Spelling suggestions: "subject:"neurologie"" "subject:"neurologies""
201 |
Régulation transcriptionelle du développement de l'hypothalamus chez l'amphibienBouyakdan, Khalil 08 1900 (has links)
Le noyau paraventriculaire (PVN) de l'hypothalamus régule une série de phénomènes physiologiques incluant l'équilibre énergétique et la pression artérielle. Nous avons identifié une cascade de facteurs de transcription qui contrôle le développement du PVN. SIM1 et OTP agissent en parallèle pour contrôler la différenciation d'au moins cinq types de neurones identifiables par la production d'OT, AVP, CRH, SS et TRH. Ces Facteurs de transcriptions contrôlent le développement des lignées CRH, AVP et OT en maintenant l'expression de Brn2 qui à son tour est nécessaire pour la différenciation terminale de ces neurones. L'analyse du transcriptome du PVN nous a permis d'identifier plusieurs gènes qui ont le potentiel de contrôler le développement du PVN. Nous voulons développer un paradigme de perte de fonction qui permettrait l'étude de ces gènes candidats sur une grande échelle. Le but de ce projet est de caractériser le PVN en développement de l'amphibien en vue de l'utilisation de ce modèle pour des études fonctionnelles.
Nous avons cloné des fragments de cDNA de Sim1, OTP, Brn2, Sim2, CRH, Ot, AVP et TRH à partir de l'ARN total de Xenopus Laevis. Nous avons adapté notre technique d'hybridation in situ pour caractériser l'expression de ces gènes chez l'amphibien aux stades 33-39, 44, 51, 54, 60, et chez l'adulte. Résultats. Les Facteurs de transcription Sim1, OTP, et Brn2 commencent à être exprimés dans le PVN prospectif au stade 33. L'expression des marqueurs de différenciation terminale devient détectable entre les stades 37 et 39. De façon intéressante, le PVN occupe initialement un domaine de forme globulaire puis à partir du stade 44 s'allonge le long de l’axe dorso-ventral. Cet allongement se traduit par une organisation en colonnes des cellules du PVN que nous n'avons pas observée chez les rongeurs.
Le développement du PVN est conservé chez l'amphibien dans la mesure où la relation entre l'expression des facteurs de transcription et des marqueurs de différenciation terminale est conservée. Il existe par ailleurs des différences entre la topographie des PVN des mammifères et de l'amphibien. L'organisation en colonnes de cellules pourrait correspondre à des mouvements de migration tangentielle. Nous sommes maintenant en mesure de tester la fonction des facteurs de transcription dans le PVN par l'approche d'invalidation par morpholinos. / The paraventricular nucleus PVN of the hypothalamus regulates a series of physiological phenomena including the maintenance of energetic balance and arterial blood pressure. We have previously identified a cascade of transcription factors that control the development of the PVN. Sim1 and OTP act in concert to mediate the terminal differentiation of at least five types of neurons identifiable by their production of OT, AVP, CRH, SS and TRH. These transcription factors control the development of the OT, AVP and CRH producing neurons by maintaining the expression of Brn2, which is in turn required for the terminal differentiation of these cell lines. The transcriptome analysis of the PVN allowed us to identify a handful of genes that are potentially implicated in the development of this brain structure. Our goal is to develop a loss of function paradigm that would allow a high troughput study of these candidate genes. The main goal of this project is to characterize the developing PVN in the amphibian in order to use this model in our functional studies of these genes.
We have cloned fragments of cDNA of Sim1, OTP, Brn2, Sim2, CRH, TRH, AVP and OT using Xenopus laevis total RNA. We have also adapted our in situ hybridization technique to characterize the expression of these genes in stage 33-39, 44, 51, 54, 60 and adult amphibian brain.
Sim1, OTP and Brn2 are expressed in the prospective PVN as soon as stage 33. The expression of the terminal differentiation markers become detectable between stages 37-39. Interestingly, the PVN is initially restricted to a more globular domain and begins to extend along the dorso-ventral axis at around stage 44. This vertical extension translates into a column organization that we do not observe in rodents.
The development of the PVN is well conserved in the amphibian in the sense that the relation between the expression of the different transcription factors and the terminal differentiation markers is conserved. We can also observe some topographical differences between the mammalian and amphibian PVN. The column organization the different PVN cell types might correspond to the tangential migration that is observed in the mouse. We are now well equipped to test the function in the PVN of the known transcripton factors as well as the candidate genes previously identified in our lab using a morpholino-mediated gene knock down.
|
202 |
Codage de l’information visuelle par la plasticité et la synchronisation des réponses neuronales dans le cortex visuel primaire du chatNemri, Abdellatif 11 1900 (has links)
Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3).
Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones.
(E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation.
(E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones.
Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées. / Sensory systems encode information about our environment into electrical impulses that propagate in networks of neurons. Understanding the neural code – the principles by which information is represented in neuronal activity – is one of the most fundamental issues in neuroscience. This thesis investigates in a series of 3 studies (S) two coding mechanisms, synchrony and adaptation, in neurons of the cat primary visual cortex (V1). In V1, neurons display selectivity for image features such as contour orientation, motion direction and velocity. Each neuron has at least one combination of features that elicits its maximum firing rate. Visual information is thus distributed among numerous neurons within and across cortical columns, modules and areas. Synchronized electrical activity between cells was proposed as a potential mechanism underlying the binding of related features to form coherent perception. However, the precise nature of the relations between image features that may elicit neuronal synchrony remains unclear (S1). In another coding strategy, sensory neurons display transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In adult cat V1, orientation-selective neurons shift their preferred orientation after being exposed to a non-preferred orientation. How the adaptive behavior of a neuron is related to that of its neighbors remains unclear (S2). Finally, we investigated the relationship between synchrony and orientation tuning in neuron pairs, especially how synchrony is modulated during adaptation-induced plasticity (S3).
Main results — (S1) We show that two stimuli in either convergent or divergent motion elicit significantly more synchrony in V1 neuron pairs than two stimuli with the same motion direction. Synchronization seems to encode the relation of cocircularity, of which convergent (centripetal) and divergent (centrifugal) motion are two special instances, and could thus play a role in contour integration. Our results suggest that V1 neuron pairs transmit specific information on distinct image configurations through stimulus-dependent synchrony of their action potentials.
(S2) We show that after being adapted to a non-preferred orientation, cells shift their preferred orientation in the same direction as their neighbors in most cases (75%). Several response properties of V1 neurons depend on their location within the cortical orientation map. The differences we found between cell clusters that shift in the same direction and cell clusters with both attractive and repulsive shifts suggest a different cortical location, iso-orientation domains for the former and pinwheel centers for the latter.
(S3) We found that after adaptation, neuron pairs that share closer tuning properties display a significant increase of synchronization. Recovery from adaptation is accompanied by a return to the initial synchrony level. Synchrony therefore seems to reflect the similarity in neurons’ response properties, and varies accordingly when these properties change.
Conclusions — This thesis further advances our understanding of how visual neurons adapt to a changing environment, especially regarding cortical network dynamics. We also propose novel data about the potential role of synchrony. Especially, synchrony appears capable of binding various features, whether similar or dissimilar, suggesting superimposed neural assemblies.
|
203 |
Rôles des protéines Staufen 1 et 2 dans la plasticité synaptique des cellules pyramidales hippocampiquesLebeau, Geneviève 01 1900 (has links)
La mémoire et l’apprentissage sont des phénomènes complexes qui demeurent encore incertains quant aux origines cellulaire et moléculaire. Il est maintenant connu que des changements au niveau des synapses, comme la plasticité synaptique, pourraient déterminer la base cellulaire de la formation de la mémoire. Alors que la potentialisation à long-terme (LTP) représente un renforcement de l’efficacité de transmission synaptique, la dépression à long-terme (LTD) constitue une diminution de l’efficacité des connexions synaptiques.
Des études ont mis à jour certains mécanismes qui participent à ce phénomène de plasticité synaptique, notamment, les mécanismes d’induction et d’expression, ainsi que les changements morphologiques des épines dendritiques. La grande majorité des synapses excitatrices glutamatergiques se situe au niveau des épines dendritiques et la présence de la machinerie traductionnelle près de ces protubérances suggère fortement l’existence d’une traduction locale d’ARNm. Ces ARNm seraient d’ailleurs acheminés dans les dendrites par des protéines pouvant lier les ARNm et assurer leur transport jusqu’aux synapses activées. Le rôle des protéines Staufen (Stau1 et Stau2) dans le transport, la localisation et dans la régulation de la traduction de certains ARNm est bien établi. Toutefois, leur rôle précis dans la plasticité synaptique demeure encore inconnu.
Ainsi, cette thèse de doctorat évalue l’importance des protéines Staufen pour le transport et la régulation d’ARNm dans la plasticité synaptique. Nous avons identifié des fonctions spécifiques à chaque isoforme; Stau1 et Stau2 étant respectivement impliquées dans la late-LTP et la LTD dépendante des récepteurs mGluR. Cette spécificité s’applique également au rôle que chaque isoforme joue dans la morphogenèse des épines dendritiques, puisque Stau1 semble nécessaire au maintien des épines dendritiques matures, alors que Stau2 serait davantage impliquée dans le développement des épines. D’autre part, nos travaux ont permis de déterminer que la morphogenèse des épines dendritiques dépendante de Stau1 était régulée par une plasticité synaptique endogène dépendante des récepteurs NMDA. Finalement, nous avons précisé les mécanismes de régulation de l’ARNm de la Map1b par Stau2 et démontré l’importance de Stau2 pour la production et l’assemblage des granules contenant les transcrits de la Map1b nécessaires pour la LTD dépendante des mGluR.
