• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role of the ASPP Family in the Regulation of p53-Mediated Apoptotic Death of Retinal Ganglion Cells after Optic Nerve Injury

Wilson, Ariel M. 02 1900 (has links)
Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome. Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires. Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires. En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome. / Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma results from the death of retinal ganglion cells, the neurons that send visual information from the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during glaucoma is not well understood, however, putative culprits have been proposed including excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this point, I put forth the central hypothesis that the identification of signaling pathways involved in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma. In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 binding proteins that belong to a family of protein regulators of p53-dependent apoptotic death. However, the role of ASPP family members in retinal ganglion cell death is unknown. As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival after an optic nerve lesion. We used a well-characterized experimental model of neuronal apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study (Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95. In the second part of my thesis, I characterized the role of the anti-apoptotic member of the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of this second study is that the overexpression of iASPP would promote retinal ganglion cell survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in protein levels of PUMA and Fas/CD95. In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might provide insights into the design of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
12

Role of the ASPP Family in the Regulation of p53-Mediated Apoptotic Death of Retinal Ganglion Cells after Optic Nerve Injury

Wilson, Ariel M. 02 1900 (has links)
Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome. Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires. Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires. En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome. / Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma results from the death of retinal ganglion cells, the neurons that send visual information from the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during glaucoma is not well understood, however, putative culprits have been proposed including excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this point, I put forth the central hypothesis that the identification of signaling pathways involved in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma. In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 binding proteins that belong to a family of protein regulators of p53-dependent apoptotic death. However, the role of ASPP family members in retinal ganglion cell death is unknown. As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival after an optic nerve lesion. We used a well-characterized experimental model of neuronal apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study (Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95. In the second part of my thesis, I characterized the role of the anti-apoptotic member of the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of this second study is that the overexpression of iASPP would promote retinal ganglion cell survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in protein levels of PUMA and Fas/CD95. In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might provide insights into the design of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
13

The Role of Cell Cycle Machinery in Ischemic Neuronal Death

Iyirhiaro, Grace O. 09 October 2013 (has links)
Ischemic stroke occurs as a result of a lack or severe reduction of blood supply to the brain. Presently therapeutic interventions are limited and there is a need to develop new and efficacious stroke treatments. To this end, a great deal of research effort has been devoted to studying the potential molecular mechanisms involved in ischemic neuronal death. Correlative evidence demonstrated a paradoxical activation of the cell cycle machinery in ischemic neurons. The levels and activity of key cell cycle regulators including cyclin D1, Cdk2 and Cdk4 are upregulated following ischemic insults. However, the functional relevance of these various signals following ischemic injury was unclear. Accordingly, the research described in this thesis address the functional relevance of the activation of the cell cycle machinery in ischemic neuronal death. The data indicate that the inhibition of Cdk4 protects neurons from ischemia-induced delayed death, whereas abrogation of Cdk5 activity prevents excitotoxicity-induced damage in vitro and in vivo. Examination of upstream activators of mitotic-Cdks showed that Cdc25A is a critical mediator of delayed ischemic neuronal death. Investigation of the potential molecular mechanism by which cell cycle regulators induced neuronal death revealed perturbations in the levels and activity of key downstream targets of Cdk4. The retinoblastoma protein family members, pRb and p130 are increasingly phosphorylated following ischemic stresses. Importantly, p130 and E2F4 proteins are drastically reduced following ischemic insults. Additionally, E2F1 association with promoters of pro-apoptotic genes are induced while that of E2F4 is reduced. These changes appear to be important determinants in ischemic neuronal death. Cumulatively, the data supports the activation of the cell cycle machinery as a pathogenic signal contributing to ischemic neuronal death. The development of neuroprotectant strategies for stroke has been hampered in part by its complex pathophysiology. Previous research indicated that flavopiridol, a general CDK-inhibitor, is unable to provide sustained neuroprotection beyond one week following cerebral ischemia. The potential benefit of combining flavopiridol with another neuroprotectant, minocycline, was explored. The data indicate that while this approach provided histological protection 10 weeks after insult, the protected neurons are not functional due to progressive dendritic degeneration. This evidence indicates that targeting cell cycle pathways in stroke while important must be combined with other therapeutic modalities to fully treat stroke-induced damage.
14

