• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 3
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preliminary simulation of Porjus U9 turbine at speed no load

Holmström, Henrik January 2019 (has links)
Hydropower plants are shifting towards operating at off-designed conditions, meaning that the number of start-stop cycles and maintenance time due to cavitation increases. The speed no-load condition is the moment before magnetization of the generator, i.e., no load, low flow, constant runner rotational speed, guide vane and runner blade angle. Since no load is applied, the water dissipates its energy in forms of highly recirculating and turbulent flow. This master thesis aim is to simulate the speed no-load condition on the Porjus U9 turbine and validate numerical values against experimental ones. ICEM CFD was used to mesh the domains and ANSYS CFX was used to perform the simulation. The setup was split into two zones, Zone 1 and Zone 2, and an intermediate zone overlapping both zones. Zone 1 consists of the penstock and spiral, the intermediate zone consists of the spiral and distributor passages and Zone 2 consists of a distributor passage, runner and draft tube. Streamlines in the runner and draft tube show highly recirculating flow from the draft tube back into the runner. The numerical values did not correspond well against the experimental. This is deemed most likely due to an overall low pressure over the runner blades. It is recommended as a first step to increase the quality of the runner and distributor mesh to get the simulation running with the cavitation model implemented.
2

Magnetizing Currents in Power Transformers : Measurements, Simulations, and Diagnostic Methods

Carrander, Claes January 2017 (has links)
This thesis demonstrates a method for transformer core diagnostics. The method uses the no-load current of the transformer as an indicator, and gives different characteristic signatures for different types of faults or defects. Using the no-load current for the diagnostic gives high sensitivity. The method is therefore able to detect defects that are too small to have an impact on the losses. In addition to different types of fault, the method can in some cases also distinguish between faults in different locations within the core. Both single-phase and three-phase transformers can be diagnosed using this method, and the measurements can be easily performed at any facility capable of measuring the no-load loss. There are, however, some phenomena that occur in large transformers, and in transformers with high rated voltages. Examples include capacitive resonance and magnetic remanence. This thesis proposes and demonstrates techniques for compensating for these phenomena. With these compensating techniques, the repeatability of the measurements is high. It is shown that units with the same core steel tend to have very similar no-load behavior. The diagnostics can then be performed either by comparing the transformer to another unit, or to simulations. The thesis presents one possible simulation method, and demonstrates the agreement with measurements. This topological simulation method includes both the electric circuit and an accurate model of the magnetic hysteresis. It is therefore also suitable for other, related, studies in addition to core diagnostics. Possible subjects include ferroresonance, inrush, DC magnetization of transformers, and transformer core optimization. The thesis also demonstrates that, for three-phase transformers, it is possible to compare the phases to each other. This technique makes it possible to diagnose a transformer even without a previous measurement to compare to, and without the data required to make a simulation. / <p>QC 20170607</p>
3

