• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The characteristics of Neural stem cell cultured from the tilapia, Oreochromis mossambicus.

Yang, Chu-hsien 01 September 2011 (has links)
The structure and function of brain shows sexual dimorphism in the vertebrates. Sexual differentiation is divided into brain sexual differentiation and gonad sexual differentiation. Brain sexual differentiation is resulted from the neural development. In the present study, the neurosphere cloned from tilapia, Oreochromis mossambicus, was used. The characteristics of neurosphere derived from both primary- and sub- culture, were studied. The effects of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF, FGF2), and temperature on the neurosphere cloned from both primary culture and subculture, were investigated. These results show that the neurospheres, cloned form both primary- and sub- culture, is consist of the nestin-immunoreactive cell. Furthermore, the cell of the neurosphere shows an ability of differentiation. And the diameter of neurosphere in the subculture is significantly larger than that of primary culture. On the other hand, both FGF and temperature have an effect to increase the diameter of neurosphere in the primary culture.
2

Mining the transcriptome - methods and applications

Wirta, Valtteri January 2006 (has links)
Regulation of gene expression occupies a central role in the control of the flow of genetic information from genes to proteins. Regulatory events on multiple levels ensure that the majority of the genes are expressed under controlled circumstances to yield temporally controlled, cell and tissue-specific expression patterns. The combined set of expressed RNA transcripts constitutes the transcriptome of a cell, and can be analysed on a large-scale using both sequencing and microarray-based methods. The objective of this work has been to develop tools for analysis of the transcriptomes (methods), and to gain new insights into several aspects of the stem cell transcriptome (applications). During recent years expectations of stem cells as a resource for treatment of various disorders have emerged. The successful use of endogenously stimulated or ex vivo expanded stem cells in the clinic requires an understanding of mechanisms controlling their proliferation and self-renewal. This thesis describes the development of tools that facilitate analysis of minute amounts of stem cells, including RNA amplification methods and generation of a cDNA array enriched for genes expressed in neural stem cells. The results demonstrate that the proposed amplification method faithfully preserves the transcript expression pattern. An analysis of the feasibility of a neurosphere assay (in vitro model system for study of neural stem cells) clearly shows that the culturing induces changes that need to be taken into account in design of future comparative studies. An expressed sequence tag analysis of neural stem cells and their in vivo microenvironment is also presented, providing an unbiased large-scale screening of the neural stem cell transcriptome. In addition, molecular mechanisms underlying the control of stem cell self-renewal are investigated. One study identifies the proto-oncogene Trp53 (p53) as a negative regulator of neural stem cell self-renewal, while a second study identifies genes involved in the maintenance of the hematopoietic stem cell phenotype. To facilitate future analysis of neural stem cells, all microarray data generated is publicly available through the ArrayExpress microarray data repository, and the expressed sequence tag data is available through the GenBank. / QC 20100927
3

The identification of compounds from apples that regulate adult hippocampal neurogenesis

