• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 9
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behaviour and Treatment of Nitroaromatics in Groundwater

Tremblay, Albanie January 2007 (has links)
The purpose of this study was to determine the chemical and/or biological factors that cause 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and nitrobenzene (NB) to transform to their respective aromatic amines in the Borden aquifer, and to investigate the biodegradation of 2,4-diaminotoluene (2,4-DAT) and 2,6-diaminoluene (2,6-DAT) under aerobic conditions. In situ microcosms (ISM) and laboratory microcosm experiments were used in the investigation. In addition, a sequential treatment system was tested in which columns containing granular iron were followed by either an anaerobic or aerobic soil column. Both 2,4- and 2,6-DNT were used to determine if competitive effects exist between the two. The ISM isolates a volume of the aquifer material and allows for in situ solute loading and sampling in order to characterize chemical or biological reactions. Four ISMs were installed below the water table at CFB Borden. Each ISM was injected with 10 mg/L of either 2,4-DNT, 2,6-DNT, NB, or 2,4-DNT + 2,6-DNT, in two repetitions. In all cases, chloride was also injected as a conservative tracer to monitor for dilution. The results indicated transformation of nitroaromatics via nitro-reduction to their intermediate products, mainly as 2,4-DAT, 2,6-DAT, and aniline. Within 20 days, a loss of up to 92% of 2,4-DNT was observed with the formation of 2,4-DAT. Minor amounts of 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) were also observed. Similarly, up to a 96% loss of 2,6-DNT was seen after 29 days, with degradation products including 2-amino-6-nitrotoluene (2-A-6-NT) and 2,6-DAT. When 2,4- and 2,6-DNT were present in combination, 99% loss of both compounds at similar rates was observed over 20 days following the injections, with degradation products including aminonitrotoluenes and diaminotoluenes. Finally, when nitrobenzene was injected, degradation of up to 99% was observed by day 29, with the formation of aniline as the primary product. To determine the cause of the nitro-reduction, laboratory microcosm experiments were conducted using soil from within the chamber of the ISM’s. Duplicate microcosms were prepared with Borden groundwater and spiked with 2,4- and 2,6-DNT in an anaerobic glovebox. Microcosms were incubated and sampled periodically for approximately 3 months. Several different conditions, including: groundwater and soil, autoclaved groundwater and soil, soil taken at ground surface and groundwater, and autoclaved silica sand and groundwater were created for microcosm experiments to determine whether abiotic or biotic factors caused the reduction of 2,4- and 2,6-DNT. Microcosms which duplicated field conditions in the laboratory had average half-lives of 4.2 days and 5.1 days for 2,4- and 2,6-DNT, respectively, compared to the field result with average half-lives between 3.9 days (2,4-DNT) and 3.5 days (2,6-DNT). Subsequently, a nutrient medium was added to each repetition. The behaviour of DNT degradation did not change significantly, suggesting minimal involvement of biological processes. Furthermore soil analysis showed relatively high concentrations of extractable iron and the presence of magnetite, which are species capable of reducing nitroaromatics. Therefore, it is concluded that nitro-reduction in Borden soil is likely a result of abiotic surface mediated processes. The competitive behaviour of 2,4- and 2,6-DNT was studied in a sequential treatment system which consisted of an anaerobic iron column, followed by either an anaerobic or aerobic soil column. Results showed the same rate of transformation from 2,4- and 2,6-DNT within the iron column, with 100% conversion to 2,4- and 2,6-DAT, respectively. Within the anaerobic and aerobic soil columns, the DATs were highly persistent. When a nutrient solution was added only to the aerobic soil column with DNTs as the initial compounds, results showed a reduction of 2,4-DNT of 17%, with an increase in 2,6-DNT of 22%. The increase in 2,6-DNT may have been a result of differing influent concentrations at earlier pore volumes. When stock solutions in the aerobic column were altered to only include DATs, a reduction of 2,4- and 2,6-DAT was observed at 17% and 18%, respectively. It would appear that an acclimated bacterial community able to transform DNT and DAT was present in the aerobic Borden sand column. Degradation of 2,4- and 2,6-DAT was dependant on the degree of nutrients supplied to indigenous bacterial communities under aerobic conditions.
2