Um estudo de uso de gradador de tensão em motores de indução monofásicos

Pauletti, Luiz Celestino January 2009 (has links)
O motor de indução é, talvez, o mais robusto e, certamente, um dos motores mais comumente usados. Graças à simplicidade de sua construção, do seu baixo custo, confiabilidade e rendimento relativamente alto com carga nominal é provável que ele permaneça sendo a principal fonte de transformação de energia elétrica em energia mecânica nas aplicações industriais e comerciais por um futuro previsível. O estudo de economia de energia pela redução de perdas é o objetivo do presente estudo. Os motores de indução operam regularmente com fluxo quase constante no entreferro e, portanto, com perdas magnéticas quase constantes. A utilização de um circuito gradador de tensão em série com a alimentação do motor para reduzir o fluxo no entreferro pela redução da tensão aplicada quando a carga não requer fluxo total é o objeto de análise neste estudo. Com a redução da tensão, para manter o conjugado de operação, a velocidade de rotação diminui, ou seja, há um aumento no escorregamento até um valor ótimo para reduzir as perdas totais. Então, esperaria-se que com a redução da tensão aplicada, as perdas magnéticas decresceriam e a eficiência total cresceria. Via de regra, no motor de indução, dada a característica mergulhante de sua curva Conjugado x Velocidade na região em torno da velocidade nominal, o conjugado varia muito mais que a velocidade. Para operação eficiente, a sua tensão aplicada deve ser função da carga que traciona. É objetivo desse trabalho estudar um dispositivo que, colocado em série com a fonte de alimentação de um motor de indução de CA, promove a redução de potência fornecida ao motor, quando a carga aplicada ao motor é menor que a carga nominal. Uma análise da redução da tensão senoidal aplicada através de um auto-transformador de tensão variável é comparada com a redução da tensão através de um circuito gradador baseado em tiristores. A melhor tensão a ser obtida é a que reduz as perdas magnéticas ao mínimo, para cargas que não requerem o fluxo total no entreferro como quando da tensão nominal aplicada. As limitações do processo são estudadas e apresentadas. / The induction motor is perhaps the most rugged, and certainly one of the most commonly used motors. With simply construction, low cost, reliability and efficiency relatively high with rated-load it seems to be a good way to convert electric energy into mechanical energy for industrial and domestic applications for a predictable future. An economy in energy consumption by loss reduction is the goal of this study. The induction motors as normal operate with constant flux in the air-gap and, hence with almost constant losses in the core. The use of a voltage gradador circuit in series with the voltage source applied to the motor for flux reduction in the air-gap by reduction of the voltage when the load do not need full-flux is this study proposal. Hence, with applied voltage reduction, to keep the operational torque, the motor rotation decreases or the slip increases to an optimum value to reduce the total core losses and increase the efficiency. As a rule, the induction motor, by the dip characteristic of the torque x speed curve in the region near the nominal speed, the torque changes much more then the speed. For efficient operation, the applied voltage should be a function of the load. It is the goal or aim of this work to study a device which, when placed in series with the power input of an alternating current induction motor, will produce a reduction in power normally provided to the motor when operated in either a condition where motor loading is less than a rated load. An analysis of voltage ideal sine wave supply reduction applied by an autotransformer with variable voltage is compared with the voltage reduction using a gradador circuit based on thyristors. The optimal voltage operation is the one that decrease the iron losses to minimum, for partial-load that do not need full-flux in the air-gap as when the full voltage is applied. Limitations in the process are investigated and will be showed.
4

Um estudo de uso de gradador de tensão em motores de indução monofásicos

Pauletti, Luiz Celestino January 2009 (has links)
O motor de indução é, talvez, o mais robusto e, certamente, um dos motores mais comumente usados. Graças à simplicidade de sua construção, do seu baixo custo, confiabilidade e rendimento relativamente alto com carga nominal é provável que ele permaneça sendo a principal fonte de transformação de energia elétrica em energia mecânica nas aplicações industriais e comerciais por um futuro previsível. O estudo de economia de energia pela redução de perdas é o objetivo do presente estudo. Os motores de indução operam regularmente com fluxo quase constante no entreferro e, portanto, com perdas magnéticas quase constantes. A utilização de um circuito gradador de tensão em série com a alimentação do motor para reduzir o fluxo no entreferro pela redução da tensão aplicada quando a carga não requer fluxo total é o objeto de análise neste estudo. Com a redução da tensão, para manter o conjugado de operação, a velocidade de rotação diminui, ou seja, há um aumento no escorregamento até um valor ótimo para reduzir as perdas totais. Então, esperaria-se que com a redução da tensão aplicada, as perdas magnéticas decresceriam e a eficiência total cresceria. Via de regra, no motor de indução, dada a característica mergulhante de sua curva Conjugado x Velocidade na região em torno da velocidade nominal, o conjugado varia muito mais que a velocidade. Para operação eficiente, a sua tensão aplicada deve ser função da carga que traciona. É objetivo desse trabalho estudar um dispositivo que, colocado em série com a fonte de alimentação de um motor de indução de CA, promove a redução de potência fornecida ao motor, quando a carga aplicada ao motor é menor que a carga nominal. Uma análise da redução da tensão senoidal aplicada através de um auto-transformador de tensão variável é comparada com a redução da tensão através de um circuito gradador baseado em tiristores. A melhor tensão a ser obtida é a que reduz as perdas magnéticas ao mínimo, para cargas que não requerem o fluxo total no entreferro como quando da tensão nominal aplicada. As limitações do processo são estudadas e apresentadas. / The induction motor is perhaps the most rugged, and certainly one of the most commonly used motors. With simply construction, low cost, reliability and efficiency relatively high with rated-load it seems to be a good way to convert electric energy into mechanical energy for industrial and domestic applications for a predictable future. An economy in energy consumption by loss reduction is the goal of this study. The induction motors as normal operate with constant flux in the air-gap and, hence with almost constant losses in the core. The use of a voltage gradador circuit in series with the voltage source applied to the motor for flux reduction in the air-gap by reduction of the voltage when the load do not need full-flux is this study proposal. Hence, with applied voltage reduction, to keep the operational torque, the motor rotation decreases or the slip increases to an optimum value to reduce the total core losses and increase the efficiency. As a rule, the induction motor, by the dip characteristic of the torque x speed curve in the region near the nominal speed, the torque changes much more then the speed. For efficient operation, the applied voltage should be a function of the load. It is the goal or aim of this work to study a device which, when placed in series with the power input of an alternating current induction motor, will produce a reduction in power normally provided to the motor when operated in either a condition where motor loading is less than a rated load. An analysis of voltage ideal sine wave supply reduction applied by an autotransformer with variable voltage is compared with the voltage reduction using a gradador circuit based on thyristors. The optimal voltage operation is the one that decrease the iron losses to minimum, for partial-load that do not need full-flux in the air-gap as when the full voltage is applied. Limitations in the process are investigated and will be showed.
5

