Spelling suggestions: "subject:"bnetwork eprocessor"" "subject:"bnetwork coprocessor""
11 |
FLEXIBLE NETWORK TRANSCEIVER NEXT GENERATION TELEMETRY NETWORKINGBrown, K. D., Klimek, John 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper describes the Flexible Telemetry Transceiver (FNT)-a modular, scalable,
standards-based, software configurable, microwave wireless telemetry network
transceiver. The FNT enables flexible, high-rate, long-range, duplex, network services
across multipoint to multipoint wireless channel.
|
12 |
Performance Modeling And Evaluation Of Network ProcessorsGovind, S 12 1900 (has links)
In recent years there has been an exponential growth in Internet traffic resulting in increased network bandwidth requirements which, in turn, has led to stringent processing requirements on network layer devices like routers. Present backbone routers on OC 48 links (2.5Gbps) have to process four million minimum-sized packets per second. Further, the functionality supported in the network devices is also on the increase leading to programmable processors, such as Intel's IXP, Motorola's C5 and IBM's.NP. These processors support multiple processors and multiple threads to exploit packet-level-parallelism inherent in network workloads.
This thesis studies the performance of network processors. We develop a Petri Net model for a commercial network processors (Intel IXP 2400,2850) for three different applications viz., IPv4 forwarding, Network Address Translation and IP security protocols. A salient feature of the Petri net model is its ability to model the application, architecture and their interaction in great detail. The model is validated using the intel proprietary tool (SDK 3.51 for IXP architecture) over a range of configurations. Our Performance evaluation results indicate that
1. The IXP processor is able to support a throughput of 2.5 Gbps for all modeled
applications.
2. Packet buffer memory (DRAM) is the bottleneck resource in a network proces
sor and even multithreading is ineffective beyond a total of 16 threads in case of
header processing applications and beyond 32 threads for payload processing applications.
Since DRAM is the bottleneck resource we explore the benefits of increasing the DRAM banks and other software schemes like offloading the packet header to SRAM.
The second part of the thesis studies the impact of parallel processing in network processor on packet reordering and retransmission. Our results indicate that the concurrent processing of packets in a network processor and buffer allocation schemes in TFIFO leads to a significant packet reordering, (61%), on a 10-hop network (with packet sizes of 64 B) which in turn leads to a 76% retransmission under the TCP fast-restransmission algorithm. We explore different transmit buffer allocation schemes namely, contiguous, strided, local, and global for transmit buffer which reduces the packet retransmission to 24%. Our performance results also indicate that limiting the number of microengines can reduce the extent of packet reordering while providing the same throughput. We propose an alternative scheme, Packetsort, which guarantees complete packet ordering while achieving a throughput of 2.5 Gbps. Further, we observe that Packetsort outperforms, by up to 35%, the in-built schemes in the IXP processor namely, Inter Thread Signaling (ITS) and Asynchronous Insert and Synchronous Remove (AISR).
The final part of this thesis investigates the performance of the network processor in a bursty traffic scenario. We model bursty traffic using a Pareto distribution. We consider a parallel and pipelined buffering schemes and their impact on packet drop under bursty traffic. Our results indicate that the pipelined buffering scheme outperforms the parallel scheme.
|
13 |
Diffuser: Packet Spraying While Maintaining Order : Distributed Event Scheduler for Maintaining Packet Order while Packet Spraying in DPDK / Diffusor: Packet Spraying While Upprätthålla Ordning : Distribuerad händelseschemaläggare för att upprätthålla paketordning medan Paketsprutning i DPDKPurushotham Srinivas, Vignesh January 2023 (has links)
The demand for high-speed networking applications has made Network Processors (NPs) and Central Computing Units (CPUs) increasingly parallel and complex, containing numerous on-chip processing cores. This parallelism can only be exploited fully by the underlying packet scheduler by efficiently utilizing all the available cores. Classically, packets have been directed towards the processing cores at flow granularity, making them susceptible to traffic locality. Ensuring a good load balance among the processors improves the application’s throughput and packet loss characteristics. Hence, packet-level schedulers dispatch flows to the processing core at a packet granularity to improve the load balance. However, packet-level scheduling combined with advanced parallelism introduces out-of-order departure of the processed packets. Simultaneously optimizing both the load balance and packet order is challenging. In this degree project, we micro-benchmark the DPDK’s (Dataplane Development Kit) event scheduler and identify many performance and scalability bottlenecks. We find the event scheduler consumes around 40% of the cycles on each participating core for event scheduling. Additionally, we find that DSW (Distributed Software Scheduler) cannot saturate all the workers with traffic because a single NIC (Network Interface Card) queue is polled for packets in our test setup. Then we propose Diffuser, an event scheduler for DPDK that combines the functional properties of both the flow and packet-level schedulers. The diffuser aims to achieve optimal load balance while minimizing out-of-order packet transmission. Diffuser uses stochastic flow assignments along with a load imbalance