Behaviour and Treatment of Nitroaromatics in Groundwater

Tremblay, Albanie January 2007 (has links)
The purpose of this study was to determine the chemical and/or biological factors that cause 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and nitrobenzene (NB) to transform to their respective aromatic amines in the Borden aquifer, and to investigate the biodegradation of 2,4-diaminotoluene (2,4-DAT) and 2,6-diaminoluene (2,6-DAT) under aerobic conditions. In situ microcosms (ISM) and laboratory microcosm experiments were used in the investigation. In addition, a sequential treatment system was tested in which columns containing granular iron were followed by either an anaerobic or aerobic soil column. Both 2,4- and 2,6-DNT were used to determine if competitive effects exist between the two. The ISM isolates a volume of the aquifer material and allows for in situ solute loading and sampling in order to characterize chemical or biological reactions. Four ISMs were installed below the water table at CFB Borden. Each ISM was injected with 10 mg/L of either 2,4-DNT, 2,6-DNT, NB, or 2,4-DNT + 2,6-DNT, in two repetitions. In all cases, chloride was also injected as a conservative tracer to monitor for dilution. The results indicated transformation of nitroaromatics via nitro-reduction to their intermediate products, mainly as 2,4-DAT, 2,6-DAT, and aniline. Within 20 days, a loss of up to 92% of 2,4-DNT was observed with the formation of 2,4-DAT. Minor amounts of 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) were also observed. Similarly, up to a 96% loss of 2,6-DNT was seen after 29 days, with degradation products including 2-amino-6-nitrotoluene (2-A-6-NT) and 2,6-DAT. When 2,4- and 2,6-DNT were present in combination, 99% loss of both compounds at similar rates was observed over 20 days following the injections, with degradation products including aminonitrotoluenes and diaminotoluenes. Finally, when nitrobenzene was injected, degradation of up to 99% was observed by day 29, with the formation of aniline as the primary product. To determine the cause of the nitro-reduction, laboratory microcosm experiments were conducted using soil from within the chamber of the ISM’s. Duplicate microcosms were prepared with Borden groundwater and spiked with 2,4- and 2,6-DNT in an anaerobic glovebox. Microcosms were incubated and sampled periodically for approximately 3 months. Several different conditions, including: groundwater and soil, autoclaved groundwater and soil, soil taken at ground surface and groundwater, and autoclaved silica sand and groundwater were created for microcosm experiments to determine whether abiotic or biotic factors caused the reduction of 2,4- and 2,6-DNT. Microcosms which duplicated field conditions in the laboratory had average half-lives of 4.2 days and 5.1 days for 2,4- and 2,6-DNT, respectively, compared to the field result with average half-lives between 3.9 days (2,4-DNT) and 3.5 days (2,6-DNT). Subsequently, a nutrient medium was added to each repetition. The behaviour of DNT degradation did not change significantly, suggesting minimal involvement of biological processes. Furthermore soil analysis showed relatively high concentrations of extractable iron and the presence of magnetite, which are species capable of reducing nitroaromatics. Therefore, it is concluded that nitro-reduction in Borden soil is likely a result of abiotic surface mediated processes. The competitive behaviour of 2,4- and 2,6-DNT was studied in a sequential treatment system which consisted of an anaerobic iron column, followed by either an anaerobic or aerobic soil column. Results showed the same rate of transformation from 2,4- and 2,6-DNT within the iron column, with 100% conversion to 2,4- and 2,6-DAT, respectively. Within the anaerobic and aerobic soil columns, the DATs were highly persistent. When a nutrient solution was added only to the aerobic soil column with DNTs as the initial compounds, results showed a reduction of 2,4-DNT of 17%, with an increase in 2,6-DNT of 22%. The increase in 2,6-DNT may have been a result of differing influent concentrations at earlier pore volumes. When stock solutions in the aerobic column were altered to only include DATs, a reduction of 2,4- and 2,6-DAT was observed at 17% and 18%, respectively. It would appear that an acclimated bacterial community able to transform DNT and DAT was present in the aerobic Borden sand column. Degradation of 2,4- and 2,6-DAT was dependant on the degree of nutrients supplied to indigenous bacterial communities under aerobic conditions.
3

Environmental Fate, (Bio)transformation, and Toxicology of 2,4-dinitroanisole (DNAN) in Soils and Wastewater Sludge

Olivares Martinez, Christopher Ignacio January 2016 (has links)
Insensitive munition compounds (IMC) are an emerging class of explosives that are less susceptible to accidental explosions compared to the conventional explosives they will be replacing. An IMC that has been incorporated in several explosives formulations is 2,4-dinitroanisole (DNAN). As the manufacture, storage, and use of these compounds increases, the expected releases in natural and engineered systems might pose an environmental hazard to public health and ecosystems. To date there is little information on the environmental fate and toxicology of DNAN. However, nitroaromatic compounds are known to be toxic, mutagenic and difficult to completely biodegrade. In order to study the fate and (bio)transformation of DNAN, microcosm studies with soils and anaerobic wastewater sludge were performed to determine (bio)transformation pathways and key factors influencing (bio)conversion. Transformation was enhanced in anaerobic conditions, in particular when exogenous electron donor was added. Abiotic transformation (in heat-killed soil) was also significant and dominated transformation reactions in soils that were not amended with exogenous electron donor. The organic carbon content of soils was a key factor that correlated to the anaerobic biotransformation rate. Having identified (bio)transformation products using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, an overall pathway of (bio)transformation was devised and consistent with nitro-group reduction to form aromatic amines. During the nitro-group reduction, reactive products (e.g. nitroso-intermediates) coupled with amines to form azo-dimers and oligomers. Subsequent transformation pathways included N-alkylation, N-acetylation, and stepwise demethoxylation of these oligomers. The assessment of the toxicity of DNAN and its (bio)transformation products was performed utilizing microbial toxicity assays and ecotoxicity evaluation with zebrafish (Danio rerio) embryos. Overall DNAN severely inhibited methanogens (IC₅₀ = 41 μM ), the bioluminescent marine bacterium Aliivibrio fischeri utilized in the Microtox test (IC₅₀ = 57 μM), and nitrifiers (IC₅₀ = 49 μM). Reduced aromatic amine products in general were less toxic than DNAN with the exception of 2-methoxy-5-nitroaniline and 3-nitro-4-methoxyaniline, which were similar in toxicity to some of the test organisms as DNAN. Azo-oligomer surrogates were as toxic or more toxic than DNAN, although at trace levels they significantly stimulated activity. N-acetylated amines were found to have by far the lowest toxicity to microorganisms. In zebrafish embryos, the (bio)transformation product or surrogates 3-nitro-4-methoxyaniline and 2,2'-dimethoxy-4,4'-azodianiline caused developmental abnormalities (each with lowest observable effect level of 6.4 μM). An integrated approach which monitored (bio)transformation product mixture profile in parallel with their toxicity to microbial and zebrafish toxicity was used to characterize toxicity during the time course of the anaerobic (bio)transformation of DNAN. Enhanced inhibition of methanogenic activity and zebrafish mortality were associated with the onset of dimer formation indicating they were being mostly impacted by reactive intermediates formed early in the biotransformation of DNAN. Further accumulation of oligomers was associated with a decrease toxicity. On the other hand, A. fischeri bioluminescence became more and more inhibited as the oligomers formed, indicating different responses depending on target organism. Taken globally, the results indicate that DNAN can be readily transformed in soils and wastewater sludge forming both highly toxic (e.g. azo-oligomers) and non-toxic intermediates (e.g. N-acetylated 2,4-diaminoanisole). Depending on target organism, the prolonged formation of oligomer mixtures either resulted in detoxification or recovery of activity.
4