Um estudo de uso de gradador de tensão em motores de indução monofásicos

Pauletti, Luiz Celestino January 2009 (has links)
O motor de indução é, talvez, o mais robusto e, certamente, um dos motores mais comumente usados. Graças à simplicidade de sua construção, do seu baixo custo, confiabilidade e rendimento relativamente alto com carga nominal é provável que ele permaneça sendo a principal fonte de transformação de energia elétrica em energia mecânica nas aplicações industriais e comerciais por um futuro previsível. O estudo de economia de energia pela redução de perdas é o objetivo do presente estudo. Os motores de indução operam regularmente com fluxo quase constante no entreferro e, portanto, com perdas magnéticas quase constantes. A utilização de um circuito gradador de tensão em série com a alimentação do motor para reduzir o fluxo no entreferro pela redução da tensão aplicada quando a carga não requer fluxo total é o objeto de análise neste estudo. Com a redução da tensão, para manter o conjugado de operação, a velocidade de rotação diminui, ou seja, há um aumento no escorregamento até um valor ótimo para reduzir as perdas totais. Então, esperaria-se que com a redução da tensão aplicada, as perdas magnéticas decresceriam e a eficiência total cresceria. Via de regra, no motor de indução, dada a característica mergulhante de sua curva Conjugado x Velocidade na região em torno da velocidade nominal, o conjugado varia muito mais que a velocidade. Para operação eficiente, a sua tensão aplicada deve ser função da carga que traciona. É objetivo desse trabalho estudar um dispositivo que, colocado em série com a fonte de alimentação de um motor de indução de CA, promove a redução de potência fornecida ao motor, quando a carga aplicada ao motor é menor que a carga nominal. Uma análise da redução da tensão senoidal aplicada através de um auto-transformador de tensão variável é comparada com a redução da tensão através de um circuito gradador baseado em tiristores. A melhor tensão a ser obtida é a que reduz as perdas magnéticas ao mínimo, para cargas que não requerem o fluxo total no entreferro como quando da tensão nominal aplicada. As limitações do processo são estudadas e apresentadas. / The induction motor is perhaps the most rugged, and certainly one of the most commonly used motors. With simply construction, low cost, reliability and efficiency relatively high with rated-load it seems to be a good way to convert electric energy into mechanical energy for industrial and domestic applications for a predictable future. An economy in energy consumption by loss reduction is the goal of this study. The induction motors as normal operate with constant flux in the air-gap and, hence with almost constant losses in the core. The use of a voltage gradador circuit in series with the voltage source applied to the motor for flux reduction in the air-gap by reduction of the voltage when the load do not need full-flux is this study proposal. Hence, with applied voltage reduction, to keep the operational torque, the motor rotation decreases or the slip increases to an optimum value to reduce the total core losses and increase the efficiency. As a rule, the induction motor, by the dip characteristic of the torque x speed curve in the region near the nominal speed, the torque changes much more then the speed. For efficient operation, the applied voltage should be a function of the load. It is the goal or aim of this work to study a device which, when placed in series with the power input of an alternating current induction motor, will produce a reduction in power normally provided to the motor when operated in either a condition where motor loading is less than a rated load. An analysis of voltage ideal sine wave supply reduction applied by an autotransformer with variable voltage is compared with the voltage reduction using a gradador circuit based on thyristors. The optimal voltage operation is the one that decrease the iron losses to minimum, for partial-load that do not need full-flux in the air-gap as when the full voltage is applied. Limitations in the process are investigated and will be showed.
6