Ichwan, Muhammad 09 May 2016 (has links) (PDF)
The high composition of fruits and vegetables in the daily diet is associated with cognitive well-being, especially in the elderly population. The phytonutrients are shown to have effects as antioxidants that neutralize oxidative stressors and can interact with molecular pathways to signal neuron survival. Adult hippocampal neurogenesis is a dynamic lifelong process of generating functional newborn neurons in the granular layer of the dentate gyrus from adult precursor cells. This process contributes to brain plasticity and plays a role in learning and memory. External stimuli such as environmental enrichment and physical activity are known to positively regulate this process. However, the role of nutrition and whether nutritional compounds have pro-neurogenic effects on adult hippocampal precursor cells are still elusive. In this study, I investigated the impact of dietary compounds in apples, a significant source of phytonutrients in our food, on adult hippocampal neurogenesis. I demonstrated that quercetin, the most abundant polyphenol in apple, induces cell cycle exit and differentiation of adult hippocampal precursor cells in monolayer culture. Furthermore, this compound also increases the number of surviving cells upon differentiation in vitro, through the activation of endogenous antioxidants in the Nrf2-Keap1 pathway and the prosurvival Akt pathway. Quercetin supplementation in vivo is also shown to significantly increase the number of surviving cells and new neurons in the dentate gyrus. To search for other potential active compounds in apple, I performed bioassay-guided fractionation whereby the flesh extract from apples of the Pinova cultivar was subjected to liquid- and solid phase separation and the active fraction was determined using primary neurosphere assays using cells derived from adult mouse dentate gyrus. Using mass spectometry, we revealed that the active compounds in the apple flesh extract are dihydroxybenzoate glycosides, which are non-flavonoid benzoic acid derivatives. I also confirmed that the isomers of these compounds; 2,3- and 3,5 dihydroxybenzoic acids significantly increase the number of neurospheres. Interestingly, 3,5 dihdroxybenzoic acid is an agonist of lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1), with an even higher affinity than lactate. This receptor is suggested to mediate neurotrophic actions such as increasing production and release of BDNF. I also demonstrated for the first time that this receptor is presence in adult hippocampal precursor cells. To observe whether customary fruits or fruit-related products consumption affects adult hippocampal neurogenesis, I performed an experiment giving apple juice supplementation ad libitum to mice. I did not find a significant increase in net neurogenesis or the performance in the Morris water maze after apple juice supplementation. This is likely due to the low concentration of active compounds in apple juice failing to reach an effective concentration in the body. I conclude that apples provide potential proneurogenic compounds that can influence adult hippocampal neurogenesis through the activation of endogenous antioxidant mechanisms and molecular pathways for cell survival. Further studies are necessary to investigate the role of HCAR1 activation on adult hippocampal neurogenesis, which is a potential new mechanism to explain the health benefits of fruit and vegetable consumption. / Eine Ernährung die täglich reich an Obst und Gemüse ist, hat insbesondere bei älteren Menschen einen positiven Einfluss auf kognitive Fähigkeiten. Pflanzeninhaltsstoffe wirken als natürliche Antioxidantien, indem sie oxidative Stressoren neutralisieren. Weiterhin beeinflussen pflanzliche Nährstoffe molekulare Signalwege welche beim Überleben von Neuronen eine Rolle spielen. Die