Régulation post-traductionnelle de p73 par les calcium calmoduline dépendantes kinases dans le système neuronal / Post translational regulation of p73 by calcium calmoduline dependant kinases in neuronal system

Blanchard, Orphée 04 November 2014 (has links)
Le facteur de transcription p73 est impliqué dans des pathologies du système neuronal (maladie d’Alzheimer, neuroblastome…) en régulant le cycle cellulaire, l’apoptose et la différenciation neuronale.Identifier les modifications post-traductionnelles de p73 permettrait de mieux comprendre les fonctions biologiques des isoformes p73 et leurs régulations. Notre analyse bio-informatique prédit entre autres, trois sites sur p73 potentiellement phosphorylés par la calcium-calmoduline dépendante kinase 2 (CamKII), qui est aussi impliquée dans le cycle cellulaire, l’apoptose et la différenciation neuronale. Après avoir confirmé la phosphorylation de p73 par cette kinase in vitro, nous avons démontré que la CamKII favorise l’activité transcriptionelle de p73 et modifie le niveau de protéique des isoformes de p73. L’étude de la caractérisation des sites impliqués dans cette régulation suggère que les effets de la CamKII sur p73 résultent davantage de la coopération de l’ensemble des sites que d’un seul site précis. Par ailleurs, cette étude moléculaire s’inscrit dans un contexte physiologique précis où l’apoptose neuronale induit par le déséquilibre de l’homéostasie calcique s’expliquerait en partie par la signalisation p73-CamKII. / The transcription factor p73 is implicated in neurodegenerativ diseases (Alzheimer disease, neuroblastoma…) by regulating cell cycle, neuronal apoptosis and differenciation.Identifying the post-translationnal modifications on p73 would allow to better understand the p73 biological functions and regulations. Bioinformatic analyses predict amongst others, three potential phosphorylation sites on p73 for the calcium-calmodulin dependant kinase 2 (CamKII), which is also implicated in cell cycle, neuronal apoptosis and differenciation. After showing the p73 phosphorylation by CamKII in vitro, we demonstrated that CamKII favors the p73 transcriptional activity and modulates the proteic expression of the p73 isoforms. The study to identify the sites implicated in these CamKII effects highlights cooperation between the sites instead of the prevalence of a specific site.. Besides this molecular approach, we also investigate the implication of this regulation in a physiologic context. Our results reveal that the neuronal death triggered by a calcic homeostasis alteration could be mediated by the p73-CamKII signalization.
15

The Role of Cell Cycle Machinery in Ischemic Neuronal Death

Iyirhiaro, Grace O. January 2013 (has links)
Ischemic stroke occurs as a result of a lack or severe reduction of blood supply to the brain. Presently therapeutic interventions are limited and there is a need to develop new and efficacious stroke treatments. To this end, a great deal of research effort has been devoted to studying the potential molecular mechanisms involved in ischemic neuronal death. Correlative evidence demonstrated a paradoxical activation of the cell cycle machinery in ischemic neurons. The levels and activity of key cell cycle regulators including cyclin D1, Cdk2 and Cdk4 are upregulated following ischemic insults. However, the functional relevance of these various signals following ischemic injury was unclear. Accordingly, the research described in this thesis address the functional relevance of the activation of the cell cycle machinery in ischemic neuronal death. The data indicate that the inhibition of Cdk4 protects neurons from ischemia-induced delayed death, whereas abrogation of Cdk5 activity prevents excitotoxicity-induced damage in vitro and in vivo. Examination of upstream activators of mitotic-Cdks showed that Cdc25A is a critical mediator of delayed ischemic neuronal death. Investigation of the potential molecular mechanism by which cell cycle regulators induced neuronal death revealed perturbations in the levels and activity of key downstream targets of Cdk4. The retinoblastoma protein family members, pRb and p130 are increasingly phosphorylated following ischemic stresses. Importantly, p130 and E2F4 proteins are drastically reduced following ischemic insults. Additionally, E2F1 association with promoters of pro-apoptotic genes are induced while that of E2F4 is reduced. These changes appear to be important determinants in ischemic neuronal death. Cumulatively, the data supports the activation of the cell cycle machinery as a pathogenic signal contributing to ischemic neuronal death. The development of neuroprotectant strategies for stroke has been hampered in part by its complex pathophysiology. Previous research indicated that flavopiridol, a general CDK-inhibitor, is unable to provide sustained neuroprotection beyond one week following cerebral ischemia. The potential benefit of combining flavopiridol with another neuroprotectant, minocycline, was explored. The data indicate that while this approach provided histological protection 10 weeks after insult, the protected neurons are not functional due to progressive dendritic degeneration. This evidence indicates that targeting cell cycle pathways in stroke while important must be combined with other therapeutic modalities to fully treat stroke-induced damage.
16