Environmental Remediation of TNT using Nanoscale Zero-Valent Iron Metal

Echols, Erica 15 July 2009 (has links)
This research focused on the use of nanoscale zero-valent iron (NZVI) to remediate trinitrotoluene (TNT). Zero-valent iron has demonstrated effective degradation of TNT, however, these particles themselves have significant problems in treating sorbed phase TNT in the aerobic environment. This research was comprised of four areas: degradation studies of neat nano-iron with aqueous TNT, degradation studies of nanoiron emulsion with aqueous TNT, characterization of TNT in Vieques, Puerto Rico sediment, and Solid Phase Microextraction (SPME) technique interface with HPLC. Both neat and emulsion NZVI studies showed TNT degradation. More degradation was seen in studies using fresher iron. The results from our characterization study in Vieques, PR showed no presence of TNT within our detection limits of 0.0625ppm. Also, SPME is a new extraction solvent saving technique being explored because of its reproducible extractions in water. This work also gives a brief history of SPME and possible uses with TNT.
5

Extraction and destruction of organics in wastewater using ozone-loaded solvent

Tizaoui, Chedly, Slater, M.J., Ward, D.B. January 2004 (has links)
No / Originally developed as a heat exchange fluid, Volasil 245 (decamethylcyclopentasiloxane) has been found to dissolve 10 times more ozone than water does. This article proposes and investigates the extraction of wastewater contaminants to ozone-loaded Volasil 245 as a means of providing rapid treatment. In a series of bench-scale tests, the effectiveness of ozone-loaded Volasil 245 contact was compared with that of conventional gas contact. Tests were conducted with respect to a range of organic compounds: namely, phenol, 2-chlorophenol, 2,3-dichlorophenol, 1,3-dichlorobenzene, o-nitrotoluene, and nitrobenzene. Contact with the ozone-loaded solvent was suggested to be the more rapid technique, reducing aqueous concentrations by at least 85% within 30 s. In the case of 2-chlorophenol, Volasil 245 contact was shown to require just ~0.5 min to achieve a residual aqueous fraction of 5%, as opposed to ~4.5 min of gas contact. However, water/solvent interfacial mass transfer resistance was suggested to limit the degree of aqueous decontamination ultimately achieved.
6