Aplicação do método de Monte Carlo para avaliação de incertezas em ensaios de perdas em transformadores de potência / Application of the Monte Carlo method for evaluating uncertainties in tests of losses in power transformers

Lourenço, Marcelo Luiz 01 September 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-30T13:22:27Z No. of bitstreams: 2 Dissertação - Marcelo Luiz Lourenço - 2014.pdf: 4735002 bytes, checksum: ca14f9b6bc39374e1b2f5e5d67f58695 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-30T14:30:51Z (GMT) No. of bitstreams: 2 Dissertação - Marcelo Luiz Lourenço - 2014.pdf: 4735002 bytes, checksum: ca14f9b6bc39374e1b2f5e5d67f58695 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-10-30T14:30:51Z (GMT). No. of bitstreams: 2 Dissertação - Marcelo Luiz Lourenço - 2014.pdf: 4735002 bytes, checksum: ca14f9b6bc39374e1b2f5e5d67f58695 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-09-01 / This work present a computer program for estimating measurement uncertainties of losses in power transformers, obtained through their tests of no load loss and of load loss, based on the models for these losses used in LabMETRO/EMC, which are non-linear, and on the Supplement 1 of the guide to the expression of uncertainty in measurement. This supplement was created in order to present a solution for situa-tions in which the evaluation of measurement uncertainty through this guide is not appropriate, being applicable to both linear and nonlinear models. The approaches to the evaluation of measurement uncertainties described in this supplement guide con-sist mainly in the numerical simulation of the Monte Carlo method. This technique allows to obtain, numerically, the probability density functions (PDF) of the output quantities through the propagation of the PDF of the inputs quantities using the measurement function. The developed program, named SIMETRANS-S1, should be integrated in the software used in test transformers of LabMETRO/EMC, called SIMETRANS. The results obtained through the SIMETRANS-S1 indicate that those results given by SIMETRANS, which are based on the guide to the expression of un-certainty in measurement, cannot be validated for the test of losses in transformers in LabMETRO / EMC, and must be use those results based on the Supplement 1 of this guide. This improvement of SIMETRANS program ensures credibility and quality to the measurement results from the metrological point of view. This work is an im-portant step to the process of accreditation of LabMETRO/EMC by the National Insti-tute of Metrology, Quality and Technology (INMETRO). / Este trabalho apresenta um programa computacional para estimar as incertezas de medição das perdas em transformadores de potência, obtidas através de seus en-saios em vazio e em carga, com base nos modelos destas perdas utilizados no La-bMETRO/EMC, os quais são não lineares, e no Suplemento 1 do guia para a ex-pressão da incerteza de medição. Este suplemento foi criado com a finalidade de apresentar uma solução para as situações em que a avaliação da incerteza de me-dição através deste guia não seja adequada, sendo aplicável a modelos lineares ou não lineares. A abordagem para a avaliação das incertezas de medição descritas neste suplemento consiste essencialmente na simulação numérica do método de Monte Carlo. Esta técnica permite obter numericamente função densidade de proba-bilidade (FDP) das grandezas de saída através da propagação das FDP das gran-dezas de entrada usando a função de medição. O programa desenvolvido, SIMETRANS-S1, deve ser integrado ao programa para ensaio de transformadores utilizado no LabMETRO/EMC, denominado SIMETRANS. Os resultados obtidos através do SIMETRANS-S1 indicam que aqueles resultados obtidos através do SIMETRANS, os quais são baseados no Guia para a Expressão da Incerteza de Medição, não podem ser validados para o ensaio de perdas em transformadores no LabMETRO/EMC, devendo-se optar pelos resultados baseado no Suplemento 1 deste guia. Este aperfeiçoamento do programa SIMETRANS garante maior credibili-dade e qualidade aos resultados de medição do ponto de vista metrológico. Este trabalho constitui um passo fundamental para o processo de acreditação do LabME-TRO/EMC pelo Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO).
7

Numerical investigation of the flow and instabilities at part-load and speed-no-load in an axial turbine