Les travaux de cette thèse démontrent les rôles spécifiques des protéines Stau1 et Stau2 dans la régulation de la plasticité synaptique par les protéines Stau1 et Stau2. Nos travaux ont permis d’approfondir les connaissances actuelles sur les mécanismes de régulation des ARNm par les protéines Staufen dans la plasticité synaptique.
MOTS-CLÉS EN FRANÇAIS: Staufen, hippocampe, plasticité synaptique, granules d’ARN, traduction, épines dendritiques. / Learning and memory are complex processes that are not completly understood at the cellular and molecular levels. It is however accepted that persistent modifications of synaptic connections, like synaptic plasticity, could be responsible for the encoding of new memories. Whereas long-term potentiation (LTP) is classically defined as a persistent and stable enhancement of synaptic connections, long-term depression (LTD) is a reduction in the efficacy of neuronal synapses.
Numerous studies have identified some of the mechanisms of this phenomenon, in particular, the induction and expression mechanisms, as well as the changes in dendritic spine morphology. The most abundant type of synapse in the hippocampus is the excitatory glutamatergic synapse made on dendritic spines; the presence of the translational machinery in dendrites near spines strongly supports the concept of local mRNA translation. Moreover, those mRNA are transported in dendrites to activated synapses by RNA binding-proteins (RBP). Staufen proteins (Stau1 and Stau2) function in transport, localization and translational regulation of mRNA are now established. However, their precise roles in synaptic plasticity are still unknown.
Thus, this Ph.D. thesis evaluates the importance of Staufen proteins in mRNA transport and regulation in synaptic plasticity. We have identified specific functions for each isoform; while Stau1 is implicated in late-LTP, Stau2 is required for mGluR-LTD. This specificity is also relevant for dendritic spine morphogenesis since Stau1 is involved in mature dendritic spine maintenance while Stau2 participates in dendritic spine morphogenesis at a developmental stage. Moreover, our studies have indicated that Stau1 involvement in spine morphogenesis is dependent on ongoing NMDA receptor-mediated plasticity. Finally, our results suggest that Stau2 is implicated in a particular form of synaptic plasticity through transport and regulation of specific mRNA granules required for mGluR-LTD such as Map1b.
Our work uncovers specific roles of Stau1 and Stau2 in regulation of synaptic plasticity. These studies help to better understand mechanisms involving mRNA regulation by Staufen in long-term synaptic plasticity and memory.
ENGLISH KEY WORDS: Staufen, hippocampus, synaptic plasticity, RNA granules, translation, dendritic spines
|
204 |
Rôle des circuits cortico-striataux dans la planification et l'exécution de règles lexicalesSimard, France 12 1900 (has links)
Des recherches, autant chez l’homme que chez l’animal, proposent qu’il existerait, au sein des réseaux cérébraux, une organisation anatomique parallèle de circuits qui coordonne l’activité des structures qui participent à la planification et à l’exécution d’une action. Dans cette foulée, un modèle émerge qui attribue au cortex préfrontal (CPF) latéral une spécificité anatomo-fonctionnelle basée sur les niveaux de traitement en mémoire de travail (MT). Il s’agit du modèle « niveaux de traitement-dépendant », qui accorde un rôle important au CPF latéral dans l’acquisition et la représentation de règles guidant nos comportements.
Des études en neuroimagerie fonctionnelle, utilisant le Wisconsin Card Sorting Task (WCST) ont permis de corroborer ce modèle et de dissocier trois niveaux de traitement en MT non seulement au sein du CPF latéral mais encore aux structures sous- corticales, les ganglions de la base (GB). Ces études suggèrent que certains noyaux des GB seraient topographiquement organisés avec le CPF latéral et contriburaient, sous certaines conditions, à des processus cognitifs et moteurs semblables à leur homologue cortical.
Le but de notre étude est d'explorer la généralisation de la contribution des GB et du CPF au modèle niveaux de traitement-dépendant afin de voir si ce dernier est indépendant de la nature des stimuli en mémoire de travail. À cet effet, nous avons modifié le WCST en l’appliquant à un autre domaine, celui du langage. Nous avons remplacé les pictogrammes par des mots et modifié les règles formes, couleurs, nombres, par des règles sémantiques et phonologiques.
L’analyse des résultats a démontré que différentes parties des GB de concert avec différentes régions du CPF se différencient quant aux niveaux de traitement en MT et ce, indépendamment de la nature des stimuli. Une deuxième analyse a permis d’évaluer les patrons d’activations liés aux conditions sémantiques et phonologiques. Ces résultats ont mis en évidence que les réseaux préfrontaux semblent liés aux processus exécutifs nécessaires à la réalisation de la tâche, indépendamment de la condition tandis que les aires associatives se dissocient davantage et contiennent des réseaux propres à la sémantique et à la phonologie. / Researches in humans and animals have pointed out the possible existence of a parallel anatomic organization in the core of cerebral networks which could coordinate the activity of different brain regions involved in the planning and execution of an action. Within this framework, the emerging model ascribes an anatomic dissociation to the lateral prefrontal cortex (PFC) based on the level of complexity of the working memory (WM) treatment. This model, namely, the complexity-dependent model, gives an important role to the lateral PFC in the acquiring and representation of the rules guiding our behaviors.