Organic Imine Cages : Self-Sorting and Application

Acharyya, Koushik January 2015 (has links) (PDF)
Biological systems have the incredible ability to accomplish uncommon chemical transformations with supreme delicacy. Many of those chemical transformations take place within the pocket of enzymes, which provide unique micro environment. From the quest of better understanding and to mimic such complex biological systems chemists have developed their own prototypes having well-defined cavity. To this end, in last few years many aesthetically elegant 3D discrete architectures have been devised by employing noncovalent interactions especially metal-ligand co-ordination and hydrogen bonding. Conversely, architectures based on purely covalent interactions are relatively limited in number, owing to the laborious traditional covalent synthesis, which involves multi-step synthetic protocols and irreversible covalent bond formations. Nevertheless, in recent times by utilizing dynamic covalent chemistry (DCC) several such organic 3D discrete ensembles have been developed with ease and efficiency from simple and easily accessible building blocks. Interestingly in most of such cases imine condensation reaction has been utilized due to easy formation and cleavage of the imine bonds in an efficient and reversible manner. However, it is quite surprising that even though the dynamic nature of imine bonds has been well established; self-sorting/self-selection process has been overlooked in organic cage systems. Self-sorting in biological realm is a well-established synthetic protocol. DNA double helix formation via hydrogen bonding between the complimentary base pairs is probably the best known example of biological self-sorting. Self-sorting process has the ability to discriminate self from non-self to achieve highly ordered architectures from within a random reaction mixture. The credit of self-sorting/self-selection process goes to the hidden ‘molecular instructions’ encrypted within the complimentary building blocks. The foremost objective of the present thesis work is to implement the self-sorting/self-selection protocol in organic cage formation by harnessing the dynamic imine chemistry. During the course of the investigation it has been observed that non-covalent interaction especially hydrogen bonding could manipulate the outcome of such a process. Besides that, selective formation of a single isomer of an organic cage from a reaction mixture of an unsymmetrical aldehyde and a flexible amine has been successfully achieved by simply fine tuning the geometric features (shape and size) of the reacting aldehyde. Such three-dimensional cages are well appreciated by the scientific community owing to their potential applications in anion sensing, catalysis and gas storage/separation. However, they have not been explored as sensors for nitroaromatic explosives. Therefore, at this juncture several fluorescent organic cages have been synthesized and their potential application as chemosensor for the nitroaromatics has been tested. Moreover, a new synthetic protocol has been introduced for the post-synthetic modification of organic cages. Chapter 1 covers a brief introduction about dynamic covalent chemistry with main emphasis on dynamic imine chemistry and its use in covalent cage synthesis. Moreover, this chapter accounts the very recent applications of such cage compounds in various fields such as a pours material for gas storage/separation, a molecular host for the stabilization of reactive species and for the recognition of ions or molecules. Chapter 2 describes first time ever achieved self-sorting process in three-dimensional purely organic cages. First of all, four different [3+2] cages were synthesized by treating two different triamines with two different dialdehydes separately, by employing dynamic imine chemistry. The formation of desired cages was ascertained by various spectroscopic techniques. When a mixture of all the four components (two aldehydes and two amines) was subjected to reaction, only two cages were found to form (Scheme 1) out of several equally probable possibilities, which suggest a high-fidelity self-recognition. The issue of partner preferences was further verified by transforming a non-self-sorted cage into a self-sorted cage by treating the former with appropriate triamine or dialdehyde. For an in-depth understanding on this subject, theoretical calculations (gas phase DFT) were carried out, which suggested that observed self-sorting is a thermodynamically governed process. Scheme 1. Self-sorting in organic imine cages through partner preferences. Chapter 3 focuses that supramolecular interaction especially hydrogen-boding could be a possible way to direct a self-sorting process operating in imine based organic cage systems. It is a well-accepted fact that in most of the cases self-sorting process operates owing to the difference in geometric features (shape and size) of the competing building blocks. Thus increasing similarity in geometric features would create the situation more complex. It is anticipated that in such circumstances H-bonding could have a decisive role in partner selection. In order to investigate this, four different dialdehydes (A, B, C and D) having similar geometric background were synthesized. These aldehydes upon treatment with flexible amine X were found to form three nanosocpic [3+2] organic cages (aldehyde C gave insoluble uncharacterized material). When a one-pot reaction of triamine X with mixture of all the four aldehydes was carried out, selective formation of cage B3X2 was observed (Scheme 2). Conversely, the same reaction in absence of aldehyde B resulted in the formation of mixture of products. Theoretical and experimental studies fully support the fact that the presence of hydroxyl moiety adjacent to the formyl group in aldehyde B has the key role in selective formation of cage B3X2 from a complex reaction mixture, in which there are numerous equally probable possibilities. Such remarkable selection was further examined by converting a non-hydroxy (non-preferred) cage into hydroxy cage B3X2 (preferred) by treating the former with aldehyde B. The role of the H-bond in self-sorting process of two dialdehydes and two triamines has been established. Furthermore, the possibility of cage–to- cage transformation through imine bond metathesis has also been addressed. Scheme 2. H-bond directed 15-fold (2+3) incomplete self-sorting in organic imine cages. Chapter 4 presents the investigation on the formation of single isomeric species of a [3+2] oligoimine cage from a reaction mixture of an unsymmetrical dialdehyde and a flexible triamine. So far, most of the reported organic cages are derived by symmetric building units. Asymmetric building blocks for the construction of such organic architectures are not the desirable choices, as they could lead to form mixture of isomeric cages. However, the asymmetric building blocks might form selectively one isomer only under the thermodynamic bias, which prefers the formation of one isomer over the other (s). In order to understand the factors that can direct such a process, three asymmetric dialdehydes (A, B and C) were synthesized and their reaction with a flexible amine X was carried out. Experimental outcomes suggested a striking difference in the abilities of isomer selection between aldehydes A/B and C. In case of aldehyde A/B selective formation of one oligoimine cage was observed, whereas aldehyde C led to form two isomeric oligoimine cages (Scheme 3). Experimental and theoretical findings have pointed out that the geometric features (shape and size) of the aldehyde play a decisive role in such isomer selection process. Scheme 3. Shape and size directed self-selection in organic imine cages. Part A of Chapter 5 describes the synthesis and characterization of a fluorescent organic cage compound and its application as a sensor for the detection of explosive picric acid (PA). Picric acid is known to be as explosive as trinitrotoluene (TNT) and one of the principle constituents of many unexplored landmines. Though there are several fluorescent polymers, metal-organic frameworks and small molecule based sensors have been devised in last few years but very little attention has been given towards selective and sensitive detection of picric acid. In this context desired organic cage compound 4 was synthesized by employing imine condensation between 4,4-diformyltriphenylamine (1) with 1,3,5-tris(aminomethyl)-2,4,6-trimethylbenzene (2) followed by reduction of the imine bonds (Scheme 4). This fluorescent nature of the cage in both the solid and solution has been utilized for the detection of nitroaromatic compounds (NACs). Among the various NACs tested it has been found that PA induces highest quenching of the initial fluorescence intensity of the cage solution. Furthermore, this cage has the ability to discriminate PA from other nitrophenolic compounds, such as 2,4-dinitrophenol (DNP) and 4-nitrophenol. In addition to solution phase detection cage 4 has also been successfully utilized for the solid phase detection of PA. The experimental results demonstrates that high sensitivity of the cage towards PA is attributed to the stronger ground state complex formation between the cage and PA as well as excitation v energy transfer (EET) process from protonated cage to the picrate. This represents the first report of a cage compound as a sensor for nitroaromatic compounds. Scheme 4. Synthesis of a fluorescent organic cage for the selective detection of picric acid. Part B of Chapter 5 reports a new synthetic methodology to decorate covalent organic cages post-synthetically, based on one-pot copper(I) catalyzed A3 coupling. A3-coupling is a three-component reaction between formaldehyde, secondary amine and terminal alkyne. In the present study selected organic cage 4 is furnished with six secondary amine moieties and thus it was allowed to react with 6 equiv. of formaldehyde and 6 equiv. of terminal alkyne in presence of CuI as a catalyst (Scheme 5). By employing this synthetic strategy parent cage 4 has been modified to cages 5a-c with appendages phenyl-, xylyl- and napthyl-actylenes. The resulting decorated cages were characterized by multinuclear NMR (1H and 13C), MALDI-TOF and FTIR spectroscopy. All the post-synthetically decorated cages were found to be fluorescent in nature and thus in v order to explore their potential use as a chemosensor for nitroaromatic compounds, cage 5a was tested. Experimental findings have suggested high selectivity of the cage towards nitroaromatic compounds. Interestingly, among the various nitroaromatics tested it has been observed that the cage is more sensitivity towards nitrophenolic compounds, whereas among the various nitrophenols tested, picric acid induced highest quenching. Scheme 5. Post-synthetic modification of an organic cage via cu+ catalyzed A3 coupling.
7

