stokes, apresentamos nesta tese um novo algoritmo de assimilação contínua de dados para o modelo tridimensional das equações Navier-Stokes-alpha, o qual consiste na introdução de um tipo geral de operador interpolante de aproximação (construído a partir de medições observacionais) dentro das equações de Navier-Stokes-alpha. O principal resultado garante condições sob a resolução espacial de dimensão finita dos dados coletados, suficientes para que a solução aproximada, construída a partir desses dados coletados, convirja para a referente solução que não conhecemos (realidade física) no tempo. Essas condições são dadas em termos de alguns parâmetros físicos, tais como a viscosidade cinemática, o tamanho do domínio e o termo de força / Abstract: Motivated by the presence of the finite number of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages for dissipative dynamical systems, specially Navier-Stokes equations, we present in this thesis a new continuous data assimilation algorithm for the three-dimensional Navier-Stokes-alpha model, which consists of introducing a general type of approximation interpolation operator, (that is constructed from observational measurements), into the Navier-Stokes-alpha equations. The main result provides conditions on the finite-dimensional spatial resolution of the collected data, sufficient to guarantee that the approximating solution, that is obtained from these collected data, converges to the unkwown reference solution (physical reality) over time. These conditions are given in terms of some physical parameters, such as kinematic viscosity, the size of the domain and the forcing term / Doutorado / Matematica / Doutora em Matemática
|
317 |
Uma abordagem via transformada de Fourier para as equações de Navier-Stokes = boa-colocação e comportamento assintótico / An approach via Fourier transform for the Navier-Stokes equetions : well-posedness and asymptotic behaviorValencia Guevara, Julio Cesar, 1985- 19 August 2018 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T19:21:09Z (GMT). No. of bitstreams: 1
ValenciaGuevara_JulioCesar_M.pdf: 664823 bytes, checksum: 0c43bba776e592ed44fad0d1bc2f6998 (MD5)
Previous issue date: 2012 / Resumo: Estudamos existência, unicidade, dependência contínua nos dados e comportamento assint ótico de soluções globais das equações de Navier-Stokes (com n >= 3), sob condições de pequenez no dado inicial e na força externa, em um espaço de distribuições (PMa) cuja construção é baseada na transformada de Fourier. Este espaço contém funções fortemente singulares e, em particular, funções homogêneas de um certo grau cuja correspondente solução (com tais dados) é auto-similar. Além disso, mostramos a existência de uma classe de soluções que são assintoticamente auto-similar. Estudamos também a existência de soluções estacionárias pequenas e analisamos a estabilidade assintótica delas. Finalmente, são dadas condições sob as quais a solução é uma função regular para t > 0 (mesmo com dado inicial singular) e satisfaz as equações de Navier-Stokes no sentido clássico para t > 0. Esta dissertação é baseada no artigo de M. Cannone and G. Karch, Journal of Diff. Equations 197 (2) (2004) / Abstract: We study existence, uniqueness, continuous dependence upon the data and asymptotic behavior of solutions for the Navier-Stokes equations (with n _ 3), under smallness conditions on the initial data and external force, in a space of distributions (PMa), whose construction is based on Fourier transform. This space contains strongly singular functions and, in particular, homogeneous functions with a certain degree whose corresponding solution (with such data) is self-similar. Moreover, the existence of a class of asymptotically self-similar solutions is proved. We also study the existence of small stationary solutions and their asymptotic stability. Finally, conditions are given for the obtained solution to be regular for t > 0 (even with singular initial data) and to satisfy the Navier-Stokes equations in the classical sense for t > 0. This master dissertation is based on the paper by M. Cannone and G. Karch, Journal of Diff. Equations 197 (2) (2004) / Mestrado / Matematica / Mestre em Matemática
|
318 |
Cahn-Hilliard-Navier-Stokes Investigations of Binary-Fluid Turbulence and Droplet DynamicsPal, Nairita January 2016 (has links) (PDF)
The study of finite-sized, deformable droplets adverted by turbulent flows is an active area of research. It spans many streams of sciences and engineering, which include chemical engineering, fluid mechanics, statistical physics, nonlinear dynamics, and also biology. Advances in experimental techniques and high-performance computing have made it possible to investigate the properties of turbulent fluids laden with droplets. The main focus of this thesis is to study the statistical properties of the dynamics of such finite-size droplets in turbulent flows by using direct numerical simulations (DNSs). The most important feature of the model we use is that the droplets have a back-reaction on the advecting fluid: the turbulent fluid affects the droplets and they, in turn, affect the turbulence of the fluid. Our study uncovers (a) statistical properties that characterize the spatiotemporal evolution of droplets in turbulent flows, which are statistically homogeneous and isotropic, and (b) the modification of the statistical properties of this turbulence by the droplets.
