• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 14
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 103
  • 21
  • 17
  • 15
  • 14
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Observational Uncertainties in Water-Resources Modelling in Central America : Methods for Uncertainty Estimation and Model Evaluation / Observationsosäkerheter i vattenresursmodellering i Centralamerika : Metoder för osäkerhetsuppskattning och modellutvärdering

Westerberg, Ida January 2011 (has links)
Knowledge about spatial and temporal variability of hydrological processes is central for sustainable water-resources management, and such knowledge is created from observational data. Hydrologic models are necessary for prediction for time periods and areas lacking data, but are affected by observational uncertainties. Methods for estimating and accounting for such uncertainties in water-resources modelling are of high importance, especially in regions such as Central America. Observational uncertainties were addressed in three ways in this thesis; quality control, quantitative estimation and development of model-evaluation techniques that addressed unquantifiable uncertainties. A first step in any modelling study should be the quality control and concurrent analysis of the representativeness of the observational data. In the characterisation of the precipitation regime in the Choluteca River basin in Honduras, four different quality problems were identified and 22% of the daily data had to be rejected. The monitoring network was found to be insufficient for a comprehensive characterisation of the high spatiotemporal variability of the precipitation regime. Quantitative estimations of data uncertainties can be made when sufficient information is available. Discharge-data uncertainties were estimated with a fuzzy regression for time-variable rating curves and from official rating curves for 35 stations in Honduras. The uncertainties were largest for low flows, as a result of measurement uncertainties and natural variability. A method for calibration with flow-duration curves was developed which enabled calibration to the whole flow range, accounting for discharge uncertainty and calibration with non-overlapping time periods for model input and evaluation data. The method compared favourably to traditional calibration in a test using two models applied in basins with different runoff-generation processes. A post-hoc analysis made it possible to identify potential model-structure errors and periods of disinformative data. Flow-duration curves were regionalised and used for calibration of a Central-American water-balance model. The initial model uncertainty for the ungauged basins was reduced by 70%. Non-representative precipitation data were found to be the main obstacle to comprehensive regional water-resources modelling in Central America. These methods bridged several problems related to observational uncertainties in water-balance modelling. Estimates of prediction uncertainty are an important basis for all types of decisions related to water-resources management. / Kännedom om hur hydrologiska processer varierar i tid och rum är grundläggande för hållbar vattenresursförvaltning och skapas utifrån observerade data. Hydrologiska modeller är nödvändiga för att förutsäga vattenbalansen för tidsperioder och områden utan data, men påverkas av observationsosäkerheter. Metoder för att hantera sådana osäkerheter i vattenresursmodellering är av stor betydelse i regioner såsom Centralamerika. Observationsosäkerheter hanterades på tre olika sätt i denna avhandling; kvalitetskontroll, kvantitativ uppskattning och utveckling av modellutvärderingsmetoder för beaktande av icke kvantifierbara osäkerheter. Ett viktigt första steg är kvalitetskontroll och samtidig analys av datas representativitet. Vid karaktäriseringen av nederbördsregimen i Cholutecaflodens avrinningsområde i Honduras identifierades fyra olika kvalitetsproblem och 22 % av data sorterades bort. Stationsnätet var otillräckligt för en fullödig karaktärisering av nederbördsregimens variationer i tid och rum. Dessa var mycket stora som ett resultat av komplexiteten hos de nederbördsgenererande mekanismerna. Kvantitativ uppskattning av observerade datas osäkerhet kan göras när tillräcklig information är tillgänglig. Osäkerheter i vattenföringsdata uppskattades dels vid beräkning av vattenföring med en oskarp regression för en tidsvariabel avbördningskurva, dels från en analys av officiella avbördningskurvor från 35 stationer i Honduras. Osäkerheten var i båda fallen högst vid låga flöden som ett resultat av högre mätosäkerheter samt större naturlig variabilitet än vid höga flöden. En metod för modellkalibrering med varaktighetskurvor utvecklades och gjorde det möjligt att kalibrera för hela flödesintervallet samtidigt, ta hänsyn till osäkerheter i vattenföringsdata samt kalibrera med icke överlappande driv- och utvärderingsdata. Metoden testades med två olika modeller i två avrinningsområden med olika avrinningsbildningsprocesser, och visade goda resultat jämfört med traditionell modellkalibrering. En post hoc-analys gjorde det möjligt att identifiera troliga modellstrukturfel och perioder med disinformativa data. Varaktighetskurvor regionaliserades och användes för kalibrering av en regional vattenbalansmodell för Centralamerika, varvid den initiala modellosäkerheten minskades med 70 %. Icke representativa nederbördsdata identifierades som det största hindret för regional vattenresursmodellering i Centralamerika. De metoder som utvecklades i detta arbete gör det möjligt att överbrygga ett flertal problem orsakade av bristfällig tillgänglighet och kvalitet av data och leder därmed till en förbättrad uppskattning av osäkerheten i vattenbalanssimuleringar. Sådana osäkerhetsskattningar är ett viktigt underlag vid alla typer av förvaltningsbeslut som rör vattenresurser.