Fluoranthene-Based Materials for Non-Doped Blue Organic Light-Emitting Diodes

Shiv Kumar, * January 2015 (has links) (PDF)
The organic light-emitting diode (OLED) technology is emerging to be the future technology of choice for thin, flexible and efficient display and lighting panels and is a potential competitor for the existing flat panel display technologies, like liquid crystal display (LCD) and plasma display panel (PDP). OLEDs display is already making their way from both lab and industry research to display market and the pace of development of laboratory OLED design into a commercial product is very impressive. The OLED display offers several advantages over other display technologies, such as low power consumption, easy fabrication, high brightness & resolution, light weight, compact, flexible, wide viewing angle and fast response. However, OLED display is still in amateur stage in terms of their cost and lifetime. Despite of the abovementioned advantages of OLEDs, there still several issues that need to be addressed to explore the full potential of this display technology. The development of materials with high photoluminescence quantum yield (PLQY), thermal and electrochemical stability, packaging, and light extracting technology are some of the major issues. Among the emitting materials, the achievement of robust blue emitting material with high PLQY and color purity is still a challenge due to its intrinsic wide bandgap and complex device configuration. The work presented in this thesis is devoted to the development of robust blue emitting materials based on fluoranthene derivatives. Fluoranthene unit has been chosen due to its blue emission, high photoluminescence quantum yield, thermal and electrochemical stability. The thesis is organized in six chapters, and a brief discussion on the content of individual chapters is provided below. Chapter 1 provides a short description of evolution of display technology and history of OLEDs. The generation wise development of emitting materials for white OLED is concisely illustrated. The working principle, function of individual layer and factors governing external quantum efficiency of OLED device are elaborated. Finally, the important prerequisite properties of blue emitting materials for OLED application are outlined. Chapter 2 reports the design and synthesis of symmetrically and asymmetrically functionalized fluoranthene-based materials to address the issue of PL quenching in solid state, and subsequently for application in non-doped electoluminescent devices. A detailed experimental and theoretical study has been performed to understand the effect of symmetric and asymmetric functional groups on optical, thermal and electrochemical properties. The fluoranthene derivatives reported in this chapter exibited deep blue emission with high PLQY in both solution and solid state. The vacuum deposited non- doped OLED devices were fabricated and characterized utilizing these materials as emitting layer. Chapter 3 describes the rationale design of thermally stable fluoranthene derivatives as electron transport materials for OLEDs. The two derivatives investigated in this chapter comprised of two fluoranthene units linked by diphenylsulfane and dibenzothiophene linkage. The effect of rigidity provided by ring closure in molecular structure on the physical and charge transport properties has been investigated. Such materials are urgently demanded for better performance and durability of displays. In an extension to chapter 3, fluoranthene based dual functional materials possessing blue light emission and electron transport characteristics are described in Chapter 4. The application of these materials in bilayer blue OLED device successfully demonstrated. The development of such dual functional materials is an important step to not just simplify the OLED device architecture; but also has the potential to reduce the manufacturing and processing cost significantly. Chapter 5 reports the synthesis of the star-shaped fluoranthene-triazine based blue photoluminescent materials for solution processable OLEDs. The effect of chalcogen on the photophysical and electroluminescence properties has been investigated. The main advantage of such solution processable materials over small molecules is to overcome the power consuming vacuum thermal evaporation technique for deposition. Chapter 6 describes the design and synthesis of a new blue emitting material comprising of a donor moiety and an acceptor unit to observe thermally activated delayed fluorescence (TADF). However, photophysical studies did not show any sign of delayed fluorescence in this molecule. Nevertheless, a deep blue electroluminescence is achieved using a multilayer OLED device configuration.
8

Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory

Millan Cabrera, Reisel 19 February 2021 (has links)
[ES] En este trabajo estudiamos dos reacciones catalíticas relevantes para la industria y la localización del anión fluoruro en la zeolita RTH, sintetizada en medio fluoruro. El capítulo 3 es el primer capítulo de resultados, donde se estudia la reducción quimioselectiva del nitroestireno en las superficies Ni(111), Co(111), Cu(111) y Pd(111). El mecanismo generalmente aceptado de esta reacción está basado en el esquema propuesto por Haber en 1898, en el que la reacción puede transcurrir por dos rutas, la directa y la de condensación. En este capítulo exploramos ambas rutas, y observamos que la ruptura de los enlaces N-O y la consecuente formación de enlaces metal-O está más favorecida que la formación de enlaces N-H en las superficies Ni(111) y Co(111), debido al carácter oxofílico de ambos metales. Las etapas más lentas involucran la formación de enlaces N-H. En las superficies de metales nobles como Pt(111) y Pd(111) se observa el comportamiento contrario. La superficie Cu(111) es un caso intermedio comparado con los metales nobles y no nobles. Además, el nitroestireno interactúa con los átomos de Cu de la superficie solo a través de grupo nitro, con lo cual es un candidato ideal para alcanzar selectividades cerca del 100%. Sin embargo, la superficie Cu(111) no es capaz de activar la molécula de H2. En este sentido, proponemos un catalizador bimetálico basado en Cu, dopado con otro metal capaz de activar al H2, tales como el Pd o el Ni. En los capítulos 4 y 5 se ha estudiado la reducción catalítica selectiva de los óxidos de nitrógeno (SCR, en inglés) con amoníaco. Usando métodos de DFT, hemos encontrado rutas para la oxidación de NO a NO2, nitritos y nitratos con energías de activación relativamente bajas. También, hemos encontrado que la reducción de Cu2+ a Cu+ requiere la participación simultánea de NO y NH3. Posteriormente, hemos estudiado la influencia del NH3 en este sistema con métodos de dinámica molecular. El NH3 interacciona fuertemente con el Cu+ de forma que dos moléculas de este gas son suficientes para romper la coordinación del catión Cu+ con los oxígenos del anillo 6r, y formar el complejo lineal [Cu(NH3)2]+. Además, los cationes Cu2+ pueden ser estabilizados fuera de la red mediante la formación del complejo tetraamincobre(II). Debido a la presencia de los cationes Cu+ y Cu2+ coordinados a la red de la zeolita, aparecen bandas en la región entre 800-1000 cm-1 del espectro infrarrojo. El análisis de las frecuencias IR de varios modelos con Cu+ y Cu2+ coordinados al anillo 6r, o formando complejos con amoniaco indica que cuando los cationes Cu+ y Cu2+ están coordinados a los oxígenos del anillo 6r aparecen vibraciones entre 830 y 960 cm-1. Frecuencias en esta zona también se obtienen en los casos en que NO, NO2, O2 y combinaciones de dos de ellos están adsorbidos en Cu+ y Cu2+. Sin embargo, cuando los cationes Cu+ y Cu2+ están fuera del anillo (no hay enlaces entre los cationes de cobre y los oxígenos del anillo 6r) no se obtienen vibraciones de IR en esta región del espectro. Estos resultados indican que con el seguimiento del espectro IR durante la reacción SCR es posible determinar si los cationes Cu+ y Cu2+ están coordinados o no al anillo de 6r en las etapas de oxidación y reducción. Por último, hemos simulado el desplazamiento químico de 19F, δiso,, en la zeolita sintetizada RTH. El análisis del δiso de los distintos modelos utilizados nos ha permitido reconocer la simetría del material sintetizado, el cual pertenece al grupo espacial P1 y la nueva celda unidad ha sido confirmada experimentalmente por difracción de rayos X. Finalmente, hemos asignado la señal experimental que aparece en el espectro de 19F a -67.2_ppm, al F- localizado en un sitio T2, el cual es a su vez la posición más estable. Además, la señal a -71.8 ppm se ha asignado al anión F- localizado en un sitio T4. / [CA] En aquest treball estudiem dues reaccions catalítiques rellevants per a la indústria i la localització de l'anió fluorur en la zeolita RTH, sintetitzada al mig fluorur. El capítol 3 és el primer capítol de resultats, on s'estudia la reducció quimioselectiva del nitroestireno en les superfícies Ni(111), Co(111), Cu(111) i Pd(111). El mecanisme generalment acceptat d'aquesta reacció està basat en l'esquema proposat per Haver-hi en 1898, en el qual la reacció pot transcórrer per dues rutes, la directa i la de condensació. En aquest capítol explorem totes dues rutes, i observem que la ruptura dels enllaços N-O i la conseqüent formació d'enllaços metall-O està més afavorida que la formació d'enllaços N-H en les superfícies Ni(111) i Co(111), a causa del caràcter oxofílico de tots dos metalls. Les etapes més lentes involucren la formació d'enllaços N-H. En les superfícies de metalls nobles com Pt(111) i Pd(111) s'observa el comportament contrari. La superfície Cu(111) és un cas intermedi comparat amb els metalls nobles i no nobles. A més, el nitroestireno interactua amb els àtoms de Cu de la superfície sol a través de grup nitre, amb la qual cosa és un candidat ideal per a aconseguir selectivitats prop del 100%. No obstant això, la superfície Cu(111) no és capaç d'activar la molècula d'H2. En aquest sentit, proposem un catalitzador bimetàl·lic basat en Cu, dopat amb un altre metall capaç d'activar a l'H2, com ara el Pd o el Ni. En els capítols 4 i 5 hem estudiat la reducció catalítica selectiva dels òxids de nitrogen (SCR, en anglés) amb amoníac. Usant mètodes de DFT, hem trobat rutes per a l'oxidació de NO a NO2, nitrits i nitrats amb energies d'activació relativament baixes. També, hem trobat que la reducció de Cu2+ a Cu+ requereix la participació simultània de NO i NH3. Posteriorment, hem estudiat