Impact de l'hypotension chez le rat avec encéphalopathie hépatique due à la maladie de foie chronique : implication pour les complications neurologiques suivant la transplantation hépatique

Clément, Marc-André 08 1900 (has links)
L’encéphalopathie hépatique (EH) est une complication neuropsychiatrique de la maladie de foie telle que la cirrhose, caractérisée par des dysfonctions cognitives et motrices. Le seul traitement curatif est la transplantation hépatique (TH). Historiquement, l’EH est considérée comme un désordre métabolique réversible et il est attendu qu’il soit résolu suivant la TH. Cependant, il a été démontré que des complications neurologiques persistent chez 47% des patients transplantés. La TH est une opération chirurgicale complexe accompagnée de stress péri-opératoire telle que la perte sanguine et l’hypotension. L’hypothèse de ce projet d’étude est que l’EH minimale (EHm) rend le cerveau plus susceptible à une perte neuronale suite à une insulte hypotensive. Nous avons donc caractérisé un modèle d’hypotension chez des rats cirrhotiques avec ligation de la voie biliaire (BDL) dans lequel une hypovolémie de l’artère fémorale a été faite. Avec ce modèle, nous avons étudié l’impact de différentes pressions sanguines de 120 minutes sur le compte neuronal. Nos résultats démontrent que les BDL hypotendus à une pression artérielle moyenne de 60 mmHg et 30 mmHg ont une diminution du compte neuronal et que les neurones mourraient par apoptose (observée par la présence de caspase-3 clivée). Nous avons également déterminé que le flot sanguin cérébral était altéré chez les rats cirrhotiques BDL. Le second objectif était d’évaluer si le traitement de l’EHm par l’ornithine phénylacétate (OP) permettait d’éviter la perte neuronale chez les BDL hypotendus. Nos résultats ont démontrés que l’OP permettait de partiellement rétablir les fonctions cognitives chez les rats BDL. De plus, les rats BDL traités avec l’OP peuvent éviter la mort neuronale. Cependant, le processus apoptotique est toujours enclenché. Ce résultat suggère la possibilité de mort cellulaire retardée par l’OP. Ces résultats suggèrent que les patients cirrhotiques avec EHm sont plus susceptibles à une mort neuronale induite par hypotension. La combinaison de l’EHm et l’hypotension permet d’expliquer les complications neurologiques rencontrées chez certains patients. Le diagnostic et le traitement de ce syndrome doit donc être fait chez les patients cirrhotiques pour éviter ces complications post-TH. / Hepatic encephalopathy (HE) is a major neuropsychiatric complication caused by chronic liver disease such as cirrhosis and is characterized by cognitive and motor dysfunction. The only curative treatment to date remains liver transplantation (LT). Historically, HE has always been considered to be a reversible metabolic disorder and has therefore been expected to completely resolve following LT. However, persisting neurological complications remain a common problem affecting as many as 47% of LT recipients. LT is a major surgical procedure accompanied by intraoperative stress and confounding factors, including blood loss and hypotension. We hypothesize, in the setting of minimal HE (MHE), the compromised brain becomes susceptible to hypotensive insults, resulting in cell injury and death. To investigate this hypothesis, six-week bile-duct ligated (BDL) rats with MHE and respective controls (SHAM) were used. Blood is withdrawn from the femoral artery (inducing hypovolemia) until a mean arterial pressure of 30, 60 and 90 mmHg (hypotension) and maintained for 120 minutes. Our results demonstrated that BDL with following hypotension of 30 and 60 mmHg have a lower neuronal cell count compared to SHAM-operated animals. Furthermore, we provide evidence neuronal cell death is occurring due to apoptosis (observed by presence of cleaved caspase-3). In addition, cerebral blood flow is reduced in BDL rats compared to SHAM-operated controls. Second objective was to assess the therapeutic potential of the ammonia-lowering agent ornithine phenylacetate (OP) in preventing hypotension-induced neuronal loss in BDL rats. OP-treated BDL rats, in addition to lowering blood ammonia, also ameliorated cognitive function. However, cleaved caspase-3 levels were still elevated in the brains of OP-treated BDL rats therefore suggesting OP delays the onset of neuronal death in BDL rats. Overall, these findings strongly suggest that cirrhotic patients with MHE are more susceptible to hypotension-induced neuronal cell loss. Moreover, these results suggest a patient with HE (even MHE), with a “frail brain”, will fare worse during LT transplantation and consequently result in poor neurological outcome. Combination of MHE and hypotension may account for the persisting neurological complications observed in a number of cirrhotic patients following LT. Therefore, MHE, i) should not be ignored and therefore diagnosed and ii) merits to be treated in order to reduce the risk of neurological complications occurring post-LT
17

