• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 33
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 52
  • 31
  • 29
  • 27
  • 22
  • 20
  • 20
  • 17
  • 17
  • 17
  • 16
  • 16
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Les neurones pyramidaux corticaux dans le couplage neurovasculaire et neurométabolique : mécanismes cellulaires et moléculaires / Neurovascular and neurometabolic coupling and cortical pyramidal neurons : cellular and molecular mechanisms

Lacroix, Alexandre 24 September 2014 (has links)
Le couplage étroit entre l'activité neuronale et l'augmentation du flux sanguin, appelé couplage neurovasculaire (CNV), est essentiel aux fonctions cérébrales. Ce processus est à la base de l'imagerie médicale cérébrale non invasive utilisée pour déterminer l'activité neuronale chez l'individu sain ou malade. Cependant, les mécanismes cellulaires et moléculaires du CNV restent encore débattus. La compréhension de ce processus permettra non seulement une interprétation plus fine des signaux d'imagerie cérébrale mais également un meilleur diagnostic des maladies neurologiques.De nombreux messagers vasoactifs sont impliqués dans le CNV du cortex cérébral. Les prostanoïdes, notamment libérés lors de l'activation des récepteurs NMDA, sont impliqués dans l'augmentation du flux sanguin cérébral. Cependant, l'origine cellulaire, moléculaire, la nature ainsi que les cibles de ces messagers lipidiques restent incertaines.La prostaglandine E2 (PGE2) et la prostacycline (PGI2), produits par les cyclo-oxygénases de type 1 ou 2 (COX-1 ou COX-2) et des enzymes terminales, sont les deux principaux prostanoïdes vasodilatateurs du cortex cérébral. Ce travail a montré que les vasodilatations induites par le NMDA dépendent de la COX-2 et nécessitent également l'activation des récepteurs EP2 et EP4 de la PGE2 et IP de la PGI2et que les neurones pyramidaux sont les principales cellules du cortex cérébral équipées pour la biosynthèse de la PGE2 et de la PGI2.L'ensemble de ces travaux démontre que les neurones pyramidaux jouent donc un rôle clé dans le CNV cortical via la libération de la PGE2. Produite par la COX-2, la PGE2 agit sur les récepteurs EP2 et EP4 et induit des vasodilatations. / The tight coupling between neuronal activity and cerebral blood flow, known as neurovascular coupling (NVC), is essential for brain functions. It is also the physiological basis of cerebral imaging, widely used to map neuronal activity in health and disease. Despite this importance, its cellular and molecular mechanisms are poorly understood. A better understanding of NVC will not only permit an accurate interpretation of cerebral imaging but also a better diagnosis of neurological diseases. In the cerebral cortex, numerous messengers are involved in NVC. Prostanoids, released during NMDA receptors activation, play a key role in NVC. However, the cellular and molecular origins, as well as the nature and the targets of this lipid messengers remain elusive. Prostaglandin E2 (PGE2) and prostacyclin (PGI2), produced by the rate limiting cyclo-oxygenases 1 or 2 (COX-1 or COX-2) and specific terminal enzymes, are the main cortical vasodilatory prostanoid. This work shows that NMDA-induced vasodilations are COX-2 dependent and require the activation of EP2 and EP4 receptors of PGE2 and IP receptors of PGI2. Furthermore, pyramidal cells are the main cell type equipped for the biosynthesis of PGE2 and PGI2 derived from COX-2 activity. In summary, these observations demonstrate that pyramidal cells play a key role in NVC by releasing PGE2 produced via COX-2 and acting on the vasodilatory EP2 and EP4 receptors.
62

Fluidité et mélancolie dans l’oeuvre d’Alejandra Pizarnik / Fluidity and melancholia in the works of Alejandra Pizarnik