This thesis is divided into seven Chapters. Chapter 1 contains an introduction to the background material that is required for this thesis, especially the details about the equations we use; it also contains an outline of the problems we study in subsequent Chapters. Chapter 2 contains our study of “Droplets in Statistically Homogeneous Turbulence: From Many Droplets to a few Droplets”. Chapter 3 is devoted to our study of “Coalescence of Two Droplets”. Chapter 4 deals with “Binary-Fluid Turbulence: Signatures of Multifractal Droplet Dynamics and Dissipation Reduction”. Chapter 5 deals with “A BKM-type theorem and associated computations of solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations”. Chapter 6 is devoted to our study of “Turbulence-induced Suppression of Phase Separation in Binary-Fluid Mixtures”. Chapter 7 is devoted to our study of “Antibubbles: Insights from the Cahn-Hilliard-Navier-Stokes Equations”.
|
319 |
Convergence du schéma Marker-and-Cell pour les équations de Navier-Stokes incompressible / Convergence of the mac scheme for the incompressible navier-stokes equationsMallem, Khadidja 14 December 2015 (has links)
Le schéma Marker-And-Cell (MAC) est un schéma de discrétisation des équations aux dérivées partielles sur maillages cartésiens, très connu en mécanique des fluides. Nous nous intéressons ici à son analyse mathématique dans le cadre des écoulements incompressibles sur des maillages cartésiens non-uniformes en dimension 2 ou 3. Dans un premier temps nous discrétisons les équations de Navier-Stokes pour un écoulement incompressible stationnaire; nous établissons des estimations a priori sur les suites de vitesses et pressions approchées qui permettent d’une part d'établir l’existence d’une solution au schéma, et d’obtenir la compacité de ces suites lorsque le pas d’espace tend vers 0. Nous montrons alors la convergence de ces suites (à une sous-suite près) vers une solution faible du problème continu, ce qui nécessite une analyse fine du terme de convection non linéaire. Nous nous intéressons ensuite aux équations de Navier-Stokes en régime instationnaire avec une discrétisation en temps implicite. Nous démontrons que le schéma préserve les propriétés de stabilité du problème continu et obtenons ainsi l’existence d’une solution au schéma. Puis, grâce à des techniques de compacité et en passant à la limite dans le schéma, nous démontrons qu’une suite de vitesses approchées converge. Si l’on se restreint au problème de Stokes, et en supposant de plus que la condition initiale de la vitesse est dans H 1 , nous obtenons une estimation sur la pression qui permet de montrer la convergence forte des pressions approchées. Enfin nous étendons l’analyse aux écoulements incompressibles à masse volumique variable. On montre la convergence du schéma. / The Marker-And-Cell (MAC) scheme is a discretization scheme for partial derivative equations on Cartesian meshes, which is very well known in fluid mechanics. Here we are concerned with its mathematical analysis in the case of incompressible flows on two or three dimensional non-uniform Cartesian grids. We first discretize the steady-state incompressible Navier-Stokes equations. We show somea priori estimates that allow to show the existence of a solution to the scheme and some compactness and consistency results. By a passage to the limit on the scheme, we show that the approximate solutions obtained with the MAC scheme converge (up to a subsequence) to a weak solution of the Navier-Stokes equations, thanks to a careful analysis of the nonlinear convection term. Then, we analyze the convergence of the unsteady-case Navier-Stokes equations. The algorithm is implicit in time. We first show that the scheme preserves the stability properties of the continuous problem, which yields, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem. If we restrict ourselves to the Stokes equations and assume that the initial velocity belongs to H 1, then we obtain estimates on the pressure and prove the convergence of the sequences of approximate pressures. Finally, we extend the analysis of the scheme to incompressible variable density flows. we show the convergence of the scheme.