feedback mechanism to adaptively control the rate of flow migrations to optimize the scheduler’s load distribution. Diffuser reduces packet reordering by at least 65% with ten flows of 100 bytes at 25 MPPS (Million Packet Per Second) and at least 50% with one flow. While Diffuser improves the reordering performance, it slightly reduces throughput and increases latency due to flow migrations and reduced cache locality / Efterfrågan på höghastighets-nätverksapplikationer har gjort nätverkspro-cessorer (NP) och centrala beräkningsenheter (CPU:er) alltmer parallella, komplexa och innehållande många processorkärnor. Denna parallellitet kan endast utnyttjas fullt ut av den underliggande paketschemaläggaren genom att effektivt utnyttja alla tillgängliga kärnor. Vanligtvis har paketschemaläggaren skickat paket till olika kärnor baserat på flödesgranularitet, vilket medför trafik-lokalitet. En bra belastningsbalans mellan processorerna förbättrar applikationens genomströmning och minskar förlorade paket. Därför skickar schemaläggare på paketnivå istället flöden till kärnan med en paketgranularitet för att förbättra lastbalansen. Schemaläggning på paketnivå kombinerat med avancerad parallellism innebär dock att de behandlade paketen avgår i oordning. Att samtidigt optimera både lastbalans och paketordning är en utmaning. I detta examensprojekt utvärderar vi DPDKs (Dataplane Development Kit) händelseschemaläggare och hittar många flaskhalsar i prestanda och skalbarhet. Vi finner att händelseschemaläggaren konsume-rar cirka 40 % av cyklerna på varje kärna.Dessutom finner vi att DSW (Schemaläggare för distribuerad programvara) inte kan mätta alla arbetande kärnor med trafik eftersom en enda nätverkskorts-kö används i vår testmiljö. Vi introducerar också Diffuser, en händelse-schemaläggare för DPDK som kombinerar egenskaperna hos både flödes-och paketnivåschemaläggare. Diffuser ämnar att uppnå optimal lastbalans samtidigt som den minimerar paketöverföring i oordning. Den använder stokastiska flödestilldelningar tillsammans med en återkopplingsmekanism för lastobalans för att adaptivt kontrollera flödesmigreringar för att optimera lastfördelningen. Diffuser minskar omordning av paket med minst 65 % med tio flöden på 100 byte vid 25 MPPS (Miljoner paket per sekund) och minst 50 % med endast ett flöde. Även om Diffuser förbättrar omordningsprestandan, minskar den genomströmningen något och ökar latensen på grund av flödesmigreringar och minskad cache-lokalitet.
|
14 |
Αρχιτεκτονικές επεξεργαστών και μνημών ειδικού σκοπού για την υποστήριξη φερέγγυων (ασφαλών) δικτυακών υπηρεσιών / Processor and memory architectures for trusted computing platformsΚεραμίδας, Γεώργιος 27 October 2008 (has links)
Η ασφάλεια των υπολογιστικών συστημάτων αποτελεί πλέον μια πολύ ενεργή περιοχή και αναμένεται να γίνει μια νέα παράμετρος σχεδίασης ισάξια μάλιστα με τις κλασσικές παραμέτρους σχεδίασης των συστημάτων, όπως είναι η απόδοση, η κατανάλωση ισχύος και το κόστος. Οι φερέγγυες υπολογιστικές πλατφόρμες έχουν προταθεί σαν μια υποσχόμενη λύση, ώστε να αυξήσουν τα επίπεδα ασφάλειας των συστημάτων και να παρέχουν προστασία από μη εξουσιοδοτημένη άδεια χρήσης των πληροφοριών που είναι αποθηκευμένες σε ένα σύστημα. Ένα φερέγγυο σύστημα θα πρέπει να διαθέτει τους κατάλληλους μηχανισμούς, ώστε να είναι ικανό να αντιστέκεται στο σύνολο, τόσο γνωστών όσο και νέων, επιθέσεων άρνησης υπηρεσίας. Οι επιθέσεις αυτές μπορεί να έχουν ως στόχο να βλάψουν το υλικό ή/και το λογισμικό του συστήματος. Ωστόσο, η μεγαλύτερη βαρύτητα στην περιοχή έχει δοθεί στην αποτροπή επιθέσεων σε επίπεδο λογισμικού. Στην παρούσα διατριβή προτείνονται έξι μεθοδολογίες σχεδίασης ικανές να θωρακίσουν ένα υπολογιστικό σύστημα από επιθέσεις άρνησης υπηρεσίας που έχουν ως στόχο να πλήξουν το υλικό του συστήματος. Η κύρια έμφαση δίνεται στο υποσύστημα της μνήμης (κρυφές μνήμες). Στις κρυφές μνήμες αφιερώνεται ένα μεγάλο μέρος της επιφάνειας του ολοκληρωμένου, είναι αυτές που καλούνται να "αποκρύψουν" τους αργούς χρόνους απόκρισης της κύριας μνήμης και ταυτόχρονα σε αυτές οφείλεται ένα μεγάλο μέρος της συνολικής κατανάλωσης ισχύος. Ως εκ τούτου, παρέχοντας βελτιστοποιήσεις στις κρυφές μνήμες καταφέρνουμε τελικά να μειώσουμε τον χρόνο εκτέλεσης του λογισμικού, να αυξήσουμε το ρυθμό μετάδοσης των ψηφιακών δεδομένων και να θωρακίσουμε το σύστημα από επιθέσεις άρνησης υπηρεσίας σε επίπεδο υλικού. / Data security concerns have recently become very important, and it can be expected that security will join performance, power and cost as a key distinguish factor in computer systems. Trusted platforms have been proposed as a promising approach to enhance the security of the modern computer system and prevent unauthorized accesses and modifications of the sensitive information stored in the system. Unfortunately, previous approaches only provide a level of security against software-based attacks and leave the system wide open to hardware attacks. This dissertation thesis proposes six design methodologies to shield a uniprocessor or a multiprocessor system against a various number of Denial of Service (DoS) attacks at the architectural and the operating system level. Specific focus is given to the memory subsystem (i.e. cache memories). The cache memories account for a large portion of the silicon area, they are greedy power consumers and they seriously determine system performance due to the even growing gap between the processor speed and main memory access latency. As a result, in this thesis we propose methodologies to optimize the functionality and lower the power consumption of the cache memories. The goal in all cases is to increase the performance of the system, the achieved packet throughput and to enhance the protection against a various number of passive and Denial of Service attacks.
|
Page generated in 0.0537 seconds