Buenaventura Suarez, Alejandra 07 December 2011 (has links)
L’objectif de ce travail est d’étudier la fluidité et la mélancolie dans la production textuelle de l’écrivaine argentine Alejandra Pizarnik (1936-1972). La problématique ontologique se dégage de la production de Pizarnik : la complétude de l’être doit se faire dans un espace unifié, assimilé principalement à la triade enfance-centre-jardin.Notre thèse soutient que la complétude ontologique se réalise dans l’espace du pur devenir deleuzien, du paradoxe des deux sens à la fois. Le caractère névrosé du sujet Pizarnik s’ajoute à cette affirmation. Le motif du vent est cardinal dans notre étude, car c’est l’instance qui est présente à la fois dans la notion de fluidité et dans celle de mélancolie. Nous abordons le motif du vent dans la production textuelle de Pizarnik et ses liens avec la mélancolie sous l’angle du Problème XXX,1 d’Aristote. / The purpose of this doctoral dissertation is to analyze the fluidity and melancholia in the textual production of the Argentinean writer Alejandra Pizarnik (1936-1972). The ontological problematic ooze from Pizarnik’s production: the completeness of the being should be achieved in a unified space, which is assimilated to the triad childhood-garden-centre.Our work states that the ontological completeness is made possible in the space of the pure deleuzian becoming, in the paradox of the both senses at once. The neurotic aspect of the Pizarnik subject adds to this affirmation. The theme of the wind is of first importance for our study, because it is the authority that is in the notion of fluidity and in the notion of melancholia. We will approach the theme of the wind in Pizarnik’s textual production and their links with melancholia under the aspect of Aristotle’s Problem XXX,1.
63

Cerebral haemodynamic control and carotid endarterectomy : comparison of general and locoregional anaesthesia

Dellagrammaticas, Demosthenes January 2012 (has links)
The role of CEA for stroke prevention in the presence of symptomatic carotid artery stenosis is well established. In order to maximize the benefit of surgery, several perioperative processes of care have been under scrutiny, of which one is the choice of anaesthetic method. The differing effects of GA vs. LA on the cerebral circulation after CEA may be of significance, since changes in the cerebral circulation post-CEA may give rise to cerebral hyperperfusion and intracerebral haemorrhage. This work assessed the effect of GA vs. LA on cerebral haemodynamic control after CEA using transcranial Doppler (TCD) techniques, and correlated these changes with serum markers of cerebral injury. Subjects undergoing CEA had perioperative TCD monitoring of middle cerebral artery blood flow velocity (MCAV). Pre- and postoperative (within 48 hours of surgery) testing of cerebral autoregulation [CA] (tilt-testing) and cerebral vasoreactivity to CO2 [CVR] (rebreathing expired air) was conducted. Cerebral haemodynamic parameters and clinical outcome were correlated with changes in jugular venous and peripheral levels of protein S100β and neurone-specific enolase (NSE).The change in CA and CVR was not different between GA (n=16) and LA (n=20). Overall, CA and CVR improved significantly within 48 hours of CEA for patients with preoperative impairment of these parameters, although some patients with normal baseline CA and CVR exhibited postoperative impairment. Increase of MCAV >100% from baseline after restoration of carotid blood flow was observed in patients with impaired CVR, but resolved by the first postoperative day. Transient elevation in jugular venous (but not peripheral) S100β during surgery was seen. Both jugular and peripheral NSE levels dropped during surgery. Neither anaesthetic method nor CA or CVR status had any effect on changes in serum S100β or NSE. Cerebral autoregulatory parameters thus improve rapidly after CEA, but appear unaffected by anaesthetic technique. This supports the concept that cerebral hyperperfusion is dependent on factors in addition to impaired CA or CVR. Changes in serum S100β or NSE do not reflect cerebral haemodynamic changes. However, the variability encountered between patients warrants further investigation. The implications for clinical practice and directions for further research are discussed.
64

Neurone abstrait : une formalisation de l’intégration dendritique et ses propriétés algébriques / Abstract neuron : formalizing dendritic integration and algebraic properties