la influència del NH3 en aquest sistema amb mètodes de dinàmica molecular. El NH3 interacciona fortament amb el Cu+ de manera que dues molècules d'aquest gas són suficients per a trencar la coordinació del catió Cu+ amb els oxígens de l'anell 6r, i formar el complex lineal [Cu(NH3)2]+. A més, els cations Cu2+ poden ser estabilitzats fora de la xarxa mitjançant la formació del complex tetraamincobre(II). A causa de la presència dels cations Cu+ i Cu2+ coordinats a la xarxa de la zeolita, apareixen bandes a la regió entre 800-1000 cm-1 de l'espectre infraroig. L'anàlisi de les freqüències IR de diversos models amb Cu+ i Cu2+ coordinats a l'anell 6r, o formant complexos amb amoníac indica que quan els cations Cu+ i Cu2+ estan coordinats als oxígens de l'anell 6r apareixen vibracions entre 830 i 960 cm-1. Freqüències en aquesta zona també s'obtenen en els casos en què NO, NO2, O2 i combinacions de dues d'ells estan adsorbidos en Cu+ i Cu2+. No obstant això, quan els cations Cu+ i Cu2+ estan fora de l'anell (no hi ha enllaços entre els cations de coure i els oxígens de l'anell 6r) no s'obtenen vibracions d'IR en aquesta regió de l'espectre. Aquests resultats indiquen que amb el seguiment de l'espectre IR durant la reacció SCR és possible determinar si els cations Cu+ i Cu2+ estan coordinats o no a l'anell de 6r en les etapes d'oxidació i reducció. Finalment, hem simulat el desplaçament químic de 19F, δiso, en la zeolita sintetitzada RTH. L'anàlisi del δiso dels diferents models utilitzats ens ha permés reconéixer la simetria del material sintetitzat, el qual pertany al grup espacial P1 i la nova cel·la unitat ha sigut confirmada experimentalment per difracció de raigs X. Finalment, hem assignat el senyal experimental que apareix en l'espectre de 19F a -67.2 ppm, al F- localitzat en un lloc T2, el qual és al seu torn la posició més estable. A més, el senyal a -71.8 ppm s'ha assignat a l'anió F- localitzat en un lloc T4. / [EN] In this work, we have studied two heterogeneous catalytic reactions and the localization of the fluoride anion in the as-made RTH framework, synthesized in fluoride medium. The first results, included in chapter 3, correspond to the chemoselective reduction of nitrostyrene on different metal surfaces, i.e, Ni(111), Co(111), Cu(111) and Pd(111). Until very recently, the reduction of the nitro group was explained on the basis of the general mechanism proposed by Haber in 1898 where the reaction can follow two routes, the direct and condensation route. We have explored the relevant elementary steps of both routes and found that because of the oxophilic nature of Ni and Co, the steps involving the dissociation of N-O bonds and formation of metal-O bonds are significantly favored compared with the other steps on both metal surfaces. In addition, the most demanding steps in terms of energy involve the formation of N-H bonds. These findings are in contrast to those of noble metals such as Pt and Pd, where the opposite behavior is observed. The behavior of Cu(111) lies in between the aforementioned cases, and also no chemical bonds between the carbon atoms of the aromatic ring of nitrostyrene and the Cu(111) surface is formed. For this reason, it might be an ideal candidate to achieve nearly 100 % selectivity. However, the Cu(111) surface does not seem to activate the H2 molecule. In this regard, we propose a bimetallic Cu-based catalyst whose surface is doped with atoms of a H2-activating metal, such as Ni or Pd. On another matter, we have also investigated the selective catalytic reduction of nitrogen oxides (SCR-NOx) and the main results are presented in the following two chapters, 4 and 5. By using static DFT methods, we found pathways for the oxidation of NO to NO2, nitrites and nitrates with relatively low activation energies. We also found, in agreement with experimental reports, that the reduction of Cu2+ to Cu+ requires the simultaneous participation of NO and NH3. Later, molecular dynamics simulations allowed us to assess the influence of NH3. The strong interaction of NH3 with the Cu+ cation is evidenced by its ability to detach Cu+ from the zeolite framework and form the mobile linear complex [Cu(NH3)2]+. Cu+ is no longer coordinated to the zeolite framework in the presence of two NH3 molecules. This observation and the fact that the T-O-T vibrations of the framework produce bands in the 800-1000 cm-1 region of the IR spectrum when perturbed by the coordination of Cu+ and Cu2+ cations, indicate that bands in the 800-1000 cm-1 regions should be observed when both copper cations are bonded to the framework oxygens. Finally, we have also studied NMR properties of the as-made pure silica RTH framework, aiming at locating the compensating fluoride anion. The calculation of the 19F chemical shift in different T sites and comparison with the experimental NMR spectra shows that the as-made RTH belongs to the P-1 space group with 16 Si, 32 O atoms, one fluoride anion and one OSDA cation. These results have been confirmed experimentally by XRD. In addition, we have assigned the experimental signal of 19F at -67.2 ppm to the fluoride anion in a T2 site, which in turn is the most stable location found, and the signal of -71.8 ppm to a fluoride anion sitting in a T4 site. / My acknowledgements to “La Caixa foundation” for the financial support through “La Caixa−Severo Ochoa” International PhD Fellowships (call 2015), to the Spanish Supercomputing Network (RES), to the Centre de Càlcul de la Universitat de València, to the Flemish Supercomputer Center (VSC) of Ghent University for the computational resources and technical support, and to the Spanish Government through the MAT2017-82288-C2-1-P programme / Millan Cabrera, R. (2021). Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161934
9