Étude des mécanismes moléculaires impliqués dans la mort neuronale induite par le peptide de ß-amyloïde soluble : recherche et validation fonctionnelle de cibles cellulaires / Molecular mechanisms involved in soluble ß amyloid peptide-induced cell death : characterization and functional validation of therapeutic targets

Youssef, Ihsen 31 October 2006 (has links)
Le vieillissement des populations est corrélé à l’augmentation des pathologies neurodégénératives liées à l’âge, plus particulièrement la maladie d’Alzheimer. La recherche de marqueurs précoces de la maladie ainsi que l’élaboration de nouvelles stratégies thérapeutiques constituent un enjeu de taille. Parmi les mécanismes moléculaires de la formation des plaques amyloïdes actuellement explorés, les formes oligomériques tronquées de peptide amyloïde (Aß), notamment le peptide Aß3(?pE)??42? retrouvé à des stades précoces de la maladie, joueraient un rôle déterminant. Ces travaux de thèse ont permis de montrer, dans un premier temps, que l’injection intracérébrale de ce peptide chez la souris entraîne des altérations de la mémoire de travail et des capacités d’apprentissage, associées à une accumulation d’espèces réactives dérivées de l’oxygène dans des régions cérébrales spécifiques (hippocampe et bulbes olfactifs) de ces animaux. Des essais menés in vitro sur des cultures primaires de neurones de souris montrent leur implication dans les voies apoptotiques impliquant l’activation des caspases et la cascade métabolique de l’acide arachidonique. La seconde étape de ces travaux a constitué en l’étude des effets protecteurs d’un peptide antiapoptotique d’origine endogène, l’humanine (HN) et son variant S14G (HNG). In vitro, un effet protecteur de ces peptides a été mesuré après traitement de neurones en culture par le peptide A[bêta]3?(pE)42.??? Les résultats les plus marquants résident dans les observations faites in vivo : en effet, ces peptides inhibent l’effet délétère de l’injection intracérébroventriculaire du peptide Aß3?(pE??)42?? en restaurant les performances mnésiques des animaux dans les tests comportementaux. A la lumière de ces résultats, les peptides HN pourraient constituer de nouveaux outils thérapeutiques dans le traitement ou la prévention des dommages cellulaires précoces liés à la présence des oligomères solubles du peptide Aß / Aging of population is correlated to the increase of neurodegenerative disease, more particularly Alzheimer disease. Defining early diagnostic markers and new therapeutic strategies are highly relevant. Among the molecular pathways which are currently developed, N-terminal-truncated forms of amyloid-ß (Aß) peptide have been recently suggested to play a pivotal role in the disease. Among them, Aß3(?pE)42 ?peptide is the dominant Aß species in amyloid plaques. We first investigated the effects of soluble oligomeric Aß3(pE) 42 after intracerebroventricular injection on mice learning capacities and the molecular mechanisms of in vitro neurotoxicity. Mice injected with soluble Aß3(pE) 42 displayed impaired spatial working memory and delayed memory acquisition. These cognitive alterations were associated with free radical overproduction in hippocampus and olfactory bulbs. In vitro, Aß3(pE) 42 oligomers induced a redox-sensitive neuronal apoptosis involving caspase activation and an arachidonic acid-dependent pathway. The second goal of this work was to investigate the protective effects of the apoptosis rescue endogenous peptide humanin (HN) and its S14G mutant (HNG). In vitro, we measured their inhibitory effect on neuronal death and apoptotic events resulting from soluble Ab oligomer treatment. What’s of particular interest is the in vivo restoration of soluble Aß3(pE) 42 oligomer-induced mnesic impairment. Thus, HN peptides might serve as new drug candidates for treatment or prevention of early cellular damages linked to soluble A[bêta] oligomers
18