Guinaudeau, Ophélie 11 January 2019 (has links)
Les neurones biologiques communiquent par le biais d’impulsions électriques, appelées spikes, et les fonctions cérébrales émergent notamment de la coordination entre les réceptions et émissions de ces spikes. Par ailleurs, il est largement admis que la fonction de chaque neurone dépend de sa morphologie. Les dendrites conditionnent l’intégration spatio-temporelle des spikes reçus et influent sur les temps d’occurrence des spikes émis. Elles sont donc fondamentales pour l’étude in silico des mécanismes de coordination, et en particulier pour l’étude des assemblées de neurones. Les modèles de neurones existants prenant en compte les dendrites, sont généralement des modèles mathématiques détaillés, souvent à base d’équations différentielles, dont la simulation nécessite des ressources de calculs importantes. De plus, leur complexité intrinsèque rend difficile l’analyse et les preuves sur ces modèles. Dans cette thèse, nous proposons un modèle de neurone intégrant des dendrites d’une manière abstraite. Dans l’objectif d’ouvrir la porte aux méthodes formelles, nous établissons une définition rigoureuse du cadre de modélisation et mettons en évidence des propriétés algébriques remarquables de l’intégration dendritique. Nous avons notamment démontré qu’il est possible de réduire la structure d’un neurone en préservant sa fonction d’entrée/sortie. Nous avons ainsi révélé des classes d’équivalence dont nous savons déterminer un représentant canonique. En s’appuyant sur la théorie des catégories et par des morphismes de neurones judicieusement définis, nous avons ensuite analysé plus finement ces classes d’équivalence. Un résultat surprenant découle de ces propriétés : un simple ajout de délais dans les modèles informatiques de neurones permet de prendre en compte une intégration dendritique abstraite, sans représenter explicitement la structure arborescente des dendrites. À la racine de l’arborescence dendritique, la modélisation du soma contient inévitablement une équation différentielle lorsque l’on souhaite préserver l’essence du fonctionnement biologique. Ceci impose de combiner une vision analytique avec la vision algébrique. Néanmoins, grâce à une étape préalable de discrétisation temporelle, nous avons également implémenté un neurone complet en Lustre qui est un langage formel autorisant des preuves par model checking. Globalement, nous apportons dans cette thèse un premier pas encourageant vers une formalisation complète des neurones, avec des propriétés remarquables sur l’intégration dendritique. / Biological neurons communicate by means of electrical impulses, called spikes. Brain functions emerge notably from reception and emission coordination between those spikes. Furthermore, it is widely accepted that the function of each neuron depends on its morphology. In particular, dendrites perform the spatio-temporal integration of received spikes and affect the occurrence of emitted spikes. Dendrites are therefore fundamental for in silico studies of coordination mechanisms, and especially for the study of so-called neuron assemblies. Most of existing neuron models taking into account dendrites are detailed mathematical models, usually based on differential equations, whose simulations require significant computing resources. Moreover, their intrinsic complexity makes difficult the analysis and proofs on such models. In this thesis, we propose an abstract neuron model integrating dendrites. In order to pave the way to formal methods, we establish a rigorous definition of the modeling framework and highlight remarkable algebraic properties of dendritic integration. In particular, we have demonstrated that it is possible to reduce a neuron structure while preserving its input/output function. We have thus revealed equivalence classes with a canonical representative. Based on category theory and thanks to properly defined neuron morphisms, we then analyzed these equivalence classes in more details. A surprising result derives from these properties: simply adding delays in neuron computational models is sufficient to represent an abstract dendritic integration, without explicit tree structure representation of dendrites. At the root of the dendritic tree, soma modeling inevitably contains a differential equation in order to preserve the biological functioning essence. This requires combining an analytical vision with the algebraic vision. Nevertheless, thanks to a preliminary step of temporal discretization, we have also implemented a complete neuron in Lustre which is a formal language allowing proofs by model checking. All in all, we bring in this thesis an encouraging first step towards a complete neuron formalization, with remarkable properties on dendritic integration.
65