This model has been corroborated by functional neuroimaging studies using the Wisconsin Card Sorting Task (WCST). These studies allowed dissociating three levels of complexity of the WM treatment, not restricted to the lateral PFC but also including sub- cortical structures, the basal ganglia (BG), suggesting that some BG nuclei would be topographically organized with the lateral PFC and would contribute to the same cognitive and motor functions.
The aim of our study was to investigate whether the BG and the PFC’S contribution to the complexity-dependent model generalizes to different types of stimuli or whether their functions are dependent on the nature of stimuli in WM. To do so, a language version of the WCST was developed to suit a different cognitive domain, i.e. language. The pictograms were replaced with words and rules concerning forms, colors and numbers were substituted with semantic and phonological rules.
Data analysis showed that the BG along with the PFC have differential role at different levels of WM processing complexity. In a second analysis, the activation patterns linked to the semantic and phonological conditions were evaluated. Those results indicated that the prefrontal networks seem to be coupled with executive processes needed to perform each condition whereas the employment of different language rules (semantic and phonological) activates specific regions of the phonological and semantic network.
|
205 |
L’amphétamine intra-habenulaire n’altère pas l’effet de récompense induit par la stimulation électrique du raphé dorsalDuchesne, Vincent 08 1900 (has links)
La contribution de la neurotransmission dopaminergique dans le noyau accumbens à l’effet de récompense induit par la stimulation électrique du cerveau a été
l’objet de plusieurs années de recherche. Cependant, d’autres sites recevant des terminaisons dopaminergiques pourraient contribuer à moduler la récompense dans d’autres régions cérébrales. Parmi elles, on retrouve l’habenula qui reçoit des projections dopaminergiques de l’aire tegmentale ventrale. La contribution de cette voie au phénomène de récompense en général et à l’effet de recompense induit par l’autostimulation intracrânienne est peu connue. Le but de cette recherche était d’étudier la contribution de la dopamine mésohabenulaire à l’effet de recompense induit par la stimulation électrique du raphé dorsal. Des rats ont été implantés d’une bicanule dans l’Hb et d’une électrode dans le raphé dorsal. Le paradigme du déplacement de la courbe a été utilisé pour évaluer les changements dans l’effet de récompense à la suite de l’injection intra-habenulaire d’amphétamine (10-40 μg). À titre de contrôles positifs, des rats ont reçu l’amphétamine dans le core et dans le shell (1-20 μg) du noyau accumbens. Les injections d’amphétamine dans l’habenula n’ont pas changé l’effet de récompense induit par la stimulation électrique. Dans le noyau accumbens, les injections dans le shell et le core provoquent des augmentations dans l’effet de récompense comme il a déjà été démontré. Nos résultats suggèrent que la neurotransmission dopaminergique dans l’habenula latérale ne contribue pas significativement au circuit soutenant l’effet renforçant de la stimulation électrique du cerveau. / The contribution of nucleus accumbens dopamine neurotransmission to reward and reinforcement has been the focus of many years of study. Other terminal sites have received comparatively less research attention, but may be potentially important. One of these sites is the lateral habenula, which receives dopaminergic innervation from cells arising from the ventral tegmental area. Very little is known about the contribution of this pathway to reward in general and to the rewarding effect of electrical brain stimulation in particular. The goal of this study was to study the contribution of mesohabenular dopamine to reward induced by electrical stimulation of the dorsal raphe. Male Sprague-Dawley rats were implanted with bilateral cannulae in the lateral habenula and a stimulation electrode aimed at the dorsal raphe nucleus. Using the curveshift paradigm, we measured the rewarding effect of intra-habenular infusions of amphetamine (10-40 μg). Control rats received amphetamine infusions into nucleus
accumbens core or shell subregions (1-20 μg). Our findings show that regardless of
concentration, intra-habenular amphetamine did not alter brain stimulation reward.