Étude du rôle de l'inflammation dans l’insulte cérébrale précoce associée à l'hémorragie sous-arachnoïdienne.

Gris, Typhaine 04 1900 (has links)
L’hémorragie sous-arachnoïdienne (HSA) est une pathologie redoutable résultant fréquemment de la rupture d’un anévrisme intracrânien. Elle est associée à une mortalité élevée et d’importants déficits neurologiques. Le saignement entraîne l’augmentation de la pression intracrânienne, la diminution du flux cérébral sanguin, l’apparition de l’inflammation cérébrale et la mort neuronale. Ces évènements de la phase d’insulte cérébrale précoce (72 premières heures) conditionnent le devenir du patient. Le vasospasme était initialement considéré comme la cause principale des ischémies cérébrales retardées (DCI), mais sa diminution pharmacologique n’a montré aucun bénéfice pour les patients. Cependant, l’infiltration rapide des leucocytes dans le SNC suivant le saignement semble impliquée dans le développement des DCI. Notre hypothèse est que l’activation précoce du système immunitaire à la suite de l’HSA est responsable de la mort neuronale retardée et de la survenue des déficits constatés chez les patients souffrant d’HSA. Nos buts étaient de caractériser la contribution des leucocytes dans l’inflammation cérébrale et la mort neuronale dans un modèle murin d’HSA, de moduler cette inflammation par l’utilisation de la protéine MFG-E8, une protéine anti-inflammatoire favorisant la clairance apoptotique, et de confirmer la présence d’une signature immunologique comparable chez les patients HSA. Notre modèle murin nous a permis d’induire chirurgicalement l’HSA et d’injecter par voie intrapéritonéale la protéine MFG-E8. La composition cellulaire du sang (humain et murin) et du cerveau des souris a été analysée par cytométrie en flux. Le plasma (humain et murin) et le liquide céphalo-rachidien (LCR) des patients ont été analysés par dosage cytokinique. Certains cerveaux de souris étaient inclus en paraffine pour l’imagerie par microscopie confocale. La lignée cellulaire de microglie nous a permis d’étudier la modulation de la capacité de phagocytose et de production de ROS par l’exposition au sérum ou au LCR de patients HSA. Dans une première étude, nous avons démontré le rôle de l’inflammation cérébrale précoce dans le développement de la mort neuronale et des symptômes chez les souris HSA. Nous avons également caractérisé la présence de marqueurs inflammatoires systémiques chez les patients HSA. Dans une deuxième étude, nous avons montré que le traitement par la protéine MFG-E8 chez les souris HSA entraînait la diminution de l’inflammation périphérique ainsi que de la présence des marqueurs M1, de l’activation des astrocytes et de la mort neuronale dans le cerveau aboutissant à la diminution de la sévérité des symptômes. L’étude de l’activation immunitaire chez les patients HSA, nous a permis d’observer une signature immunologique similaire à notre modèle murin. Nous avons montré que les patients HSA présentaient une augmentation des cellules immunitaires innées et une immunodépression lymphocytaire en comparaison avec des donneurs sains. Nous avons également décrit l’importance du grade et du genre des patients par la caractérisation d’un profil inflammatoire plus sévère chez les patients hauts gradés et chez les hommes. Finalement, nos résultats confirment l’existence d’une signature immunologique similaire entre les patients HSA et notre modèle murin aboutissant, dans les deux cas, à l’augmentation de l’activation de l’inflammation systémique et cérébrale. Cette signature immunologique est dépendante du sexe et du grade des patients. La diminution