• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 10
  • Tagged with
  • 18
  • 18
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chiffres des nombres premiers et d'autres suites remarquables / Digits of prime numbers and other remarkable sequences

Swaenepoel, Cathy 07 June 2019 (has links)
Dans ce travail, nous étudions la répartition des chiffres des nombres premiers. Bourgain (2015) a obtenu une formule asymptotique pour le nombre de nombres premiers avec une proportion$c > 0$ de chiffres préassignés en base 2 ($c$ est une constante absolue non précisée).Nous généralisons ce résultat à toute base $g \geq 2$ et nousdonnons des valeurs explicites pour la proportion $c$ en fonction de $g$. En adaptant, développant et précisant la stratégie introduite par Bourgain dans le cas $g=2$, nous présentons une démonstration détaillée du cas général.La preuve est fondée sur la méthode du cercle et combine des techniques d’analyse harmonique avec des résultats sur les zéros des fonctions $L$ de Dirichlet, notamment une région sans zérotrès fine due à Iwaniec.Ce travail s'inscrit aussi dans l'étude des nombres premiers dans des ensembles << rares >>.Nous étudions également la répartition des << chiffres >> (au sens de Dartyge et S\'ark\"ozy) de quelques suites remarquables dans le contexte des corps finis. Ce concept de << chiffre >> est à la base de la représentation des corps finis dans les logiciels de calcul formel.Nous étudions des suites variées comme les suites polynomiales, les générateurs ou encore les produits d'éléments de deux ensembles assez grands. Les méthodes développées permettent d'obtenir des estimations explicites très précises voire optimales dans certains cas. Les sommes d'exponentielles sur les corps finis jouent un rôle essentiel dans les démonstrations.Les résultats obtenus peuvent être reformulés d'un point de vue plus algébrique avec la fonction trace qui est très importante dans l'étude des corps finis. / In this work, we study the distribution of prime numbers' digits. Bourgain (2015) obtained an asymptotic formula for the number of prime numbers with a proportion $c > 0$ of preassigned digits in base 2 ($c$ is an absolute constant not specified). We generalize this result in any base $g \geq 2$ and we provide explicit admissible values for the proportion $c$ depending on $g$.By adapting, developing and refining Bourgain's strategy in the case $g=2$, we present a detailed proof for the general case.The proof is based onthe circle method and combines techniques from harmonic analysis together with results onzeros of Dirichlet $L$-functions, notably a very sharp zero-free region due to Iwaniec.This work also falls within the study of prime numbers in sparse ``sets''.In addition, we study the distribution of the ``digits'' (in the sense of Dartyge and S\'ark\"ozy) of some sequences of interest in the context of finite fields. This concept of ``digits'' is fundamental in the representation of finite fields in computer algebra systems. We study various sequences such as polynomial sequences, generators as well as products of elements of two large enough sets.Our methods provide very sharp explicit estimates which are even optimal in some cases.Exponential sums over finite fields play an essential role in the proofs.Our results can be reformulated from a more algebraic point of view with the trace function which is of basic importance in the study of finite fields.
12

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
13

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
14

Prime number races

Haddad, Tony 08 1900 (has links)
Sous l’hypothèse de Riemann généralisée et l’hypothèse d’indépendance linéaire, Rubinstein et Sarnak ont prouvé que les valeurs de x > 1 pour lesquelles nous avons plus de nombres premiers de la forme 4n + 3 que de nombres premiers de la forme 4n + 1 en dessous de x ont une densité logarithmique d’environ 99,59%. En général, l’étude de la différence #{p < x : p dans A} − #{p < x : p dans B} pour deux sous-ensembles de nombres premiers A et B s’appelle la course entre les nombres premiers de A et de B. Dans ce mémoire, nous cherchons ultimement à analyser d’un point de vue numérique et statistique la course entre les nombres premiers p tels que 2p + 1 est aussi premier (aussi appelés nombres premiers de Sophie Germain) et les nombres premiers p tels que 2p − 1 est aussi premier. Pour ce faire, nous présentons au préalable l’analyse de Rubinstein et Sarnak pour pouvoir repérer d’où vient le biais dans la course entre les nombres premiers 1 (mod 4) et les nombres premiers 3 (mod 4) et émettons une conjecture sur la distribution des nombres premiers de Sophie Germain. / Under the Generalized Riemann Hypothesis and the Linear Independence Hypothesis, Rubinstein and Sarnak proved that the values of x which have more prime numbers less than or equal to x of the form 4n + 3 than primes of the form 4n + 1 have a logarithmic density of approximately 99.59%. In general, the study of the difference #{p < x : p in A} − #{p < x : p in B} for two subsets of the primes A and B is called the prime number race between A and B. In this thesis, we will analyze the prime number race between the primes p such that 2p + 1 is also prime (these primes are called the Sophie Germain primes) and the primes p such that 2p − 1 is also prime. To understand this, we first present Rubinstein and Sarnak’s analysis to understand where the bias between primes that are 1 (mod 4) and the ones that are 3 (mod 4) comes from and give a conjecture on the distribution of Sophie Germain primes.
15