102

Nonstationarity in Low and High Frequency Time Series

Saef, Danial Florian 20 February 2024 (has links)
Nichtstationarität ist eines der häufigsten, jedoch nach wie vor ungelösten Probleme in der Zeitreihenanalyse und ein immer wiederkehrendes Phänomen, sowohl in theoretischen als auch in angewandten Arbeiten. Die jüngsten Fortschritte in der ökonometrischen Theorie und in Methoden des maschinellen Lernens haben es Forschern ermöglicht, neue Ansätze für empirische Analysen zu entwickeln, von denen einige in dieser Arbeit erörtert werden sollen. Kapitel 3 befasst sich mit der Vorhersage von Mergers & Acquisitions (M&A). Obwohl es keinen Zweifel daran gibt, dass M&A-Aktivitäten im Unternehmenssektor wellenartigen Mustern folgen, gibt es keine einheitlich akzeptierte Definition einer solchen "Mergerwelle" im Zeitreihenkontext. Zur Messung der Fusions- und Übernahmetätigkeit werden häufig Zeitreihenmodelle mit Zähldaten verwendet und Mergerwellen werden dann als Cluster von Zeiträumen mit einer ungewöhnlich hohen Anzahl von solchen Mergers & Acqusitions im Nachhinein definiert. Die Verteilung der Abschlüsse ist jedoch in der Regel nicht normal (von Gaußscher Natur). In jüngster Zeit wurden verschiedene Ansätze vorgeschlagen, die den zeitlich variablen Charakter der M&A-Aktivitäten berücksichtigen, aber immer noch eine a-priori-Auswahl der Parameter erfordern. Wir schlagen vor, die Kombination aus einem lokalem parametrischem Ansatz und Multiplikator-Bootstrap an einen Zähldatenkontext anzupassen, um lokal homogene Intervalle in den Zeitreihen der M&A-Aktivität zu identifizieren. Dies macht eine manuelle Parameterauswahl überflüssig und ermöglicht die Erstellung genauer Prognosen ohne manuelle Eingaben. Kapitel 4 ist eine empirische Studie über Sprünge in Hochfrequenzmärkten für Kryptowährungen. Während Aufmerksamkeit ein Prädiktor für die Preise von Kryptowährungenn ist und Sprünge in Bitcoin-Preisen bekannt sind, wissen wir wenig über ihre Alternativen. Die Untersuchung von hochfrequenten Krypto-Ticks gibt uns die einzigartige Möglichkeit zu bestätigen, dass marktübergreifende Renditen von Kryptowährungenn durch Sprünge in Hochfrequenzdaten getrieben werden, die sich um Black-Swan-Ereignisse gruppieren und den saisonalen Schwankungen von Volatilität und Handelsvolumen ähneln. Regressionen zeigen, dass Sprünge innerhalb des Tages die Renditen am Ende des Tages in Größe und Richtung erheblich beeinflussen. Dies liefert grundlegende Forschungsergebnisse für Krypto-Optionspreismodelle und eröffnet Möglichkeiten, die ökonometrische Theorie weiterzuentwickeln, um die spezifische Marktmikrostruktur von Kryptowährungen besser zu berücksichtigen. In Kapitel 5 wird die zunehmende Verbreitung von Kryptowährungen (Digital Assets / DAs) wie Bitcoin (BTC) erörtert, die den Bedarf an genauen Optionspreismodellen erhöht. Bestehende Methoden werden jedoch der Volatilität der aufkommenden DAs nicht gerecht. Es wurden viele Modelle vorgeschlagen, um der unorthodoxen Marktdynamik und den häufigen Störungen in der Mikrostruktur zu begegnen, die durch die Nicht-Stationarität und die besonderen Statistiken der DA-Märkte verursacht werden. Sie sind jedoch entweder anfällig für den Fluch der Dimensionalität, da zusätzliche Komplexität erforderlich ist, um traditionelle Theorien anzuwenden, oder sie passen sich zu sehr an historische Muster an, die sich möglicherweise nie wiederholen. Stattdessen nutzen wir die jüngsten Fortschritte beim Clustering von Marktregimen (MR) mit dem Implied Stochastic Volatility Model (ISVM) auf einem sehr aktuellen Datensatz, der BTC-Optionen auf der beliebten Handelsplattform Deribit abdeckt. Time-Regime Clustering ist eine temporale Clustering-Methode, die die historische Entwicklung eines Marktes in verschiedene Volatilitätsperioden unter Berücksichtigung der Nicht-Stationarität gruppiert. ISVM kann die Erwartungen der Anleger in jeder der stimmungsgesteuerten Perioden berücksichtigen, indem es implizite Volatilitätsdaten (IV) verwendet. In diesem Kapitel wenden wir diese integrierte Zeitregime-Clustering- und ISVM-Methode (MR-ISVM) auf Hochfrequenzdaten für BTC-Optionen