de la gravité des symptômes par le traitement avec la protéine MFG-E8 dans notre modèle souris confirme l’implication incontestable de l’inflammation dans l’apparition des déficits moteurs secondaires à la mort neuronale, et le potentiel thérapeutique de cette protéine MFG-E8 dans le développement de nouvelles thérapies. / Subarachnoid hemorrhage (SAH) is a redoubtable pathology resulting frequently from the rupture of an intracranial aneurysm. It is associated to an important mortality and severe neurologic deficits. The bleeding leads to an increase in the intracranial pressure, to a decrease in cerebral blood flow, to the development of cerebral inflammation and to neuronal death. These events of early brain injury (first 72 hours) determine the patient’s prognosis. The vasospasm was first thought to be the main cause of delayed cerebral ischemia (DCI), but its pharmacological decrease was not being associated to any benefits for the patients. However, rapid leucocytic infiltration in the CNS secondary to the bleeding seems implicated in the development of DCI. Our hypothesis is that the early immune system activation in SAH is responsible for delayed neuronal death and for the onset of symptoms in SAH patients. Our goals were to characterize the contribution of leucocytes in cerebral inflammation and neuronal death in our SAH mice model, to modulate the inflammation by using MFG-E8 protein, an anti-inflammatory protein promoting the apoptotic clearance, and to confirm this similar immunologic signature in SAH patients. Our mouse model allows us to surgically induce SAH and to inject the MFG-E8 protein by intraperitoneal injection. The cellular composition of blood (human and mouse) and of mouse brains were analyzed by flow cytometry. The plasma (human and mouse) and the cerebrospinal fluid (CSF) were analyzed by cytokine assay. Some mice brains were paraffin-embedded for confocal microscopy imaging. Microglia cell lines allowed us to evaluate the modulation of phagocytosis and reactive oxygen species (ROS) production secondary to the exposition to SAH patients’ serum and CSF. In the first study, we have demonstrated the impact of early cerebral inflammation on neuronal death and the occurrence of symptoms in SAH mice. We also have characterized the presence of systemic inflammatory markers in SAH patients. In the second study, we have shown that MFG-E8 protein treatment in our SAH mice model is linked to a decrease in peripheric inflammation as well as to a decrease of M1 markers, astrocytic activation and neuronal death in the brain leading to a decrease of symptoms severity. iv The study of immune activation in SAH patients allowed us to observe an immune signature like in our mouse model. We have revealed that SAH patients have an increase in innate immune cells and in lymphocytic immunosuppression in comparison to healthy donors. We have also described the importance of gender and SAH grade by the characterization of a more severe inflammatory profile in high-grade and in male patients. To conclude, our results confirm the existence of a similar immune signature between SAH patients and our mouse model leading in both cases to an increase in systemic and cerebral inflammation. This immunologic signature depends on the patients’ gender and on the grade of SAH. The decrease of symptom severity with MFG-E8 protein treatment in our mice model confirms the unquestionable implication of inflammation in the occurrence of motor deficits secondary to neuronal death and the therapeutic potential of MFG-E8 for the development of new therapies.

Page generated in 0.1141 seconds