adulte hippocampale Neurogenese ist ein dynamischer, lebenslanger Prozess, bei dem aus Vorläuferzellen funktionelle neue Neuronen in der Körnerzellschicht des Gyrus dentatus gebildet werden. Dieser Prozess trägt zur Plastizität des Gehirns bei und spielt eine bedeutende Rolle beim Lernen und für das Gedächtnis. Externe Stimuli wie zum Beispiel eine reizreiche Umgebung und körperliche Aktivität wirken als positive Regulatoren und begünstigen die adulte hippocampale Neurogenese. Welche Rolle die Ernährung dabei spielt und ob Nahrungsbestandteile einen proneurogenen Effekt auf adulte hippocampale Vorläuferzellen haben ist kaum bekannt. In diesem Projekt habe ich den Effekt von Nahrungsbestandteilen aus Äpfeln, welche eine bedeutende Quelle von pflanzlichen Nährstoffen in unserer Ernährung darstellen, auf die adulte hippocampale Neurogenese untersucht. Ich habe gezeigt, dass Querzetin, das am reichlichsten in Äpfeln enthaltende Polyphenol, in der Monolayer-Zellkultur den Austritt aus dem Zellzyklus induziert und die Differenzierung von adulten hippocampalen Vorläuferzellen fördert. Des Weiteren steigert Querzetin nach der Differenzierung in vitro die Anzahl an überlebenden Zellen. Dies geschieht durch die Aktivierung von endogenen Antioxidantien des Nrf2-Keap1-Signalweges und des für das Überleben von Zellen förderlichen Akt-Signalweges. Die Verabreichung von Querzetin in vivo als Nahrungsergänzungsmittel führte ebenfalls zu einem signifikanten Anstieg der Anzahl an überlebenden Zellen und neu gebildeten Nervenzellen im Gyrus dentatus. Um weitere potentiell aktive Wirkstoffe von Äpfeln zu bestimmen, habe ich eine Bioassay-ausgerichtete Fraktionierung durchgeführt, wobei der Fruchtfleischextrakt von Äpfeln der Sorte Pinova einer Fest-/ Flüssig-Separation unterzogen wurde. Die aktive Fraktion wurde anhand der primären Neurosphäre-Assay-Methode mit Zellen aus dem Gyrus dentatus adulter Mäuse ermittelt. Mittels spektrometrischer Analyse habe ich gezeigt, dass die aktiven Wirkstoffe im Fruchtfleischextrakt von Äpfeln zur Gruppe der Dihydroxybenzol-Glykosiden gehören, welche den nicht-flavonoiden Benzoesäure-Derivaten zuzuordnen sind. Im in vitro Neurosphäre-Assay habe ich zudem gezeigt, dass die Isomere dieser Wirkstoffe, die 2,3- und die 3,5-Dihydroxybenzoesäuren, die Anzahl der Neurosphären signifikant erhöhen. Interessanterweise ist die 3,5-Dihydroxybenzoesäure ein Agonist des Laktatrezeptors Hydroxycarboxylic acid receptor 1 (HCAR1) und weist sogar eine noch höhere Affinität als Laktat auf. Es wird suggeriert, dass dieser Rezeptor neurotrophische Wirkungen vermittelt, wie zum Beispiel eine erhöhte Produktion von BDNF und dessen Ausschüttung. Zudem habe ich das Vorkommen dieses Reporters erstmalig bei adulten hippocampalen Vorläuferzellen nachgewiesen. Um zu untersuchen, ob der Konsum handelsüblicher Obstprodukte die adulte hippocampale Neurogenese beeinflusst, habe ich Mäusen Apfelsaft ad libitum verabreicht. Nach der Gabe von Apfelsaft sah ich keinen signifikanten Anstieg der Gesamtneurogenese und keine Verbesserung der Leistungsfähigkeit im Morris-Wasserlabyrinth-Test. Dies ist bedingt durch eine zu geringe Konzentration der aktiven Wirkstoffe im Apfelsaft wodurch die wirksame Konzentration im Körper nicht erreicht wird. Ich schlussfolgere, dass in Äpfeln potentielle pro-neurogene Inhaltsstoffe enthalten sind, welche die adulte hippocampale Neurogenese beeinflussen. Dies wird insbesondere durch die Aktivierung endogener antioxidativer Mechanismen und molekularer Signalwege vermittelt, die für das Überleben von Zellen von Bedeutung sind. Weitere Studien sind nötig, um zu bestimmen wie sich die Aktivierung von HCAR1 auf die adulte hippocampale Neurogenese auswirkt. Dies stellt einen potentiellen neuen Wirkmechanismus dar, welcher die gesundheitlichen Vorteile von Obst- und Gemüsekonsum belegt.
4

