Spelling suggestions: "subject:"neyman"" "subject:"heyman""
21 |
5G Positioning using Machine LearningMalmström, Magnus January 2018 (has links)
Positioning is recognized as an important feature of fifth generation (\abbrFiveG) cellular networks due to the massive number of commercial use cases that would benefit from access to position information. Radio based positioning has always been a challenging task in urban canyons where buildings block and reflect the radio signal, causing multipath propagation and non-line-of-sight (NLOS) signal conditions. One approach to handle NLOS is to use data-driven methods such as machine learning algorithms on beam-based data, where a training data set with positioned measurements are used to train a model that transforms measurements to position estimates. The work is based on position and radio measurement data from a 5G testbed. The transmission point (TP) in the testbed has an antenna that have beams in both horizontal and vertical layers. The measurements are the beam reference signal received power (BRSRP) from the beams and the direction of departure (DOD) from the set of beams with the highest received signal strength (RSS). For modelling of the relation between measurements and positions, two non-linear models has been considered, these are neural network and random forest models. These non-linear models will be referred to as machine learning algorithms. The machine learning algorithms are able to position the user equipment (UE) in NLOS regions with a horizontal positioning error of less than 10 meters in 80 percent of the test cases. The results also show that it is essential to combine information from beams from the different vertical antenna layers to be able to perform positioning with high accuracy during NLOS conditions. Further, the tests show that the data must be separated into line-of-sight (LOS) and NLOS data before the training of the machine learning algorithms to achieve good positioning performance under both LOS and NLOS conditions. Therefore, a generalized likelihood ratio test (GLRT) to classify data originating from LOS or NLOS conditions, has been developed. The probability of detection of the algorithms is about 90\% when the probability of false alarm is only 5%. To boost the position accuracy of from the machine learning algorithms, a Kalman filter have been developed with the output from the machine learning algorithms as input. Results show that this can improve the position accuracy in NLOS scenarios significantly. / Radiobasserad positionering av användarenheter är en viktig applikation i femte generationens (5G) radionätverk, som mycket tid och pengar läggs på för att utveckla och förbättra. Ett exempel på tillämpningsområde är positionering av nödsamtal, där ska användarenheten kunna positioneras med en noggrannhet på ett tiotal meter. Radio basserad positionering har alltid varit utmanande i stadsmiljöer där höga hus skymmer och reflekterar signalen mellan användarenheten och basstationen. En ide att positionera i dessa utmanande stadsmiljöer är att använda datadrivna modeller tränade av algoritmer baserat på positionerat testdata – så kallade maskininlärningsalgoritmer. I detta arbete har två icke-linjära modeller - neurala nätverk och random forest – bli implementerade och utvärderade för positionering av användarenheter där signalen från basstationen är skymd.% Dessa modeller refereras som maskininlärningsalgoritmer. Utvärderingen har gjorts på data insamlad av Ericsson från ett 5G-prototypnätverk lokaliserat i Kista, Stockholm. Antennen i den basstation som används har 48 lober vilka ligger i fem olika vertikala lager. Insignal och målvärdena till maskininlärningsalgoritmerna är signals styrkan för varje stråle (BRSRP), respektive givna GPS-positioner för användarenheten. Resultatet visar att med dessa maskininlärningsalgoritmer positioneras användarenheten med en osäkerhet mindre än tio meter i 80 procent av försöksfallen. För att kunna uppnå dessa resultat är viktigt att kunna detektera om signalen mellan användarenheten och basstationen är skymd eller ej. För att göra det har ett statistiskt test blivit implementerat. Detektionssannolikhet för testet är över 90 procent, samtidigt som sannolikhet att få falskt alarm endast är ett fåtal procent.\newline \newline%För att minska osäkerheten i positioneringen har undersökningar gjorts där utsignalen från maskininlärningsalgoritmerna filtreras med ett Kalman-filter. Resultat från dessa undersökningar visar att Kalman-filtret kan förbättra presitionen för positioneringen märkvärt.
|
22 |
A generalized Neyman-Pearson lemma for hedge problems in incomplete marketsRudloff, Birgit 07 October 2005 (has links)
Some financial problems as minimizing the shortfall risk when hedging in incomplete markets lead to problems belonging to test theory. This paper considers
a generalization of the Neyman-Pearson lemma. With methods of convex duality
we deduce the structure of an optimal randomized test when testing a compound
hypothesis against a simple alternative. We give necessary and sufficient optimality
conditions for the problem.