Infusions into the nucleus accumbens enhanced the rewarding effectiveness of the stimulation, as previously shown. Our findings suggest that dopaminergic neurotransmission within the lateral habenula does not contribute significantly to the circuitry that mediates the rewarding effect of electrical brain stimulation.
|
206 |
Modulation du système glutamatergique pendant l’apprentissage moteur : une étude de spectroscopie par résonance magnétique fonctionnelleProulx, Sébastien 12 1900 (has links)
La présente étude avait pour but d’explorer les modulations fonctionnelles putaminales du signal de spectroscopie par résonance magnétique (SRM) combiné du glutamate et de la glutamine (Glx), ainsi que de l’acide γ-aminobutyrique (GABA) en lien avec l’apprentissage d’une séquence motrice. Nous avons émis l’hypothèse que les concentrations de Glx seraient spécifiquement augmentées pendant et après la pratique d’une telle tâche, et ce comparativement à une condition d’exécution motrice simple conçue pour minimiser l’apprentissage. La tâche d’appuis séquentiels des doigts (« finger taping task ») utilisée est connue pour induire un apprentissage moteur évoluant en phases, avec une progression initialement rapide lors de la première session d’entraînement (phase rapide), puis lente lors de sessions subséquentes (phase lente). Cet apprentissage est également conçu comme dépendant de processus « on-line » (pendant la pratique) d’acquisition et « off-line » (entre les périodes de pratique) de consolidation de la trace mnésique de l’habilité motrice. Une grande quantité de données impliquent le système de neurotransmission glutamatergique, principalement par l’action de ses récepteurs N-Méthyl-D-aspartate (NMDAR) et métabotropiques (mGluR), dans une multitude de domaine de la mémoire. Quelques-unes de ces études suggèrent que cette relation s’applique aussi à des mémoires de type motrice ou dépendante du striatum. De plus, certains travaux chez l’animal montrent qu’une hausse des concentrations de glutamate et de glutamine peut être associée à l’acquisition et/ou consolidation d’une trace mnésique. Nos mesures de SRM à 3.0 Tesla, dont la qualité ne s’est avérée satisfaisante que pour le Glx, démontrent qu’une telle modulation des concentrations de Glx est effectivement détectable dans le putamen après la performance d’une tâche motrice. Elles ne nous permettent toutefois pas de dissocier cet effet putativement attribuable à la plasticité du putamen associée à l’apprentissage moteur de séquence, de celui de la simple activation neuronale causée par l’exécution motrice. L’interprétation de l’interaction non significative, montrant une plus grande modulation par la tâche motrice simple, mène cependant à l’hypothèse alternative que la plasticité glutamatergique détectée est potentiellement plus spécifique à la phase lente de l’apprentissage, suggérant qu’une seconde expérience ainsi orientée et utilisant une méthode de SRM plus sensible au Glx aurait donc de meilleures chances d’offrir des résultats concluants. / The present study explored motor learning-related functional changes in putaminal combined glutamate and glutamine (Glx) and γ-Aminobutyric acid (GABA) magnetic resonance spectroscopy (MRS) signal. It was hypothesized that Glx concentrations would specifically increase during and after learning of a sequential finger tapping task (sFTT), as compared to execution of a simple motor task designed to elicit minimal learning. Learning of sFTT is known to evolve in an initial fast progressing stage during the first practice session (fast learning stage), followed by a slower progression during later sessions (slow learning stage). It is also thought to depend on both on-line (during practice sessions) acquisition and off-line (between practice sessions) consolidation processes to create, transform and assure retention of a motor skill memory trace. A body of data implicates glutamatergic neurotransmission, especially through its N-Methyl-D-aspartate (NMDAR) and metabotropic (mGluR) receptors, in many memory systems, some of which apply to motor learning and striatal-dependant learning. Moreover, some animal studies suggest that Glx concentrations can be upregulated in relation to memory acquisition and/or consolidation. Our MRS acquisitions, of which the quality happened to be sufficient only for Glx quantification, allowed the detection of an augmentation in putaminal Glx occurring after motor task execution. However, our data could not ascribe this modulation specifically to motor learning related plastic changes, at the exclusion of simple neural activation related to motor execution. Nevertheless, the interpretation of the non-significant interaction, showing a larger Glx change in response to the simple motor task compared to sFTT, leads to the possibility that the detected glutamatergic plasticity may be specifically associated to the slow learning phase. We therefore suggest that testing this alternate hypothesis in a second experiment, using an MRS technique with more sensibility to Glx could yield more convincing results.
|
207 |
Effets neurophysiologiques de la stimulation du nerf vague : implication dans le traitement de la dépression résistante et optimisation des paramètres de stimulationManta, Stella 01 1900 (has links)
La dépression est une pathologie grave qui, malgré de multiples stratégies thérapeutiques, demeure résistante chez un tiers des patients. Les techniques de stimulation cérébrale sont devenues une alternative intéressante pour les patients résistants à diverses pharmacothérapies. La stimulation du nerf vague (SNV) a ainsi fait preuve de son efficacité en clinique et a récemment été approuvée comme traitement additif pour la dépression résistante. Cependant, les mécanismes d’action de la SNV en rapport avec la dépression n’ont été que peu étudiés.