The identification of compounds from apples that regulate adult hippocampal neurogenesis

Ichwan, Muhammad 23 March 2016 (has links)
The high composition of fruits and vegetables in the daily diet is associated with cognitive well-being, especially in the elderly population. The phytonutrients are shown to have effects as antioxidants that neutralize oxidative stressors and can interact with molecular pathways to signal neuron survival. Adult hippocampal neurogenesis is a dynamic lifelong process of generating functional newborn neurons in the granular layer of the dentate gyrus from adult precursor cells. This process contributes to brain plasticity and plays a role in learning and memory. External stimuli such as environmental enrichment and physical activity are known to positively regulate this process. However, the role of nutrition and whether nutritional compounds have pro-neurogenic effects on adult hippocampal precursor cells are still elusive. In this study, I investigated the impact of dietary compounds in apples, a significant source of phytonutrients in our food, on adult hippocampal neurogenesis. I demonstrated that quercetin, the most abundant polyphenol in apple, induces cell cycle exit and differentiation of adult hippocampal precursor cells in monolayer culture. Furthermore, this compound also increases the number of surviving cells upon differentiation in vitro, through the activation of endogenous antioxidants in the Nrf2-Keap1 pathway and the prosurvival Akt pathway. Quercetin supplementation in vivo is also shown to significantly increase the number of surviving cells and new neurons in the dentate gyrus. To search for other potential active compounds in apple, I performed bioassay-guided fractionation whereby the flesh extract from apples of the Pinova cultivar was subjected to liquid- and solid phase separation and the active fraction was determined using primary neurosphere assays using cells derived from adult mouse dentate gyrus. Using mass spectometry, we revealed that the active compounds in the apple flesh extract are dihydroxybenzoate glycosides, which are non-flavonoid benzoic acid derivatives. I also confirmed that the isomers of these compounds; 2,3- and 3,5 dihydroxybenzoic acids significantly increase the number of neurospheres. Interestingly, 3,5 dihdroxybenzoic acid is an agonist of lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1), with an even higher affinity than lactate. This receptor is suggested to mediate neurotrophic actions such as increasing production and release of BDNF. I also demonstrated for the first time that this receptor is presence in adult hippocampal precursor cells. To observe whether customary fruits or fruit-related products consumption affects adult hippocampal neurogenesis, I performed an experiment giving apple juice supplementation ad libitum to mice. I did not find a significant increase in net neurogenesis or the performance in the Morris water maze after apple juice supplementation. This is likely due to the low concentration of active compounds in apple juice failing to reach an effective concentration in the body. I conclude that apples provide potential proneurogenic compounds that can influence adult hippocampal neurogenesis through the activation of endogenous antioxidant mechanisms and molecular pathways for cell survival. Further studies are necessary to investigate the role of HCAR1 activation on adult hippocampal neurogenesis, which is a potential new mechanism to explain the health benefits of fruit and vegetable consumption. / Eine Ernährung die täglich reich an Obst und Gemüse ist, hat insbesondere bei älteren Menschen einen positiven Einfluss auf kognitive Fähigkeiten. Pflanzeninhaltsstoffe wirken als natürliche Antioxidantien, indem sie oxidative Stressoren neutralisieren. Weiterhin beeinflussen pflanzliche Nährstoffe molekulare Signalwege welche beim