|
320 |
Stabilité de couches limites et d'ondes solitaires en mécanique des fluides / Stability of boundary layers and solitary waves in fluid mechanicsPaddick, Matthew 08 July 2014 (has links)
La présente thèse traite de deux questions de stabilité en mécanique des fluides. Les deux premiers résultats de la thèse sont consacrés au problème de la limite non-visqueuse pour les équations de Navier-Stokes. Il s'agit de déterminer si une famille de solutions de Navier-Stokes dans un demi-espace avec une condition de Navier au bord converge vers une solution du modèle non visqueux, l'équation d'Euler, lorsque les paramètres de viscosité tendent vers zéro. Dans un premier temps, on considère le modèle incompressible 2D. Nous obtenons la convergence dans L2 des solutions faibles de Navier-Stokes vers une solution forte d'Euler, et une instabilité dans L∞ en temps très court pour certaines données initiales qui sont des solutions stationnaires de l'équation d'Euler. Ces résultats ne sont pas contradictoires, et on construit un exemple de donnée initiale permettant de voir se réaliser les deux phénomènes simultanément dans le cadre périodique. Dans un second temps, on s'intéresse au modèle compressible isentropique (température constante) en 3D. On démontre l'existence de solutions dans des espaces de Sobolev conormaux sur un temps qui ne dépend pas de la viscosité lorsque celle-ci devient très petite, et on obtient la convergence forte de ces solutions vers une solution de l'équation d'Euler sur ce temps uniforme par des arguments de compacité. Le troisième résultat de cette thèse traite d'un problème de stabilité d'ondes solitaires. Précisément, on considère un fluide isentropique et non visqueux avec capillarité interne, régi par le modèle d'Euler-Korteweg, et on montre l'instabilité transverse non-linéaire de solitons, c'est-à-dire que des perturbations 2D initialement petites d'une solution sous forme d'onde progressive 1D peuvent s'éloigner de manière importante de celle-ci. / This thesis deals with a couple of stability problems in fluid mechanics. In the first two parts, we work on the inviscid limit problem for Navier-Stokes equations. We look to show whether or not a sequence of solutions to Navier-Stokes in a half-space with a Navier slip condition on the boundary converges towards a solution of the inviscid model, the Euler equation, when the viscosity parameters vanish. First, we consider the 2D incompressible model. We obtain convergence in L2 of weak solutions of Navier-Stokes towards a strong solution of Euler, as well as the instability in L∞ in a very short time of some initial data chosen as stationary solutions to the Euler equation. These results are not contradictory, and we construct initial data that allows both phenomena to occur simultaneously in the periodic setting. Second, we look at the 3D isentropic (constant temperature) compressible equations. We show that solutions exist in conormal Sobolev spaces for a time that does not depend on the viscosity when this is small, and we get strong convergence towards a solution of the Euler equation on this uniform time of existence by compactness arguments. In the third part of the thesis, we work on a solitary wave stability problem. To be precise, we consider an isentropic, compressible, inviscid fluid with internal capillarity, governed by the Euler-Korteweg equations, and we show the transverse nonlinear instability of solitons, that is that initially small 2D perturbations of a 1D travelling wave solution can end up far from it.
|
Page generated in 0.0929 seconds