Cette thèse a donc eu comme premier objectif de caractériser l’impact de la SNV sur les différents systèmes monoaminergiques impliqués dans la pathophysiologie de la dépression, à savoir la sérotonine (5-HT), la noradrénaline (NA) et la dopamine (DA), grâce à l’utilisation de techniques électrophysiologiques et de la microdialyse in vivo chez le rat. Des études précliniques avaient déjà révélé qu’une heure de SNV augmente le taux de décharge des neurones NA du locus coeruleus, et que 14 jours de stimulation sont nécessaires pour observer un effet comparable sur les neurones 5-HT. Notre travail a démontré que la SNV modifie aussi le mode de décharge des neurones NA qui présente davantage de bouffées, influençant ainsi la libération terminale de NA, qui est significativement augmentée dans le cortex préfrontal et l’hippocampe après 14 jours. L’augmentation de la neurotransmission NA s’est également manifestée par une élévation de l’activation tonique des récepteurs postsynaptiques α2-adrénergiques de l’hippocampe. Après lésion des neurones NA, nous avons montré que l’effet de la SNV sur les neurones 5-HT était indirect, et médié par le système NA, via l’activation des récepteurs α1-adrénergiques présents sur les neurones du raphé. Aussi, tel que les antidépresseurs classiques, la SNV augmente l’activation tonique des hétérorécepteurs pyramidaux 5-HT1A, dont on connait le rôle clé dans la réponse thérapeutique aux antidépresseurs. Par ailleurs, nous avons constaté que malgré une diminution de l’activité électrique des neurones DA de l’aire tegmentale ventrale, la SNV induit une augmentation de la DA extracellulaire dans le cortex préfrontal et particulièrement dans le noyau accumbens, lequel joue un rôle important dans les comportements de récompense et l’hédonie.
Un deuxième objectif a été de caractériser les paramètres optimaux de SNV agissant sur la dépression, en utilisant comme indicateur le taux de décharge des neurones 5-HT. Des modalités de stimulation moins intenses se sont avérées aussi efficaces que les stimulations standards pour augmenter l’activité électrique des neurones 5-HT. Ces nouveaux paramètres de stimulation pourraient s’avérer bénéfiques en clinique, chez des patients ayant déjà répondu à la SNV. Ils pourraient minimiser les effets secondaires reliés aux périodes de stimulation et améliorer ainsi la qualité de vie des patients.
Ainsi, ces travaux de thèse ont caractérisé l’influence de la SNV sur les trois systèmes monoaminergiques, laquelle s’avère en partie distincte de celle des antidépresseurs classiques tout en contribuant à son efficacité en clinique. D’autre part, les modalités de stimulation que nous avons définies seraient intéressantes à tester chez des patients recevant la SNV, car elles devraient contribuer à l’amélioration des bénéfices cliniques de cette thérapie. / Depression is a severe psychiatric disorder, in which a third of patients do not achieve remission, despite the wide variety of therapeutic strategies that are currently available. Brain stimulation has emerged as a promising alternative therapy in cases of treatment resistance. Vagus nerve stimulation (VNS) has shown promise in treating resistant-depressed patients, and it has been approved as an adjunctive treatment for resistant depression. However, the mechanism of action by which VNS exerts its antidepressant effects has remained elusive.
The first goal of this thesis was therefore to characterize the impact of VNS on monoaminergic systems known to be implicated in the pathophysiology of depression such as serotonin (5-HT), norepinephrine (NE) and dopamine (DA), by means of electrophysiologic techniques and microdialysis in the rat brain. Previous research has indicated that one hour of VNS increased the basal firing activity of locus coeruleus NE neurons and, secondarily, that of 5-HT neurons, but only after 14 days of stimulation. Our work demonstrated that VNS also modified the firing pattern of NE neurons towards a bursting mode of discharge. This mode of firing was shown to lead to enhanced NE release in the prefrontal cortex and hippocampus after 14 days. Increased NE neurotransmission was also evidenced by enhanced tonic activation of postsynaptic α2-adrenoceptors in the hippocampus. Selective lesioning of NE neurons was then used to demonstrate that the effects of VNS on the 5-HT system were indirect, and mediated by the activation of α1-adrenoceptors located on the dorsal raphe 5-HT neurons. Similar to classical antidepressants, VNS also enhanced the tonic activation of pyramidal 5-HT1A heteroreceptors, which are known to play a key role in the antidepressant response. We also found that in spite of a diminished firing activity of ventral tegmental area DA neurons after VNS, extracellular DA levels were significantly elevated in the prefrontal cortex, and particularly in the nucleus accumbens which plays an important role in reward behavior and hedonia.
A second objective was to characterize the optimal VNS parameters to treat depression using the firing activity of 5-HT neurons as an indicator. It was found that less stimulation was as effective as the standard levels to increase 5-HT neurons firing rate. These novel parameters could be helpful for clinical application in VNS responsive patients, to potentially minimize and/or even prevent stimulation-related side effects, thus improving their quality of life.