Überleben von Neuronen eine Rolle spielen. Die adulte hippocampale Neurogenese ist ein dynamischer, lebenslanger Prozess, bei dem aus Vorläuferzellen funktionelle neue Neuronen in der Körnerzellschicht des Gyrus dentatus gebildet werden. Dieser Prozess trägt zur Plastizität des Gehirns bei und spielt eine bedeutende Rolle beim Lernen und für das Gedächtnis. Externe Stimuli wie zum Beispiel eine reizreiche Umgebung und körperliche Aktivität wirken als positive Regulatoren und begünstigen die adulte hippocampale Neurogenese. Welche Rolle die Ernährung dabei spielt und ob Nahrungsbestandteile einen proneurogenen Effekt auf adulte hippocampale Vorläuferzellen haben ist kaum bekannt. In diesem Projekt habe ich den Effekt von Nahrungsbestandteilen aus Äpfeln, welche eine bedeutende Quelle von pflanzlichen Nährstoffen in unserer Ernährung darstellen, auf die adulte hippocampale Neurogenese untersucht. Ich habe gezeigt, dass Querzetin, das am reichlichsten in Äpfeln enthaltende Polyphenol, in der Monolayer-Zellkultur den Austritt aus dem Zellzyklus induziert und die Differenzierung von adulten hippocampalen Vorläuferzellen fördert. Des Weiteren steigert Querzetin nach der Differenzierung in vitro die Anzahl an überlebenden Zellen. Dies geschieht durch die Aktivierung von endogenen Antioxidantien des Nrf2-Keap1-Signalweges und des für das Überleben von Zellen förderlichen Akt-Signalweges. Die Verabreichung von Querzetin in vivo als Nahrungsergänzungsmittel führte ebenfalls zu einem signifikanten Anstieg der Anzahl an überlebenden Zellen und neu gebildeten Nervenzellen im Gyrus dentatus. Um weitere potentiell aktive Wirkstoffe von Äpfeln zu bestimmen, habe ich eine Bioassay-ausgerichtete Fraktionierung durchgeführt, wobei der Fruchtfleischextrakt von Äpfeln der Sorte Pinova einer Fest-/ Flüssig-Separation unterzogen wurde. Die aktive Fraktion wurde anhand der primären Neurosphäre-Assay-Methode mit Zellen aus dem Gyrus dentatus adulter Mäuse ermittelt. Mittels spektrometrischer Analyse habe ich gezeigt, dass die aktiven Wirkstoffe im Fruchtfleischextrakt von Äpfeln zur Gruppe der Dihydroxybenzol-Glykosiden gehören, welche den nicht-flavonoiden Benzoesäure-Derivaten zuzuordnen sind. Im in vitro Neurosphäre-Assay habe ich zudem gezeigt, dass die Isomere dieser Wirkstoffe, die 2,3- und die 3,5-Dihydroxybenzoesäuren, die Anzahl der Neurosphären signifikant erhöhen. Interessanterweise ist die 3,5-Dihydroxybenzoesäure ein Agonist des Laktatrezeptors Hydroxycarboxylic acid receptor 1 (HCAR1) und weist sogar eine noch höhere Affinität als Laktat auf. Es wird suggeriert, dass dieser Rezeptor neurotrophische Wirkungen vermittelt, wie zum Beispiel eine erhöhte Produktion von BDNF und dessen Ausschüttung. Zudem habe ich das Vorkommen dieses Reporters erstmalig bei adulten hippocampalen Vorläuferzellen nachgewiesen. Um zu untersuchen, ob der Konsum handelsüblicher Obstprodukte die adulte hippocampale Neurogenese beeinflusst, habe ich Mäusen Apfelsaft ad libitum verabreicht. Nach der Gabe von Apfelsaft sah ich keinen signifikanten Anstieg der Gesamtneurogenese und keine Verbesserung der Leistungsfähigkeit im Morris-Wasserlabyrinth-Test. Dies ist bedingt durch eine zu geringe Konzentration der aktiven Wirkstoffe im Apfelsaft wodurch die wirksame Konzentration im Körper nicht erreicht wird. Ich schlussfolgere, dass in Äpfeln potentielle pro-neurogene Inhaltsstoffe enthalten sind, welche die adulte hippocampale Neurogenese beeinflussen. Dies wird insbesondere durch die Aktivierung endogener antioxidativer Mechanismen und molekularer Signalwege vermittelt, die für das Überleben von Zellen von Bedeutung sind. Weitere Studien sind nötig, um zu bestimmen wie sich die Aktivierung von HCAR1 auf die adulte hippocampale Neurogenese auswirkt. Dies stellt einen potentiellen neuen Wirkmechanismus dar, welcher die gesundheitlichen Vorteile von Obst- und Gemüsekonsum belegt.
5