Kranenbarg, Jelle January 2023 (has links)
Global renewable energy requirements rapidly increase with the transition to a fossil-free society. As a result, intermittent energy resources, such as wind- and solar power, have become increasingly popular. However, their energy production varies over time, both in the short- and long term. Hydropower plants are therefore utilized as a regulating resource more frequently to maintain a balance between production and consumption on the electrical grid. This means that they must be operated away from the design point, also known as the best-efficiency-point (BEP), and often are operated at part-load (PL) with a lower power output. Moreover, some plants are expected to provide a spinning reserve, also referred to as speed-no-load (SNL), to respond rapidly to power shortages. During this operating condition, the turbine rotates without producing any power. During the above mentioned off-design operating conditions, the flow rate is restricted by the closure of the guide vanes. This changes the absolute velocity of the flow and increases the swirl, which is unfavorable. The flow field can be described as chaotic, with separated regions and recirculating fluid. Shear layer formation between stagnant- and rotating flow regions can be an origin for rotating flow structures. Examples are the rotating-vortex-rope (RVR) found during PL operation and the vortical flow structures in the vaneless space during SNL operation, which can cause the flow between the runner blades to stall, also referred to as rotating stall. The flow structures are associated with pressure pulsations throughout the turbine, which puts high stress on the runner and other critical parts and shortens the turbine's lifetime. Numerical models of hydraulic turbines are highly coveted to investigate the detrimental flow inside the hydraulic turbines' different sections at off-design operating conditions. They enable the detailed study of the flow and the origin of the instabilities. This knowledge eases the design and assessment of mitigation techniques that expand the turbines' operating range, ultimately enabling a wider implementation of intermittent energy resources on the electrical grid and a smoother transition to a fossil-free society. This thesis presents the numerical study of the Porjus U9 model, a scaled-down version of the 10 MW prototype Kaplan turbine located along the Luleå river in northern Sweden. The distributor contains 20 guide vanes, 18 stay vanes and the runner is 6-bladed. The numerical model is a geometrical representation of the model turbine located at Vattenfall Research and Development in Älvkarleby, Sweden. The commercial software ANSYS CFX 2020 R2 is used to perform the numerical simulations. Firstly, the draft tube cone section of the U9 model is numerically studied to investigate the sensitivity of a swirling flow to the GEKO (generalized kω) turbulence model. The GEKO model aims to consolidate different eddy viscosity turbulence models. Six free coefficients are changeable to tune the model to flow conditions and obtain results closer to an experimental reference without affecting the calibration of the turbulence model to basic flow test cases. Especially, the coefficients affecting wall-bounded flows are of interest. This study aims to analyze if the GEKO model can be used to obtain results closer to experimental measurements and better predict the swirling flow at PL operation compared to other eddy viscosity turbulence models. Results show that the near-wall- and separation coefficients predict a higher swirl and give results closer to experimentally obtained ones. Secondly, a simplified version of the U9 model is investigated at BEP and PL operating conditions and includes one distributor passage with periodic boundary conditions, the runner and the draft tube. The flow is assumed axisymmetric upstream of the runner, hence the single distributor passage. Previous studies of hydraulic turbines operating at PL show difficulties predicting the flow's tangential velocity component as it is often under predicted. Therefore, a parametric analysis is performed to investigate which parameters affect the prediction of the tangential velocity in the runner domain. Results show that the model predicts the flow relatively well at BEP but has problems at PL; the axial velocity is overpredicted while the tangential is underpredicted. Moreover, the torque is overpredicted. The root cause for the deviation is an underestimation of the head losses. Another contributing reason is that the runner extracts too much swirl from the flow, hence the low tangential velocity and the high torque. Sensitive parameters are the blade clearance, blade angle and mass flow. Finally, the full version of the U9 model is analyzed at SNL operation, including the spiral casing, full distributor, runner and draft tube. During this operating condition, the flow is not axisymmetric; vortical flow structures extend from the vaneless space to the draft tube and the flow stalls between the runner blades. A mitigation technique with independent control of each guide vane is presented and implemented in the model. The idea is to open some of the guidevanes to BEP angle while keeping the remaining ones closed. The aim is to reduce the swirl and prevent the vortical flow structures from developing. Results show that the flow structures are broken down upstream the runner and the rotating stall between the runner blades is reduced, which decreases the pressure- and velocity fluctuations. The flow down stream the runner remains mainly unchanged.
8