Etude et conception de circuits innovants exploitant les caractéristiques des nouvelles technologies mémoires résistives / Study and design of an innovative chip leveraging the characteristics of resistive memory technologies

Lorrain, Vincent 09 January 2018 (has links)
Dans cette thèse, nous étudions les approches calculatoires dédiées des réseaux de neurones profonds et plus particulièrement des réseaux de neurones convolutionnels (CNN). En effet, l'efficacité des réseaux de neurones convolutionnels en font des structures calculatoires intéressantes dans de nombreuses applications. Nous étudions les différentes possibilités d'implémentation de ce type de réseaux pour en déduire leur complexité calculatoire. Nous montrons que la complexité calculatoire de ce type de structure peut rapidement devenir incompatible avec les ressources de l'embarqué. Pour résoudre cette problématique, nous avons fait une exploration des différents modèles de neurones et architectures susceptibles de minimiser les ressources nécessaires à l'application. Dans un premier temps, notre approche a consisté à explorer les possibles gains par changement de modèle de neurones. Nous montrons que les modèles dits impulsionnels permettent en théorie de réduire la complexité calculatoire tout en offrant des propriétés dynamiques intéressantes, mais nécessitent de repenser entièrement l'architecture matériel de calcul. Nous avons alors proposé notre approche impulsionnelle du calcul des réseaux de neurones convolutionnels avec une architecture associée. Nous avons mis en place une chaîne logicielle et de simulation matérielle dans le but d'explorer les différents paradigmes de calcul et implémentation matérielle et évaluer leur adéquation avec les environnements embarqués. Cette chaîne nous permet de valider les aspects calculatoires mais aussi d'évaluer la pertinence de nos choix architecturaux. Notre approche théorique a été validée par notre chaîne et notre architecture a fait l'objet d'une simulation en FDSOI 28 nm. Ainsi nous avons montré que cette approche est relativement efficace avec des propriétés intéressantes un terme de passage à l'échelle, de précision dynamique et de performance calculatoire. Au final, l'implémentation des réseaux de neurones convolutionnels en utilisant des modèles impulsionnels semble être prometteuse pour améliorer l'efficacité des réseaux. De plus, cela permet d'envisager des améliorations par l'ajout d'un apprentissage non supervisé type STDP, l'amélioration du codage impulsionnel ou encore l'intégration efficace de mémoire de type RRAM. / In this thesis, we study the dedicated computational approaches of deep neural networks and more particularly the convolutional neural networks (CNN).We highlight the convolutional neural networks efficiency make them interesting choice for many applications. We study the different implementation possibilities of this type of networks in order to deduce their computational complexity. We show that the computational complexity of this type of structure can quickly become incompatible with embedded resources. To address this issue, we explored differents models of neurons and architectures that could minimize the resources required for the application. In a first step, our approach consisted in exploring the possible gains by changing the model of neurons. We show that the so-called spiking models theoretically reduce the computational complexity while offering interesting dynamic properties but require a complete rethinking of the hardware architecture. We then proposed our spiking approach to the computation of convolutional neural networks with an associated architecture. We have set up a software and hardware simulation chain in order to explore the different paradigms of computation and hardware implementation and evaluate their suitability with embedded environments. This chain allows us to validate the computational aspects but also to evaluate the relevance of our architectural choices. Our theoretical approach has been validated by our chain and our architecture has been simulated in 28 nm FDSOI. Thus we have shown that this approach is relatively efficient with interesting properties of scaling, dynamic precision and computational performance. In the end, the implementation of convolutional neural networks using spiking models seems to be promising for improving the networks efficiency. Moreover, it allows improvements by the addition of a non-supervised learning type STDP, the improvement of the spike coding or the efficient integration of RRAM memory.
66

Local magnetic detection and stimulation of neuronal activity / Détection et stimulation magnétique locale de l'activité neuronale