Les cytokines inflammatoires modulent la prolifération et la différenciation in vitro des cellules souches/progénitrices de la moelle épinière

Vaugeois, Alexandre 04 1900 (has links)
No description available.
6

L’effet du vieillissement sur les cellules souches neurales adultes

Bouab, Meriem 05 1900 (has links)
La neurogenèse persiste à l’âge adulte dans deux régions du système nerveux central (SNC) des mammifères : la zone sous-ventriculaire (SVZ) du cerveau antérieur et la zone sous-granulaire (SGZ) de l’hippocampe. Cette neurogenèse est possible grâce à la capacité de prolifération des cellules souches présentes dans les niches de la SVZ et la SGZ, mais en vieillissant, le cerveau subit une diminution dramatique du nombre de cellules souches neurales adultes (CSNa), une diminution de la prolifération cellulaire et une altération des niches de neurogenèse. Cependant, une importante question reste sans réponse : comment la perte tardive des CSNa est temporellement reliée aux changements de l’activité de prolifération et de la structure de la principale niche de neurogenèse (la SVZ)? Afin d’avoir un aperçu sur les événements initiaux, nous avons examiné les changements des CSNa et de leur niche dans la SVZ entre le jeune âge et l’âge moyen. La niche de la SVZ des souris d’âge moyen (12 mois) subit une réduction de l’expression des marqueurs de plusieurs sous-populations de précurseurs neuraux en comparaison avec les souris jeunes adultes (2 mois). Anatomiquement, cela est associé avec des anomalies cytologiques, incluant une atrophie générale de la SVZ, une perte de la couche de cellules sousépendymaires par endroit et l’accumulation de gouttelettes lipidiques de grande taille dans l’épendyme. Fonctionnellement, ces changements sont corrélés avec une diminution de l’activité de la SVZ et une réduction du nombre de nouveaux neurones arrivant aux bulbes olfactifs. Pour déterminer si les CSNa de la SVZ ont subi des changements visibles, nous avons évalué les paramètres clés des CSNa in vivo et in vitro. La culture cellulaire montre qu’un nombre équivalent de CSNa ayant la capacité de former des neurosphères peut être isolé du cerveau du jeune adulte et d’âge moyen. Cependant, à l’âge moyen, les précurseurs neuraux semblent moins sensibles aux facteurs de croissance durant leur différenciation in vitro. Les CSNa donnent des signes de latence in vivo puisque leur capacité d’incorporation et de rétention du BrdU diminue. Ensemble, ces données démontrent que, tôt dans le processus du vieillissement, les CSNa et leur niche dans la SVZ subissent des changements significatifs, et suggèrent que la perte de CSNa liée au vieillissement est secondaire à ces événements. / Neurogenesis persists throughout the adulthood in two regions of the mammalian central nervous system (SNC): the sub-ventricular zone (SVZ) of the forebrain and the sub-granular zone (SGZ) of the hippocampus. Neurogenesis is possible due to the proliferation capacity of stem cells present within both the SVZ and SGZ niches, but with aging, the forebrain undergoes a drastic reduction in its number of adult neural stem cells (aNSCs), a decrease of cell proliferation and an alteration of the neurogenic niches. However, a key unresolved question remains: how the onset of aNSC loss is temporally related to changes of proliferating activity and to structural alterations within the principal stem cell niche (the SVZ)? To gain insights into the initial events leading to aging-associated aNSC loss, we investigated the changes occurring to aNSCs and the SVZ niche between young adulthood and middle-age. The SVZ niche of middle-aged mice (12-months-old) was found to display reduced expression of markers for multiple neural precursor sub-populations when compared to young adult mice (2-months-old). Anatomically, this was associated with significant cytological aberrations, including an overall atrophy of the SVZ, loss of sub-ependymal cells, and accumulation of large lipid droplets within the ependyma. Functionally, these changes correlated with diminished SVZ activity and reduced number of newly born neurons reaching the principal target tissue: the olfactory bulbs. To determine whether changes were evident at the level of the SVZ stem cells, we evaluated key in vitro and in vivo parameters of aNSCs. Tissue culture experiments showed that equal numbers of neurosphere-forming aNSCs could be isolated from young adult and middle-aged forebrains. However, at middle-age, neural precursors seemed to be less sensitive to growth factors during their in vitro differentiation and displayed signs of increased quiescence in vivo. Collectively, these findings demonstrate that, with early aging, aNCS and their SVZ niche go through significant changes, and suggest that aging-associated aNSC loss is secondary to these events.
7

Mechanisms underlying activation of neural stem cells in the adult central nervous system