an. Wir zeigen, dass MR-ISVM dazu beiträgt, die Schwierigkeiten durch die komplexe Anpassung an Sprünge in den Merkmalen höherer Ordnung von Optionspreismodellen zu überwinden. Dies ermöglicht es uns, den Markt auf der Grundlage der Erwartungen seiner Teilnehmer auf adaptive Weise zu bewerten und das Verfahren auf einen neuen Datensatz anzuwenden, der bisher unerforschte DA-Dynamiken umfasst. / Nonstationarity is one of the most prevalent, yet unsolved problems in time series analysis and a reoccuring phenomenon both in theoretical, and applied works. Recent advances in econometric theory and machine learning methods have allowed researchers to adpot and develop new approaches for empirical analyses, some of which will be discussed in this thesis. Chapter 3 is about predicting merger & acquisition (M&A) events. While there is no doubt that M&A activity in the corporate sector follows wave-like patterns, there is no uniquely accepted definition of such a "merger wave" in a time series context. Count-data time series models are often employed to measure M&A activity and merger waves are then defined as clusters of periods with an unusually high number of M&A deals retrospectively. However, the distribution of deals is usually not normal (Gaussian). More recently, different approaches that take into account the time-varying nature of M&A activity have been proposed, but still require the a-priori selection of parameters. We propose adapating the combination of the Local Parametric Approach and Multiplier Bootstrap to a count data setup in order to identify locally homogeneous intervals in the time series of M&A activity. This eliminates the need for manual parameter selection and allows for the generation of accurate forecasts without any manual input. Chapter 4 is an empirical study on jumps in high frequency digital asset markets. While attention is a predictor for digital asset prices, and jumps in Bitcoin prices are well-known, we know little about its alternatives. Studying high frequency crypto ticks gives us the unique possibility to confirm that cross market digital asset returns are driven by high frequency jumps clustered around black swan events, resembling volatility and trading volume seasonalities. Regressions show that intra-day jumps significantly influence end of day returns in size and direction. This provides fundamental research for crypto option pricing models and opens up possibilities to evolve econometric theory to better address the specific market microstructure of cryptos. Chapter 5 discusses the increasing adoption of Digital Assets (DAs), such as Bitcoin (BTC), which raises the need for accurate option pricing models. Yet, existing methodologies fail to cope with the volatile nature of the emerging DAs. Many models have been proposed to address the unorthodox market dynamics and frequent disruptions in the microstructure caused by the non-stationarity, and peculiar statistics, in DA markets. However, they are either prone to the curse of dimensionality, as additional complexity is required to employ traditional theories, or they overfit historical patterns that may never repeat. Instead, we leverage recent advances in market regime (MR) clustering with the Implied Stochastic Volatility Model (ISVM) on a very recent dataset covering BTC options on the popular trading platform Deribit. Time-regime clustering is a temporal clustering method, that clusters the historic evolution of a market into different volatility periods accounting for non-stationarity. ISVM can incorporate investor expectations in each of the sentiment-driven periods by using implied volatility (IV) data. In this paper, we apply this integrated time-regime clustering and ISVM method (termed MR-ISVM) to high-frequency data on BTC options. We demonstrate that MR-ISVM contributes to overcome the burden of complex adaption to jumps in higher order characteristics of option pricing models. This allows us to price the market based on the expectations of its participants in an adaptive fashion and put the procedure to action on a new dataset covering previously unexplored DA dynamics.