In brief, these studies reveal an influence of VNS on all three central monoamine systems, which differs in part from that of classical antidepressants while contributing to the clinical efficacy of this approach. It will also be interesting to determine whether the proposed lower stimulation parameters are as effective in providing antidepressant response in patients receiving VNS, which should contribute to improve the clinical benefits of that therapy.
|
208 |
Étude de l’implication de la Neuroligine 1 dans le processus homéostatique de régulation du sommeil chez la sourisEl Helou, Janine 02 1900 (has links)
Le sommeil est essentiel au bon fonctionnement de l’organisme. Ce dernier est régulé, entre autres, par le processus de régulation homéostatique qui dépend de la pression de sommeil accumulée suite à l’éveil. Des études ont suggéré que ce processus pourrait être lié à la
plasticité synaptique, et que le changement de la pression de sommeil affecterait le degré de plasticité du cerveau. Les récepteurs N-méthyl-D-aspartate, des médiateurs importants de plasticité, semblent impliqués dans les conséquences délétères du manque de sommeil ainsi que dans la régulation de la synchronisation corticale caractéristique du sommeil lent
profond. Leur activité est contrôlée par Neuroligine 1 (NLGN1), une molécule d’adhésion synaptique. Une mutation de Nlgn1 a des effets similaires à ceux de la privation de sommeil sur la mémoire et le comportement. Dans le manuscrit de mon mémoire, nous présentons l’hypothèse d’une implication de NLGN1 dans la régulation du sommeil et de l’éveil. Pour tester cette hypothèse, l’expression d’ARNm et de protéine NLGN1 a été mesurée suite à une
privation de sommeil et le sommeil de souris n’exprimant pas NLGN1 a été caractérisé. Les
résultats de mon projet de maîtrise montrent, en premier lieu, qu’une augmentation de la pression pour dormir altère l’expression de l’ARNm et de la protéine NLGN1 chez la souris. De plus, nos observations révèlent qu’une mutation de Nlgn1 diminue la quantité d’éveil et modifie l’activité spectrale en éveil et en sommeil. Ces observations dévoilent l’importance de NLGN1 dans le maintien de l’éveil et la régulation du sommeil, et supportent un rôle de NLGN1 dans la régulation de l’activité neuronale. / Sleep is essential for the well-functioning of the body. It has been suggested that sleep is regulated, in part, by the homeostatic process of sleep regulation which controls a pressure for sleep in function of the amount of time spent awake. Studies have suggested that the homeostatic process could be linked to synaptic plasticity, and that changes in sleep pressure can affect brain plasticity. N-methyl-D-aspartate receptors, which are important plasticity mediators, appear to be implicated in the deleterious effects related to sleep loss as well as in the regulation of cortical synchrony characteristic of slow wave sleep. Their activity is
controlled by Neuroligin 1 (NLGN1), a synaptic adhesion molecule. Also, a Nlgn1 mutation has similar effects on memory and behavior as those observed following a sleep deprivation. In this master’s thesis, we hypothesized that NLGN1 is implicated in sleep and wake regulation. To test this hypothesis, Nlgn1 mRNA and protein expression has been measured
after sleep deprivation, and the sleep of mice lacking NLGN1 has been studied. The results of my research project show that an increase in sleep pressure changes Nlgn1 mRNA and protein expression in mice. We also find that Nlgn1 mutation reduces wake duration and modifies the EEG spectral composition during wake and sleep. These results indicate that NLGN1 is important in the maintenance of wakefulness and the regulation of sleep, and provide further support to a role for NLGN1 in the regulation of neuronal activity.