Grégoire, Catherine-Alexandra 04 1900 (has links)
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière. / At the end of the 19th century, Dr. Ramón y Cajal, a scientific pioneer, discovered that the nervous system was composed of individual cellular elements, later called neurons. He also noticed the complexity of this system and mentioned the impossibility of new neurons to be integrated into the adult nervous system. One of his famous quotes: “In adult centers the nerve paths are something fixed, ended, immutable. Everything may die, nothing may be regenerated” is representative of the prevalent dogma at the time (Ramón y Cajal 1928). Key studies conducted in the 1960-1970s suggested a different point of view. It was demonstrated that new neurons could be born during adulthood, but this discovery created an omnipresent skepticism in the scientific community. It took 30 years for the concept of adult neurogenesis to become widely accepted. This discovery, along with more advanced techniques, opened doors to potential therapeutic avenues for neurodegenerative diseases. Adult neural stem cells (NSCs) reside mainly in two niches in the brain: the subventricular zone of the lateral ventricles and the dentate gyrus of the hippocampus. Under normal conditions, neurogenesis level is relatively high in the SVZ whereas some steps are rate-limiting in the hippocampus. In contrast, the spinal cord is rather defined as a quiescent environment. One of the main questions that arose from these discoveries is: how do you activate adult NSCs in order to increase neurogenesis levels? In the hippocampus, environmental enrichment (including cognitive stimulation, exercise and social interactions) has been shown to promote hippocampal neurogenesis. The plasticity potential of this region is important as it could play a crucial role in rescuing learning and memory deficits. In the spinal cord, studies conducted in vitro demonstrated that ependymal cells found around the central canal have self-renewal and multipotency capacities (neurons, astrocytes, oligodendrocytes). Interestingly, it turns out that in vivo, following a spinal cord lesion, ependymal cells become activated, can self-replicate, but can only give rise to glia cell fate (astrocytes and oligodendrocytes). This new post-injury function shows that plasticity can still occur in a quiescent environment and could be exploited to develop endogenous spinal cord repair strategies. v As mentioned above, NSCs play important roles in normal brain function and neural repair following injury. However, little information is known about how a quiescent NSC becomes activated in order to perform these functions. The general objective of this project was to investigate the mechanisms underlying activation of neural stem cells in the adult central nervous system. My specific aims were to address this question using adult mice in two complementary models: 1) activation of hippocampal NSCs by environmental enrichment, and 2) activation of spinal cord NSCs by injury-induced neuroinflammation. Moreover, 3) to gain new insights into the molecular mechanisms of these models, we will perform transcriptomics studies to open new lines of investigation. The first project is expected to provide us with new insights into the basic cellular and molecular mechanisms through which environmental enrichment modulates adult brain plasticity. We first evaluated the contribution of individual environmental enrichment components to hippocampal neurogenesis (Chapter II). Voluntary exercise promotes neurogenesis, whereas a social context increases neuronal activation. We then determined the effect of these components on behavioural performances and transcriptome using an eight-arm radial maze to assess spatial memory, novel object recognition, and RNA-Seq, respectively (Chapter III). Runners show stronger spatial short-term memory recall, whereas mice exposed to social interactions had a better cognitive flexibility to abandon old memory. Surprisingly, RNA-Seq analysis indicated clear differences in the expression of modified transcripts between low runners and high runners, as well as for social interacting mice (within the complex environment). The second project consists of discovering how ependymal cells acquire NSC properties in vitro or multipotentiality following lesions in vivo. A RNA-Seq analysis revealed that the transforming growth factor-β1 (TGF-β1) acts as an upstream regulator of significant changes following spinal cord injury (Chapter IV). We therefore confirmed the presence of this cytokine after lesion and investigated its role on proliferation, differentiation, and survival of neurosphere-initiating cells from the spinal cord. Our results suggest that TGF-β1 regulates the acquisition and expression of stem cell properties of spinal cord-derived ependymal cells.
8