103

Autocorrélation et stationnarité dans le processus autorégressif / Autocorrelation and stationarity in the autoregressive process

Proïa, Frédéric 04 November 2013 (has links)
Cette thèse est dévolue à l'étude de certaines propriétés asymptotiques du processus autorégressif d'ordre p. Ce dernier qualifie communément une suite aléatoire $(Y_{n})$ définie sur $\dN$ ou $\dZ$ et entièrement décrite par une combinaison linéaire de ses $p$ valeurs passées, perturbée par un bruit blanc $(\veps_{n})$. Tout au long de ce mémoire, nous traitons deux problématiques majeures de l'étude de tels processus : l'\textit{autocorrélation résiduelle} et la \textit{stationnarité}. Nous proposons en guise d'introduction un survol nécessaire des propriétés usuelles du processus autorégressif. Les deux chapitres suivants sont consacrés aux conséquences inférentielles induites par la présence d'une autorégression significative dans la perturbation $(\veps_{n})$ pour $p=1$ tout d'abord, puis pour une valeur quelconque de $p$, dans un cadre de stabilité. Ces résultats nous permettent d'apposer un regard nouveau et plus rigoureux sur certaines procédures statistiques bien connues sous la dénomination de \textit{test de Durbin-Watson} et de \textit{H-test}. Dans ce contexte de bruit autocorrélé, nous complétons cette étude par un ensemble de principes de déviations modérées liées à nos estimateurs. Nous abordons ensuite un équivalent en temps continu du processus autorégressif. Ce dernier est décrit par une équation différentielle stochastique et sa solution est plus connue sous le nom de \textit{processus d'Ornstein-Uhlenbeck}. Lorsque le processus d'Ornstein-Uhlenbeck est lui-même engendré par une diffusion similaire, cela nous permet de traiter la problématique de l'autocorrélation résiduelle dans le processus à temps continu. Nous inférons dès lors quelques propriétés statistiques de tels modèles, gardant pour objectif le parallèle avec le cas discret étudié dans les chapitres précédents. Enfin, le dernier chapitre est entièrement dévolu à la problématique de la stationnarité. Nous nous plaçons dans le cadre très général où le processus autorégressif possède une tendance polynomiale d'ordre $r$ tout en étant engendré par une marche aléatoire intégrée d'ordre $d$. Les résultats de convergence que nous obtenons dans un contexte d'instabilité généralisent le \textit{test de Leybourne et McCabe} et certains aspects du \textit{test KPSS}. De nombreux graphes obtenus en simulations viennent conforter les résultats que nous établissons tout au long de notre étude. / This thesis is devoted to the study of some asymptotic properties of the $p-$th order \textit{autoregressive process}. The latter usually designates a random sequence $(Y_{n})$ defined on $\dN$ or $\dZ$ and completely described by a linear combination of its $p$ last values and a white noise $(\veps_{n})$. All through this manuscript, one is concerned with two main issues related to the study of such processes: \textit{serial correlation} and \textit{stationarity}. We intend, by way of introduction, to give a necessary overview of the usual properties of the autoregressive process. The two following chapters are dedicated to inferential consequences coming from the presence of a significative autoregression in the disturbance $(\veps_{n})$ for $p=1$ on the one hand, and then for any $p$, in the stable framework. These results enable us to give a new light on some statistical procedures such as the \textit{Durbin-Watson test} and the \textit{H-test}. In this autocorrelated noise framework, we complete the study by a set of moderate deviation principles on our estimates. Then, we tackle a continuous-time equivalent of the autoregressive process. The latter is described by a stochastic differential equation and its solution is the well-known \textit{Ornstein-Uhlenbeck process}. In the case where the Ornstein-Uhlenbeck process is itself driven by an Ornstein-Uhlenbeck process, one deals with the serial correlation issue for the continuous-time process. Hence, we infer some statistical properties of such models, keeping the parallel with the discrete-time framework studied in the previous chapters as an objective. Finally, the last chapter is entirely devoted to the stationarity issue. We consider the general autoregressive process with a polynomial trend of order $r$ driven by a random walk of order $d$. The convergence results in the unstable framework generalize the \textit{Leybourne and McCabe test} and some angles of the \textit{KPSS test}. Many graphs obtained by simulations come to strengthen the results established all along the study.

Page generated in 0.0928 seconds