Structures linéaires dans les ensembles à faible densité

Henriot, Kevin 07 1900 (has links)
Réalisé en cotutelle avec l'Université Paris-Diderot. / Nous présentons trois résultats en combinatoire additive, un domaine récent à la croisée de la combinatoire, l'analyse harmonique et la théorie analytique des nombres. Le thème unificateur de notre thèse est la détection de structures additives dans les ensembles arithmétiques à faible densité, avec un intérêt particulier pour les aspects quantitatifs. Notre première contribution est une estimation de densité améliorée pour le problème, initié entre autres par Bourgain, de trouver une longue progression arithmétique dans un ensemble somme triple. Notre deuxième résultat consiste en une généralisation des bornes de Sanders pour le théorème de Roth, du cas d'un ensemble dense dans les entiers à celui d'un ensemble à faible croissance additive dans un groupe abélien arbitraire. Finalement, nous étendons les meilleures bornes quantitatives connues pour le théorème de Roth dans les premiers, à tous les systèmes d'équations linéaires invariants par translation et de complexité un. / We present three results in additive combinatorics, a recent field at the interface of combinatorics, harmonic analysis and analytic number theory. The unifying theme in our thesis is the detection of additive structure in arithmetic sets of low density, with an emphasis on quantitative aspects. Our first contribution is an improved density estimate for the problem, initiated by Bourgain and others, of finding a long arithmetic progression in a triple sumset. Our second result is a generalization of Sanders' bounds for Roth's theorem from the dense setting, to the setting of small doubling in an arbitrary abelian group. Finally, we extend the best known quantitative results for Roth's theorem in the primes, to all translation-invariant systems of equations of complexity one.
16

On the distribution of the values of arithmetical functions / Sur la répartition des valeurs des fonctions arithmétiques

Hassani, Mehdi 08 December 2010 (has links)
La thèse concerne différents aspects de la répartition des fonctions arithmétiques.1. Deshouillers, Iwaniec et Luca se sont récemment intéressés à la répartition modulo 1 de suites qui sont des valeurs moyennes de fonctions multiplicatives, par exemple phi(n)/n où phi est la fonction d'Euler. Nous étendons leur travail à la densité modulo 1 de suites qui sont des valeurs moyennes sur des suites polynômiales, typiquement n^2+1.2. On sait depuis les travaux de Katai, il y a une quarantaine d'années que la fonction de répartition des valeurs de phi(p-1)/(p-1) (où p parcourt les nombres premiers) est continue, purement singulière, strictement croissante entre 0 et 1/2. On précise cette étude en montrant que cette fonction de répartition a une dérivée infinie à gauche de tout point phi(2n)/(2n). / Abstract
17

Multiplicative functions with small partial sums and an estimate of Linnik revisited

Sachpazis, Stylianos 07 1900 (has links)
Cette thèse se compose de deux projets. Le premier concerne la structure des fonctions multiplicatives dont les moyennes sont petites. En particulier, dans ce projet, nous établissons le comportement moyen des valeurs \(f(p)\) de \(f\) aux nombres premiers pour des fonctions \(f\) multiplicatives appropriées lorsque leurs sommes partielles \(\sum_{n\leqslant x}f(n)\) sont plus petites que leur borne supérieure triviale par un facteur d′une puissance de \(\log x\). Ce résultat poursuit un travail antérieur de Koukoulopoulos et Soundararajan et il est construit sur des idées provenant du traitement plus soigné de Koukoulopoulos sur le cas special des fonctions multiplicatives bornées. Le deuxième projet de la thèse est inspiré par un analogue d’une estimation que Linnik a déduit dans sa tentative de prouver son célèbre théorème concernant la taille du plus petit nombre premier d’une progression arithmétique. Cette estimation fournit une formule asymptotique fortement uniforme pour les sommes de la fonction de von Mangoldt \(\Lambda\) sur les progressions arithmétiques. Dans la littérature, ses preuves existantes utilisent des informations non triviales sur les zéros des fonctions \(L\) de Dirichlet \(L(\cdot,\chi)\) et le but du deuxième projet est de présenter une approche différente, plus élémentaire qui récupère cette estimation en évitant la “langue” de ces zéros. Pour le développement de cette méthode alternative, nous utilisons des idées qui apparaissent dans le grand crible prétentieux (pretentious large sieve) de Granville, Harper et Soundararajan. De plus, comme dans le cas du premier projet, nous empruntons également des idées du travail de Koukoulopoulos sur la structure des fonctions multiplicatives bornées à petites moyennes. / This thesis consists of two projects. The first one is concerned with the structure of multiplicative functions whose averages are small. In particular, in this project, we establish the average behaviour of the prime values \(f(p)\) for suitable multiplicative functions \(f\) when their partial sums \(\sum_{n\leqslant x}f(n)\) admit logarithmic cancellations over their trivial upper bound. This result extends previous related work of Koukoulopoulos and Soundararajan and it is built upon ideas coming from the more careful treatment of Koukoulopoulos on the special case of bounded multiplicative functions. The second project of the dissertation is inspired by an analogue of an estimate that Linnik deduced in his attempt to prove his celebrated theorem regarding the size of the smallest prime number of an arithmetic progression. This estimate provides a strongly uniform asymptotic formula for the sums of the von Mangoldt function \(\Lambda\) on arithmetic progressions. In the literature, its existing proofs involve non-trivial information about the zeroes of Dirichlet \(L\)-functions \(L(\cdot,\chi)\) and the purpose of the second project is to present a different, more elementary approach which recovers this estimate by avoiding the “language” of those zeroes. For the development of this alternative method, we make use of ideas that appear in the pretentious large sieve of Granville, Harper and Soundararajan. Moreover, as in the case of the first project, we also borrow insights from the work of Koukoulopoulos on the structure of bounded multiplicative functions with small averages.
18