Influence of cross-frame detailing on curved and skewed steel I-girder bridges

Ozgur, Cagri 25 August 2011 (has links)
Curved and skewed I-girder bridges exhibit torsional displacements of the individual girders and of the overall bridge cross-section under dead loads. As a result, the girder webs can be plumb in only one configuration. If the structure is built such that the webs are plumb in the ideal no-load position, they generally cannot be plumb under the action of the structure's steel or total dead load; hence, twisting of the girders is unavoidable under dead loads. The deflected geometry resulting from these torsional displacements can impact the fit-up of the members, the erection requirements (crane positions and capacities, the number of temporary supports, tie down requirements, etc.), the bearing cost and type, and the overall strength of the structure. Furthermore, significant layover may be visually objectionable, particularly at piers and abutments. If the torsional deflections are large enough, then the cross-frames are typically detailed to compensate for them, either partially or fully. As specified in Article C6.7.2 of the AASHTO LRFD Specifications, different types of cross-frame detailing methods are used to achieve theoretically plumb webs under the no-load, steel dead load, or total dead load conditions. Each of the cross-frame detailing methods has ramifications on the behavior and constructability of a bridge. Currently, there is much confusion and divergence of opinion in the bridge industry regarding the stage at which steel I girder webs should be ideally plumb and the consequences of out-of-plumbness at other stages. Furthermore, concerns are often raised about potential fit-up problems during steel erection as well as the control of the final deck geometry (e.g., cross-slopes and joint alignment). These influences and ramifications of cross-frame detailing need to be investigated and explained so that resulting field problems leading to needless construction delays and legal claims can be avoided. This dissertation addresses the influence of cross-frame detailing on curved and/or skewed steel I girder bridges during steel erection and concrete deck placement by conducting comprehensive analytical studies. Procedures to determine the lack-of-fit forces due to dead load fit (DLF) detailing are developed to assess the impact of different types of cross-frame detailing. The studies include benchmarking of refined analytical models against selected full scale experimental tests and field measurements. These analytical models are then utilized to study a variety of practical combinations and permutations of bridge parameters pertaining to horizontal curvature and skew effects. This research develops and clarifies procedures and provides new knowledge with respect to the impact of cross-frame detailing methods on: 1) constructed bridge geometries, 2) cross-frame forces, 3) girder stresses, 4) system strengths, 5) potential uplift at bearings, and 6) fit-up during erection. These developments provide the basis for the development of refined guidelines for: 1) practices to alleviate fit-up difficulties during erection, 2) selection of cross-frame detailing methods as a function of I-girder bridge geometry characteristics, and 3) procedures to calculate the locked-in forces due to DLF cross-frame detailing.
9

Pomocné vinutí pro napájení napěťového regulátoru synchronního generátoru / Auxiliary winding supplying the voltage regulator of synchronous generator

Hrtáň, Michal January 2014 (has links)
The theme of this thesis is the design and verification of the auxiliary winding to supply the voltage regulator of the synchronous generator. The synchronous generator for which the auxiliary winding proposed is three-phase, low voltage with double layer random wound stator winding. The generator excitation is brushless with auxiliary rotating exciter. The auxiliary winding is designed for placement in the stator teeth, along with the main winding. The sizing of the auxiliary winding is derived from the power requirements the voltage regulator. Draft winding is validated analytical calculation and finite element method (FEM). The auxiliary winding has been implemented in the production of the generator. The Features of the auxiliary winding have been verified by measuring the by electrical testing room and the test results are evaluated.
10

Analýza možností zvýšení účinnosti asynchronních motorů / Analysis of possibilities to improvement induction motors efficiency

Novotný, Jiří January 2014 (has links)
In the first part of the master’s thesis dealing with the increasing efficiency of induction motors there are briefly presented basic information about induction motors, followed by an overview of the losses of induction motors. The next part deals with the ways to increase efficiency of induction motors without increasing tooling costs. The practical part consists of four measurements of four induction motors, with their various mechanical adjustments to make comparing benefits of these modifications possible. The measured results are compared by a finite element method in Maxwell 2D Design program, in which the same motors are simulated as measured. Theoretical knowledge about the increase of efficiency is practically applied while being implemented in the simulations.

Page generated in 0.0434 seconds