Trauchessec, Vincent 04 October 2017 (has links)
L’activité cérébrale se traduit par des courants ioniques circulant dans le réseau neuronal.La compréhension des mécanismes cérébraux implique de sonder ces courants, via des mesures électriques ou magnétiques, couvrant différentes échelles spatiales. A l’échelle cellulaire, les techniques d’électrophysiologie sont maitrisées depuis plusieurs décennies, mais il n’existe pas actuellement d’outils de mesure locale des champs magnétiques engendrés par les courants ioniques au sein du réseau neuronal. La magnéto-encéphalographie(MEG) utilise des SQUIDs(Superconducting QUantum Interference Devices)fonctionnant à très basse température, placés en surface du crâne, qui fournissent une cartographie des champs magnétiques mais dont la résolution spatiale est limitée du fait de la distance séparant les capteurs des cellules actives. Le travail présenté dans cette thèse propose de développer des capteurs magnétiques à la fois suffisamment sensibles pour être capable de détecter le champ magnétique extrêmement faible générés par les courants neuronaux (de l’ordre de 10⁻⁹ T), et dont la géométrie est adaptable aux dimensions des cellules, tout en fonctionnant à température ambiante. Ces capteurs,basés sur l’effet quantique de magnétorésistance géante (GMR, sont suffisamment miniaturisables pour être déposés à l’extrémité de sondes d’une finesse de l’ordre de 100 μm. L’utilisation de capteurs GMR pour la mesure de signaux biomagnétiques fut d’abord testée lors d’expériences in-vitro, réalisées sur le muscle soléaire de souris. Ce système biologique a été choisi pour sa simplicité,rendant la modélisation accessible, ainsi que pour sa robustesse, permettant d’avoir des résultats fiables et reproductibles. Le parfait accord entre les prédictions théoriques et les signaux magnétiques mesurés valide cette technologie. Enfin, des expériences in vivo dans le cortex visuel du chat ont permis de réaliser la toute première mesure de la signature magnétique de potentiels d’action générés par des neurones corticaux, ouvrant la voie à la magnétophysiologie. / Information transmission in the brain occurs through ionic currents flowing inside the neuronal network. Understanding how the brain operates requires probing this electrical activity by measuring the associated electric or magnetic field. At the cellular scale, electrophysiology techniques are well mastered, but there is no tool to perform magnetophysiology. Mapping brain activity through the magnetic field generated by neuronal communication is done via magnetoencephalography (MEG). This technique is based on SQUIDs (Superconducting Quantum Interference Devices) that operate at liquid Helium temperature. This parameter implies to avoid any contact with living tissue and a shielding system that increases the distance between the neurons and the sensors, limiting spatial resolution. This thesis work aims at providing a new tool to performmagnetic recordings at the neuronal scale. The sensors developed during this thesis are based on the Giant Magneto-Resistance (GMR) effect. Operating at room temperature, they can be miniaturize and shaped according to the experiment, while exhibiting a sensitivity that allows to measure amplitude of 10⁻⁹ T. Before targeting neurons, the use of GMR-based sensors for magnetic recordings of biological activity has been validated through invitro experiments on the mouse soleus muscle. This biological system has been chosen because of its simple organization, allowing for a realistic modelling, and for its robustness, in order to get reliable and replicable results. The perfect agreement between the measurements and the theoretical predictions represents a consistent validation of the GMR technology for biological applications. Then a specially adapted needle-shaped probe carrying micron-sized GMR sensors has been developed for in-vivo experiment in cat visual cortex. The very first magnetic signature of action potentials inside the neuropil has been measured, paving the way towards magnetophysiology.
67

Studies on the formation of cortical circuits / The role of Ire1α in the developing neocortex. Identification of epilepsy-associated genes by ENU-induced mutagenesis in mice