|
209 |
Neuron-Derived Semaphorin 3A is an Early Inducer of Vascular Permeability in Diabetic RetinopathyCerani, Agustin 12 1900 (has links)
La détérioration de la barrière hémato rétinienne et l'oedème maculaire consécutif est une manifestation cardinale de la rétinopathie diabétique (RD) et la caractéristique clinique la plus étroitement associée à la perte de la vue. Alors que l'oedème maculaire affecte plus de 25% des patients souffrant de diabète, les modalités de traitement actuellement disponibles tels que les corticostéroïdes administrés localement et les thérapies anti-VEGF récemment approuvés présentent plusieurs inconvénients. Bien que le lien entre une rupture de l’unité neuro-vasculaire et la pathogénèse de la RD ait récemment été établi, l’influence de la signalisation neuro-vasculaire sur la vasculopathie oculaire diabetique a jusqu’à présent reçu peu d’attention. Ici, à l’aide d’ètudes humaines et animales, nous fournissons la première preuve du rôle essentiel de la molécule de guidage neuronale classique Sémaphorine 3A dans l’instigation de la perméabilité vasculaire maculaire pathologique dans le diabète de type 1. L’étude de la dynamique d’expression de Sémaphorine 3A révèle que cette dernière est induite dans les phases précoces hyperglycèmiques du diabète dans la rétine neuronale et participe à la rupture initiale de la fonction de barrière endothéliale. En utilisant le modèle de souris streptozotocine pour simuler la rétinopathie diabétique humaine, nous avons démontré par une série d’approches analogue que la neutralisation de Sémaphorine 3A empêche de façon efficace une fuite vasculaire rétinienne. Nos résultats identifient une nouvelle cible thérapeutique pour l’oedème maculaire diabétique en plus de fournir d’autres preuves de communication neuro-vasculaire dans la pathogènese de la RD. / The deterioration of the blood retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. While macular edema affects over 25% of patients suffering from diabetes, currently available treatment modalities such as locally administered corticosteroids and recently approved anti-VEGF therapies, present several drawbacks. Although recent insight on the pathogenesis of DR points to a breakdown in the neurovascular unit, neurovascular cross-talk and its influence on diabetic ocular vasculopathy has thus far received limited attention. Here we provide the first evidence from both human and animal studies for the critical role of the classical neuronal guidance cue Semaphorin3A in instigating pathological macular vascular permeability in type I diabetes. Investigation of the dynamics of expression reveal that Semaphorin3A is induced in the early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. Using the streptozotocin mouse model as a proxy for human diabetic retinopathy, we demonstrate by a series of orthogonal approaches (gene silencing or treatment with soluble Neuropilin-1 employed as a Semaphorin3A trap), that neutralization of Semaphorin3A efficiently prevents retinal vascular leakage. Our findings identify a new therapeutic target for DME and provide further evidence for neurovascular cross-talk in pathogenesis of DR.
|
210 |
Rôle du système du trijumeau dans la locomotion chez le nouveau-né d’opossum (Monodelphis domestica)Adadja, Thierry Ayiwanou 05 1900 (has links)
L’opossum Monodelphis domestica naît très immature et grimpe sans aide de la mère, du sinus urogénital à une mamelle où il va s’attacher pour poursuivre son développement. Des informations sensorielles sont nécessaires pour guider le nouveau-né vers la mamelle et les candidats les plus probables sont le toucher, l’équilibre et l’olfaction. Pour tester l’action des différents systèmes sur la motricité chez l’opossum nouveau-né, des régions céphaliques du trijumeau, du vestibulaire et de l’olfaction ont été stimulées électriquement sur des préparations in vitro en comparaison avec une stimulation seuil T (intensité minimale de la stimulation à la moelle épinière cervicale induisant le mouvement des membres antérieurs). Par comparaison, un mouvement similaire était induit par des stimulations à ~2T du ganglion du trijumeau, à ~20 T du complexe vestibulaire, et à ~600 T des bulbes olfactifs. L’étude de l'innervation de la peau faciale et des voies relayant les informations du trijumeau vers la moelle épinière (ME) a été approfondie en utilisant de l’immunohistochimie pour les neurofilament-200 et du traçage rétrograde avec du Texas-Red couplé à des Dextrans Aminés. De nombreuses fibres nerveuses ont été révélées dans le derme de plusieurs régions de la tête. Quelques cellules du ganglion trigéminal projettent à la ME rostrale, mais la majorité projette vers la médulla caudale où se trouvent les neurones secondaires du trijumeau ou des cellules réticulospinales. Les résultats de cette étude indiquent une influence significative des systèmes du trijumeau et du vestibulaire, mais pas de l'olfaction, sur le mouvement des membres antérieurs des opossums nouveau-nés. / The opossum Monodelphis domestica is born very immature and crawls, unaided by the mother, from the urogenital opening to a nipple where it attaches and pursues its development. Sensory information is needed to guide the newborn to a nipple and studies suggest that the vestibular, trigeminal, and olfactory systems are likely candidates. The trigeminal, vestibular and olfactory regions of the brain were electrically stimulated to test their relative effectiveness at eliciting forelimb movement in newborn opossums, using in vitro preparations of brain-spinal cord with the limbs attached. The minimal stimulation of the cervical spinal cord needed to induce forelimb movement was considered as threshold (T). Similar movement were obtained with stimulations of the trigeminal ganglion at ~2T and of the vestibular complex at ~20 T and at ~600 T for the olfactory bulb. Neurofilament-200 immunohistochemistry and retrograde tracing with Texas-Red conjugated Dextran Amines were used to study trigeminal innervation of the facial skin and pathways by which trigeminal inputs may be relayed to the spinal cord. Numerous nerve fibers were observed in the snout dermis, elsewhere in the head skin. Some trigeminal ganglion cells project to the upper spinal cord, but more project to the caudal medulla where they could contact secondary trigeminal neurons or reticular cells projecting to the spinal cord. These results support a significant influence of the trigeminal and the vestibular systems, but not of olfaction, on forelimb movement of neonatal opossums.
|
Page generated in 0.0779 seconds