|
23 |
Inférences dans les modèles ARCH : tests localement asymptotiquement optimaux / Inference in ARCH models : asymptotically optimal local testsLounis, Tewfik 16 November 2015 (has links)
L'objectif de cette thèse est la construction des tests localement et asymptotiquement optimaux. Le problème traité concerne un modèle qui contient une large classe de modèles de séries chronologiques. La propriété de la normalité asymptotique locale (LAN) est l'outil fondamental utilisé dans nos travaux de recherches. Une application de nos travaux en finance est proposée / The purpose of this phD thesis is the construction of alocally asymptotically optimal tests. In this testing problem, the considered model contains a large class of time series models. LAN property was the fundamental tools in our research works. Our results are applied in financial area
|
24 |
Risques extrêmes en finance : analyse et modélisation / Financial extreme risks : analysis and modelingSalhi, Khaled 05 December 2016 (has links)
Cette thèse étudie la gestion et la couverture du risque en s’appuyant sur la Value-at-Risk (VaR) et la Value-at-Risk Conditionnelle (CVaR), comme mesures de risque. La première partie propose un modèle d’évolution de prix que nous confrontons à des données réelles issues de la bourse de Paris (Euronext PARIS). Notre modèle prend en compte les probabilités d’occurrence des pertes extrêmes et les changements de régimes observés sur les données. Notre approche consiste à détecter les différentes périodes de chaque régime par la construction d’une chaîne de Markov cachée et à estimer la queue de distribution de chaque régime par des lois puissances. Nous montrons empiriquement que ces dernières sont plus adaptées que les lois normales et les lois stables. L’estimation de la VaR est validée par plusieurs backtests et comparée aux résultats d’autres modèles classiques sur une base de 56 actifs boursiers. Dans la deuxième partie, nous supposons que les prix boursiers sont modélisés par des exponentielles de processus de Lévy. Dans un premier temps, nous développons une méthode numérique pour le calcul de la VaR et la CVaR cumulatives. Ce problème est résolu en utilisant la formalisation de Rockafellar et Uryasev, que nous évaluons numériquement par inversion de Fourier. Dans un deuxième temps, nous nous intéressons à la minimisation du risque de couverture des options européennes, sous une contrainte budgétaire sur le capital initial. En mesurant ce risque par la CVaR, nous établissons une équivalence entre ce problème et un problème de type Neyman-Pearson, pour lequel nous proposons une approximation numérique s’appuyant sur la relaxation de la contrainte / This thesis studies the risk management and hedging, based on the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR) as risk measures. The first part offers a stocks return model that we test in real data from NSYE Euronext. Our model takes into account the probability of occurrence of extreme losses and the regime switching observed in the data. Our approach is to detect the different periods of each regime by constructing a hidden Markov chain and estimate the tail of each regime distribution by power laws. We empirically show that powers laws are more suitable than Gaussian law and stable laws. The estimated VaR is validated by several backtests and compared to other conventional models results on a basis of 56 stock market assets. In the second part, we assume that stock prices are modeled by exponentials of a Lévy process. First, we develop a numerical method to compute the cumulative VaR and CVaR. This problem is solved by using the formalization of Rockafellar and Uryasev, which we numerically evaluate by Fourier inversion techniques. Secondly, we are interested in minimizing the hedging risk of European options under a budget constraint on the initial capital. By measuring this risk by CVaR, we establish an equivalence between this problem and a problem of Neyman-Pearson type, for which we propose a numerical approximation based on the constraint relaxation
|
25 |
Sur les tests lisses d'ajustement dans le context des series chronologiquesTagne Tatsinkou, Joseph Francois 12 1900 (has links)
La plupart des modèles en statistique classique repose sur une hypothèse sur
la distribution des données ou sur une distribution sous-jacente aux données. La
validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles
de confiance ou encore de tester la fiabilité du modèle. La problématique
des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de
l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons
des tests d’ajustement à la loi normale dans le cadre des séries chronologiques
univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques
linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA
ou VARMA dans le cas vectoriel).
Dans un premier temps, au cas univarié, nous proposons une généralisation du
travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est
inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement
utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous
avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis
(1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du
paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de
la matrice des variances et des covariances de la statistique de test à partir de
certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la
moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode
de sélection de la dimension de la famille d’alternatives de type AIC, et nous
étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est
basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes
de Legendre.
Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement
pour les modèles autorégressifs à moyenne mobile avec une paramétrisation
structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes
particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le
test que nous proposons s’applique à une famille quelconque de fonctions orthogonales.
Nous illustrons cela dans le cas particulier des polynômes de Legendre
et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons
que le test obtenu est invariant aux transformations affines et qu’il est en fait
une généralisation de nombreux tests existants dans la littérature. Ce projet peut
être vu comme une généralisation du premier dans trois directions, notamment le
passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions
orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes
dans la formulation VARMA.
Nous avons procédé dans chacun des projets à une étude de simulation afin
d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer
aux tests existants. De plus des applications aux données réelles sont fournies.
Nous avons appliqué les tests à la prévision de la température moyenne annuelle
du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail
canadien (bivarié).
Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne,
Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un
article basé sur le premier projet est également soumis dans une revue avec comité
de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)). / Several phenomena from natural and social sciences rely on distribution’s assumption
among which the normal distribution is the most popular. The validity
of that assumption is useful to setting up forecast intervals or for checking model
adequacy of the underlying model. The goodness-of-fit procedures are tools to
assess the adequacy of the data’s underlying assumptions. Autoregressive and moving
average time series models are often used to find the mathematical behavior
of these phenomena from natural and social sciences, and especially in the finance
area. These models are based on some assumptions including normality distribution
for the innovations. Normality assumption may be helpful for some testing
procedures. Furthermore, stronger conclusions can be drawn from the adjusted
model if the white noise can be assumed Gaussian. In this work, goodness-of-fit
tests for checking normality for the innovations from autoregressive moving average
time series models are proposed for both univariate and multivariate cases
(ARMA and VARMA models).
In our first project, a smooth test of normality for ARMA time series models
with unknown mean based on a least square type estimator is proposed.
We derive the asymptotic null distribution of the test statistic. The result here
is an extension of the paper of Ducharme et Lafaye de Micheaux (2004), where
they supposed the mean known and equal to zero. We use the least square type
estimator proposed by Brockwell et Davis (1991, section 10.8) and we provide a
rigorous proof that it is almost surely convergent. We show that the covariance
matrix of the test is nonsingular regardless if the mean is known. We have also
studied a data driven approach for the choice of the dimension of the family and
we gave a finite sample approximation of the null distribution. Finally, the finite
and asymptotic sample properties of the proposed test statistic are studied via a
small simulation study.
In the second project, goodness-of-fit tests for checking multivariate normality
for the innovations from vector autoregressive moving average time series
models are proposed. Since these time series models may rely on a large number
of parameters, structured parameterization of the functional form is allowed. The
methodology also relies on the smooth test paradigm and on families of orthonormal
functions with respect to the multivariate normal density. It is shown that
the smooth tests converge to convenient chi-square distributions asymptotically.
An important special case makes use of Hermite polynomials, and in that situation
we demonstrate that the tests are invariant under linear transformations.
We observed that the test is not invariant under linear transformations with Legendre
polynomials. A consistent data driven method is discussed to choose the
family order from the data. In a simulation study, exact levels are studied and
the empirical powers of the smooth tests are compared to those of other methods.
Finally, an application to real data is provided, specifically on Canadian labour
market data and annual global temperature.
These works were exposed at several meeting (see for example Tagne, Duchesne
and Lafaye de Micheaux (2013a, 2013b, 2014) for more details). A paper
based on the first project is submitted in a refereed journal (see Duchesne, Lafaye
de Micheaux et Tagne (2016)).
|
26 |
Sur les familles des lois de fonction de hasard unimodale : applications en fiabilité et analyse de survieSaaidia, Noureddine 24 June 2013 (has links)
En fiabilité et en analyse de survie, les distributions qui ont une fonction de hasard unimodale ne sont pas nombreuses, qu'on peut citer: Gaussienne inverse ,log-normale, log-logistique, de Birnbaum-Saunders, de Weibull exponentielle et de Weibullgénéralisée. Dans cette thèse, nous développons les tests modifiés du Chi-deux pour ces distributions tout en comparant la distribution Gaussienne inverse avec les autres. Ensuite nousconstruisons le modèle AFT basé sur la distribution Gaussienne inverse et les systèmes redondants basés sur les distributions de fonction de hasard unimodale. / In reliability and survival analysis, distributions that have a unimodalor $\cap-$shape hazard rate function are not too many, they include: the inverse Gaussian,log-normal, log-logistic, Birnbaum-Saunders, exponential Weibull and power generalized Weibulldistributions. In this thesis, we develop the modified Chi-squared tests for these distributions,and we give a comparative study between the inverse Gaussian distribution and the otherdistributions, then we realize simulations. We also construct the AFT model based on the inverseGaussian distribution and redundant systems based on distributions having a unimodal hazard ratefunction.
|
27 |
Perfektní simulace ve stochastické geometrii / Perfect simulation in stochastic geometrySadil, Antonín January 2010 (has links)
Perfect simulations are methods, which convert suitable Markov chain Monte Carlo (MCMC) algorithms into algorithms which return exact draws from the target distribution, instead of approximations based on long-time convergence to equilibrium. In recent years a lot of various perfect simulation algorithms were developed. This work provides a unified exposition of some perfect simulation algorithms with applications to spatial point processes, especially to the Strauss process and area-interaction process. Described algorithms and their properties are compared theoretically and also by a simulation study.
|
28 |
Statistical InferenceChou, Pei-Hsin 26 June 2008 (has links)
In this paper, we will investigate the important properties of three major parts of statistical inference: point estimation, interval estimation and hypothesis testing. For point estimation, we consider the two methods of finding estimators: moment estimators and maximum likelihood estimators, and three methods of evaluating estimators: mean squared error, best unbiased estimators and sufficiency and unbiasedness. For interval estimation, we consider the the general confidence interval, confidence interval in one sample, confidence interval in two samples, sample sizes and finite population correction factors. In hypothesis testing, we consider the theory of testing of hypotheses, testing in one sample, testing in two samples, and the three methods of finding tests: uniformly most powerful test, likelihood ratio test and goodness of fit test. Many examples are used to illustrate their applications.
|
Page generated in 0.0231 seconds