Borisova, Ekaterina 15 December 2022 (has links)
Zu den höheren kognitiven Fähigkeiten des menschlichen Neokortex gehören abstraktes Denken, komplexes Verstehen, Sprache und Lernfähigkeit. Die Bildung der Großhirnrinde beginnt in der mittleren Phase der Embryogenese und ist ein hochgradig organisierter und streng regulierter Prozess. Durch asymmetrische Teilung neuronaler Stammzellen entstehen unreife Neuronen, die im Anschluss an ihre Migration ihre spezifische Position innerhalb des Cortex einnehmen. Der korrekte Erwerb der axonalen Morphologie und die Spezifizierung des Dendritenbaums bilden die Grundlage für die Etablierung der kortikalen Konnektivität. Diese morphologischen Merkmale werden durch intrinsische genetische Programme der postmitotischen Differenzierung kodiert sowie durch entwicklungsbedingte Einflüsse im extrazellulären Milieu reguliert. Das im endoplasmatischen Retikulum lokalisierte Inositol-Requiring Enzyme 1α (Ire1α) ist einer der Hauptregulatoren der entfalteten Proteinantwort. In dieser Studie zeigen wir, dass Ire1α für die Spezifizierung der Neurone der oberen Cortexschichten sowie den Erwerb der neuronalen Morphologie von zentraler Bedeutung ist, indem es mRNA-Translationsraten reguliert. Diese Arbeit zeigt auch, dass frühe und späte kortikale neuronale Vorläuferzellen sowie früh und spät geborene postmitotische Neurone unterschiedliche Translationsraten aufweisen, was auf differenzierte Anforderungen an die Proteom-Synthesemaschinerie bezüglich der Entwicklung der kortikalen Schichten hinweist. Störungen in allen Phasen der kortikalen Entwicklung, welche entweder auf Umweltfaktoren oder Genmutationen zurückzuführen sind, können zu einer abweichenden Physiologie der kortikalen Schaltkreise führen. Eine große Anzahl solcher Anomalien kann zu schweren neurologischen Erkrankungen wie Epilepsie oder komplexen Störungen mit Epilepsie wie Rett-Syndrom, Angelman-Syndrom, Mowat-Wilson-Syndrom, Lafora-Krankheit und/oder Kaufman-Okulozerebrofazial-Syndrom führen. / Higher cognitive abilities of human neocortex comprise abstract thinking, complex comprehension, language and learning capacity. Formation of the cerebral cortex begins in the middle of embryogenesis and is a tightly organized and highly regulated process. Asymmetric divisions of neuronal stem cells give rise to immature neurons that migrate to consequently assume their specific position in the cortical plate. Correct acquisition of a single-axon morphology and specification of the dendritic tree complexity sets grounds for establishment of cortical connectivity. These morphological characteristics are encoded by intrinsic genetic programs of postmitotic differentiation and regulated by developmental cues in the extracellular milieu. Endoplasmic Reticulum resident Inositol-Requiring Enzyme 1α (Ire1α) is one of the main regulators of the unfolded protein response. In this study, we demonstrate that Ire1α is pivotal for specification of upper layer cortical neurons and the acquisition of the neuronal morphology by regulating mRNA translation rates. This work also shows that early and late cortical neuronal progenitors and early- and late-born postmitotic neurons exhibit different translation rates, indicative of the specific requirements for the proteome synthesis machinery for the development of cortical layers. Disturbances of any cortical developmental milestones due to either environmental factors or gene mutations may result in aberrant physiology of cortical circuits. High number of such abnormalities can lead to serious neurological diseases such as epilepsy or complex disorders with epilepsy such as Rett syndrome, Angelman syndrome, Mowat-Wilson syndrome, Lafora disease and/or Kaufman oculocerebrofacial syndrome. One major hypothesis of the causes of epilepsy links its molecular pathology to alterations in excitation/inhibition (E/I) balance in the neuronal networks.
68

The Safeguarding Microglia: Central Role for P2Y12 Receptors

Lin, Si-Si, Tang, Yong, Illes, Peter, Verkhratsky, Alexei 30 March 2023 (has links)
No description available.
69