L’effet du vieillissement sur les cellules souches neurales adultes

Bouab, Meriem 05 1900 (has links)
La neurogenèse persiste à l’âge adulte dans deux régions du système nerveux central (SNC) des mammifères : la zone sous-ventriculaire (SVZ) du cerveau antérieur et la zone sous-granulaire (SGZ) de l’hippocampe. Cette neurogenèse est possible grâce à la capacité de prolifération des cellules souches présentes dans les niches de la SVZ et la SGZ, mais en vieillissant, le cerveau subit une diminution dramatique du nombre de cellules souches neurales adultes (CSNa), une diminution de la prolifération cellulaire et une altération des niches de neurogenèse. Cependant, une importante question reste sans réponse : comment la perte tardive des CSNa est temporellement reliée aux changements de l’activité de prolifération et de la structure de la principale niche de neurogenèse (la SVZ)? Afin d’avoir un aperçu sur les événements initiaux, nous avons examiné les changements des CSNa et de leur niche dans la SVZ entre le jeune âge et l’âge moyen. La niche de la SVZ des souris d’âge moyen (12 mois) subit une réduction de l’expression des marqueurs de plusieurs sous-populations de précurseurs neuraux en comparaison avec les souris jeunes adultes (2 mois). Anatomiquement, cela est associé avec des anomalies cytologiques, incluant une atrophie générale de la SVZ, une perte de la couche de cellules sousépendymaires par endroit et l’accumulation de gouttelettes lipidiques de grande taille dans l’épendyme. Fonctionnellement, ces changements sont corrélés avec une diminution de l’activité de la SVZ et une réduction du nombre de nouveaux neurones arrivant aux bulbes olfactifs. Pour déterminer si les CSNa de la SVZ ont subi des changements visibles, nous avons évalué les paramètres clés des CSNa in vivo et in vitro. La culture cellulaire montre qu’un nombre équivalent de CSNa ayant la capacité de former des neurosphères peut être isolé du cerveau du jeune adulte et d’âge moyen. Cependant, à l’âge moyen, les précurseurs neuraux semblent moins sensibles aux facteurs de croissance durant leur différenciation in vitro. Les CSNa donnent des signes de latence in vivo puisque leur capacité d’incorporation et de rétention du BrdU diminue. Ensemble, ces données démontrent que, tôt dans le processus du vieillissement, les CSNa et leur niche dans la SVZ subissent des changements significatifs, et suggèrent que la perte de CSNa liée au vieillissement est secondaire à ces événements. / Neurogenesis persists throughout the adulthood in two regions of the mammalian central nervous system (SNC): the sub-ventricular zone (SVZ) of the forebrain and the sub-granular zone (SGZ) of the hippocampus. Neurogenesis is possible due to the proliferation capacity of stem cells present within both the SVZ and SGZ niches, but with aging, the forebrain undergoes a drastic reduction in its number of adult neural stem cells (aNSCs), a decrease of cell proliferation and an alteration of the neurogenic niches. However, a key unresolved question remains: how the onset of aNSC loss is temporally related to changes of proliferating activity and to structural alterations within the principal stem cell niche (the SVZ)? To gain insights into the initial events leading to aging-associated aNSC loss, we investigated the changes occurring to aNSCs and the SVZ niche between young adulthood and middle-age. The SVZ niche of middle-aged mice (12-months-old) was found to display reduced expression of markers for multiple neural precursor sub-populations when compared to young adult mice (2-months-old). Anatomically, this was associated with significant cytological aberrations, including an overall atrophy of the SVZ, loss of sub-ependymal cells, and accumulation of large lipid droplets within the ependyma. Functionally, these changes correlated with diminished SVZ activity and reduced number of newly born neurons reaching the principal target tissue: the olfactory bulbs. To determine whether changes were evident at the level of the SVZ stem cells, we evaluated key in vitro and in vivo parameters of aNSCs. Tissue culture experiments showed that equal numbers of neurosphere-forming aNSCs could be isolated from young adult and middle-aged forebrains. However, at middle-age, neural precursors seemed to be less sensitive to growth factors during their in vitro differentiation and displayed signs of increased quiescence in vivo. Collectively, these findings demonstrate that, with early aging, aNCS and their SVZ niche go through significant changes, and suggest that aging-associated aNSC loss is secondary to these events.

Page generated in 0.0665 seconds