On the distribution of polynomials having a given number of irreducible factors over finite fields

Datta, Arghya 08 1900 (has links)
Soit q ⩾ 2 une puissance première fixe. L’objectif principal de cette thèse est d’étudier le comportement asymptotique de la fonction arithmétique Π_q(n,k) comptant le nombre de polynômes moniques de degré n et ayant exactement k facteurs irréductibles (avec multiplicité) sur le corps fini F_q. Warlimont et Car ont montré que l’objet Π_q(n,k) est approximativement distribué de Poisson lorsque 1 ⩽ k ⩽ A log n pour une constante A > 0. Plus tard, Hwang a étudié la fonction Π_q(n,k) pour la gamme complète 1 ⩽ k ⩽ n. Nous allons d’abord démontrer une formule asymptotique pour Π_q(n,k) en utilisant une technique analytique classique développée par Sathe et Selberg. Nous reproduirons ensuite une version simplifiée du résultat de Hwang en utilisant la formule de Sathe-Selberg dans le champ des fonctions. Nous comparons également nos résultats avec ceux analogues existants dans le cas des entiers, où l’on étudie tous les nombres naturels jusqu’à x avec exactement k facteurs premiers. En particulier, nous montrons que le nombre de polynômes moniques croît à un taux étonnamment plus élevé lorsque k est un peu plus grand que logn que ce que l’on pourrait supposer en examinant le cas des entiers. Pour présenter le travail ci-dessus, nous commençons d’abord par la théorie analytique des nombres de base dans le contexte des polynômes. Nous introduisons ensuite les fonctions arithmétiques clés qui jouent un rôle majeur dans notre thèse et discutons brièvement des résultats bien connus concernant leur distribution d’un point de vue probabiliste. Enfin, pour comprendre les résultats clés, nous donnons une discussion assez détaillée sur l’analogue de champ de fonction de la formule de Sathe-Selberg, un outil récemment développé par Porrit et utilisons ensuite cet outil pour prouver les résultats revendiqués. / Let q ⩾ 2 be a fixed prime power. The main objective of this thesis is to study the asymptotic behaviour of the arithmetic function Π_q(n,k) counting the number of monic polynomials that are of degree n and have exactly k irreducible factors (with multiplicity) over the finite field F_q. Warlimont and Car showed that the object Π_q(n,k) is approximately Poisson distributed when 1 ⩽ k ⩽ A log n for some constant A > 0. Later Hwang studied the function Π_q(n,k) for the full range 1 ⩽ k ⩽ n. We will first prove an asymptotic formula for Π_q(n,k) using a classical analytic technique developed by Sathe and Selberg. We will then reproduce a simplified version of Hwang’s result using the Sathe-Selberg formula in the function field. We also compare our results with the analogous existing ones in the integer case, where one studies all the natural numbers up to x with exactly k prime factors. In particular, we show that the number of monic polynomials grows at a surprisingly higher rate when k is a little larger than logn than what one would speculate from looking at the integer case. To present the above work, we first start with basic analytic number theory in the context of polynomials. We then introduce the key arithmetic functions that play a major role in our thesis and briefly discuss well-known results concerning their distribution from a probabilistic point of view. Finally, to understand the key results, we give a fairly detailed discussion on the function field analogue of the Sathe-Selberg formula, a tool recently developed by Porrit and subsequently use this tool to prove the claimed results.

Page generated in 0.0654 seconds