Molecular mechanisms of OXR1 function

Liu, Kevin Xinye January 2014 (has links)
By 2040, the World Health Organization expects neurodegenerative diseases, such as Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), and Parkinson’s disease, to surpass cancer as the second most common cause of death worldwide. Currently, only treatments for symptoms of these diseases are available. Thus, research is critical to alleviate this public health burden by elucidating the pathogenic processes and developing novel therapies. While exact mechanisms by which these heterogeneous neuropathological conditions become manifest in patients remain unclear, growing evidence suggests that oxidative stress (OS) makes a significant contribution to neuronal dysfunction and apoptosis in all major neurodegenerative diseases. Recently, the gene oxidation resistance 1 (Oxr1) has emerged as a critical regulator of neuronal survival in response to OS. Oxr1 is expressed throughout the central nervous system, and its highly conserved TLDc domain protects neurons from oxidative damage through an unknown mechanism. This thesis aimed to define mechanisms by which Oxr1 confers neuronal sensitivity to OS, and to determine its role in neurodegenerative diseases. I found that Oxr1 mediates cytoplasmic localization of ALS-associated proteins Fused in Sarcoma (FUS) and transactive response DNA binding protein 43 kDa (TDP-43) through a TLDc domain- and arginine methylation-dependent pathway. Next, I investigated in vivo neuroprotective functions of Oxr1, and demonstrated that neuronal Oxr1 over-expression extends survival and ameliorates behavioural dysfunction and pathology of an ALS mouse model. In particular, neuronal Oxr1 over-expression strikingly delays neuroinflammation during ALS pathogenesis. Finally, I characterised a mouse model that specifically deletes Oxr1 from motor neurons. While loss of Oxr1 in ChAT-positive motor neurons does not cause overt neurodegeneration in the spinal cord, constitutive loss of Oxr1 leads to neuroinflammation in the cerebellum and spinal cord. Taken together, these studies illuminate functions of Oxr1 in the complex antioxidant defence network and present implications for future therapeutic strategies.
70

Ultrastructural, molecular and functional heterogeneities of cerebellar granule cell presynaptic terminals / Hétérogénéités ultrastructurales, moléculaires et fonctionnelles aux terminaisons synaptiques des cellules en grain du cervelet

Dorgans, Kevin 03 October 2017 (has links)
Le cervelet est une structure cérébrale impliquée dans la régulation motrice. Dans le cortex cerebelleux, les informations sensorimotrices sont transmises par les cellules en grain. Mon travail de thèse démontre que les connections synaptiques de ces neurones ont des propriétés hétérogènes. D’une synapse à l’autre, j’ai pu observer des variations d’ultrastructure, de composition moléculaire et de fonctionnement au cours de trains de potentiels d’action à haute fréquence. Plus particulièrement, j’ai caractérisé les propriétés de « plasticité à court terme » des synapses unitaires des cellules en grain : 1) Elles sont très différentes d’une synapse à l’autre et peuvent être classées en différentes sous-catégories. 2) Certaines catégories de fonctionnement synaptique reposent sur l’expression de molécules telles que la Synapsine2. 3) La réponse d’un neurone post-synaptique à de hautes fréquences de stimulation dépend de la nature de la synapse activée. / Cerebellum is a brain structure involved in motor regulation and motor learning. In the cerebellar cortex, sensorimotor information is transmitted by granule cells. During my PhD, I demonstrated that the properties of individual granule cell synaptic connections are highly heterogeneous. From one synapse to another, I observed ultrastructural, molecular and functional variability at unitary contacts. More precisely, I assessed the properties of short term plasticity at individual synapses during high frequency trains of stimulation :1) Short term plasticities are highly heterogeneous from one synapse to another and can be classified in sub-categories.2) Some categories of short-term plasticity profiles relie on the expression of molecules such as Synapsin2.3) The response of post-synaptic neuron to high-frequency inputs is dependent on the nature of the activated synaptic contact.

Page generated in 0.064 seconds