Vinylanthracene and Triphenylamine Based Luminescent Molecular Systems : From Aggregation-Induced Emission to Explosive Detection

Chowdhury, Aniket January 2016 (has links) (PDF)
In the last few years, considerable efforts have been given to develop sensitive and effective sensors for explosive materials and to generate systems which exhibit high luminescence in both solution and solid-state. The increasing number of terrorist activities around the world have prompted scientists to design effective ways to detect and disarm even the trace amount of explosives. The nitroaromatics (NACs) are the common constituents of most of the explosives due to high explosive velocity and ease of availability. The NACs were extensively used as the main constituents in landmines until World War II. Apart from their explosive behavior, the NACs are well-known environmental pollutants. The industrial waste and the leakages from unexploded landmines are the major contributors towards the soil and ground water contamination. Presently for effective detection of trace amount of explosives, skilled canines and metal based detectors are commonly used. The canines are trained for a specific type of explosives which limit their ability to detect different types of substrates. The chemical sensors that work on the principle of colorimetric and/or fluorimetric detection techniques have emerged as suitable alternative due to cheap production cost, portability and sensitivity. Different types of materials including conjugated polymers, metal-organic frameworks (MOFs), and quantum-dots have been reported as efficient chemosensors for NACs. However, poor solubility in the common organic solvents, low solid-state fluorescence, very high molecular weight and lack of signal amplification have restricted the application of these material for in-field testing. Renewed interests have been invested in small molecule based systems; and metal-organic discrete molecular architectures due to precise control over their photophysical properties and the supramolecular interaction among neighboring molecules that facilitates energy migration among the molecular backbone. On the other hand, recently post-synthetic modification of different molecular systems including MOFs and polymers has emerged as a potential technique to incorporate desired functional groups into the system and to tune their properties with the retention of basic structures. Reports on the post-synthetic modification of discrete metal-organic architectures are rare due to the delicate nature of the metal-organic bonds that ruptures on mild environmental changes. Therefore, post-synthetic functionalization of discrete molecular systems using mild reaction conditions will open up a myriad of possibilities to generate new systems with desired characteristics. Chapter 1 of the thesis will briefly discuss the history of different explosive materials including different detection methodologies that are widely used. It will also include a brief discussion on different small molecular systems with high solid-state luminescence. In Chapter 2, design and synthesis of triphenylamine-based two Platinum(Pt)(II) molecules functionalized with carboxylic acid and ester groups including their organic analogues have been discussed. The triphenylamine core was chosen due its unique non-planarity and luminescence. On the other hand, Pt(II) center was incorporated to increase intermolecular spacing in solid-state that can induce high luminescence. Scheme 1. Schematic representation of fluorescence quenching using small molecules. All the four molecules were found to be highly sensitive towards NACs including picric acid and dinitrophenol. Although the molecules exhibited similar sensitivity in solution, the carboxylic acid analogues demonstrated superior sensitivity in solid-state. Careful observation of the crystal structures of the systems revealed the acid analogues were oriented in a 2-D grid-like pattern that facilitated energy migration among neighboring molecules (Scheme 1.). Chapter 3 describes design, synthesis, and NACs sensing behavior of anthracene-based four purely organic small molecules. The molecules exhibited high selectivity towards picric acid only. All the molecules were found to be highly emissive in both solution and solid-state due to the vinylanthracene backbone (Scheme 2.). Scheme 2. Schematic representation of fluorescence quenching and solid-state sensing behavior. Chapter 4 discusses the strategy to develop mechano-fluorochromic and AIE active triphenylamine-based Pt(II) complex and its organic analogue. The twisted triphenylamine backbone restricted molecular close packing in solid-state; and weak C-H-- interactions were utilized to hinder the motion of the phenyl rings. As a result, the molecules were highly emissive in solid-state. Grinding disrupted the intermolecular interactions and thus mechano-fluorochromic behavior was observed. Due to twisted backbone, the molecules were also found to be AIE active. Both the systems containing terminal aldehyde groups were finally utilized for selective detection of biomolecule cysteine (Scheme 3.). Scheme 3. Mechano-fluorochromic and AIE behavior of the triphenylamine based Pt(II) complex. In Chapter 5 vinylanthracene-based linear donor was used in combination with carbazole-based 90° and triphenylamine-based 120° Pt(II) acceptors to generate (4+4) and (6+6) molecular squares and hexagons, respectively. The vinylanthracene backbone imparts high solution and solid-state luminescence to the system as well as made them AIE active. The molecules were further investigated for the solution and solid-state sensing for NACs and found to be effective for trinitrotoluene (TNT) and dinitrotoluene (DNT) (Scheme 4.). Scheme 4. Schematic representation of AIE active molecular square and its NACs sensing. Chapter 6 describes the formation of Pd3 self-assembled molecular trinuclear barrels containing triphenylamine imidazole donors and Pd(II) acceptors. Using Knoevenagel condensation the aldehyde group present in the barrel was post-synthetically functionalized with Meldrum’s acid. From spectroscopic characterization, it was proved that the structural integrity remained intact after the post-modification treatment (Scheme 6.). Surprisingly, pre-synthetic modification of the donor alone with Meldrum’s acid followed by self-assembly treatment with the Pd(II) ion did not yield trigonal barrel 6.8. Scheme 6. Post-synthetic functionalization of trinuclear barrels using Knoevenagel condensation.(For colour pictures pl see the abstract pdf file)

Page generated in 0.0537 seconds