Spelling suggestions: "subject:"könspermutation"" "subject:"npermutation""
211 |
Simple Groups and Related TopicsMarouf, Manal Abdulkarim, Ms. 01 September 2015 (has links)
In this thesis, we will give our discovery of original symmetric presentations of several important groups. We have investigated permutation and monomial progenitors 2*8: (23: 22), 2*9: (32: 24), 2*10: (24: (2 × 5)), 5*4:m (23: 22), 7*8:m (32: 24), and 3*5:m (24: (2 × 5)). The finite images of the above progenitors include the Mathieu sporadic group M12, the linear groups L2(8) and L2(13), and the extensions S6 × 2, 28 : .L2(8) , and 27 : .A5. We will show our construction of the four groups S3 , L2(8), L2(13), and S6 × 2 over S3, 22, S3 : 2, and S5, by using the technique of double coset enumeration. We will also provide isomorphism types all of the groups that have appeared as finite homomorphic images. We will show that the group L2(8) does not satisfy the conditions of Iwasawas Lemma and that the group L2(13) is simple by Iwasawas Lemma. We give constructions of M22 × 2 and M22 as homomorphic images of the progenitor S6.
|
212 |
Kombinatorické úlohy o permutacích / Combinatorial problems on permutationsWolfová, Mária January 2019 (has links)
In its theoretical part, this thesis sums up the basic knowledge concerning permutations. Besides the representation of permutations and determination of their fundamental characteristics, the theoretical part is, first of all, aimed at results concerning the decomposition of permutations into disjoint cycles and at finding the number of permutations with a certain characteristic. We introduce the fundamental bijection that is useful for solving many problems concerning the permutations. Further on, we focus on the number of permutations without a fixed point, Eulerian numbers expressing the number of permutations with a given number of descents, and the number of permutations with a given number of excedances, Stirling numbers of the first kind expressing the number of permutations with a given number of cycles, and Catalan numbers representing the number of permutations avoiding a chosen pattern of length three. Attention is also paid to the Gilbreath permutations and their characteristics. The practical part consists of 14 solved problems. The solutions rely on the results presented in the theoretical part, and there are deduced some further interesting results concerning random permutations.
|
213 |
Une approche pour optimiser les traitements des requêtes dans un environnement de bases de données répartiesPaik, In-Sup 12 February 1981 (has links) (PDF)
Cette thèse a pour objectif de proposer une démarche pour effectuer l'optimisation des requêtes dans un systeme de bases de données reparties. On énumère l'ensemble de tous les critères d'optimisation qui peuvent être pris en compte et on décide les objectifs d'optimisation. On propose une démarche progressive divisée en plusieurs étapes qui visent aux objectifs d'optimisation : la localisation, les permutations des opérations, l'allocation des données reparties par le regroupement et la distribution des opérations aux processus repartis par le partitionnement.
|
214 |
Codes, graphs and designs related to iterated line graphs of complete graphsKumwenda, Khumbo January 2011 (has links)
In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs ôn that are embeddable into the strong product L1(Kn) â K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, ôn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of ôn and Hn and determine their parameters.
|
215 |
Transmitting Quantum Information Reliably across Various Quantum ChannelsOuyang, Yingkai January 2013 (has links)
Transmitting quantum information across quantum channels is an important task. However quantum information is delicate, and is easily corrupted. We address the task of protecting quantum information from an information theoretic perspective -- we encode some message qudits into a quantum code, send the encoded quantum information across the noisy quantum channel, then recover the message qudits by decoding. In this dissertation, we discuss the coding problem from several perspectives.}
The noisy quantum channel is one of the central aspects of the quantum coding problem, and hence quantifying the noisy quantum channel from the physical model is an important problem.
We work with an explicit physical model -- a pair of initially decoupled quantum harmonic oscillators interacting with a spring-like coupling, where the bath oscillator is initially in a thermal-like state. In particular, we treat the completely positive and trace preserving map on the system as a quantum channel, and study the truncation of the channel by truncating its Kraus set. We thereby derive the matrix elements of the Choi-Jamiolkowski operator of the corresponding truncated channel, which are truncated transition amplitudes. Finally, we give a computable approximation for these truncated transition amplitudes with explicit error bounds, and perform a case study of the oscillators in the off-resonant and weakly-coupled regime numerically.
In the context of truncated noisy channels, we revisit the notion of approximate error correction of finite dimension codes. We derive a computationally simple lower bound on the worst case entanglement fidelity of a quantum code, when the truncated recovery map of Leung et. al. is rescaled. As an application, we apply our bound to construct a family of multi-error correcting amplitude damping codes that are permutation-invariant. This demonstrates an explicit example where the specific structure of the noisy channel allows code design out of the stabilizer formalism via purely algebraic means.
We study lower bounds on the quantum capacity of adversarial channels, where we restrict the selection of quantum codes to the set of concatenated quantum codes.
The adversarial channel is a quantum channel where an adversary corrupts a fixed fraction of qudits sent across a quantum channel in the most malicious way possible. The best known rates of communicating over adversarial channels are given by the quantum Gilbert-Varshamov (GV) bound, that is known to be attainable with random quantum codes. We generalize the classical result of Thommesen to the quantum case, thereby demonstrating the existence of concatenated quantum codes that can asymptotically attain the quantum GV bound. The outer codes are quantum generalized Reed-Solomon codes, and the inner codes are random independently chosen stabilizer codes, where the rates of the inner and outer codes lie in a specified feasible region.
We next study upper bounds on the quantum capacity of some low dimension quantum channels.
The quantum capacity of a quantum channel is the maximum rate at which quantum information can be transmitted reliably across it, given arbitrarily many uses of it. While it is known that random quantum codes can be used to attain the quantum capacity, the quantum capacity of many classes of channels is undetermined, even for channels of low input and output dimension. For example, depolarizing channels are
important quantum channels, but do not have tight numerical bounds.
We obtain upper bounds on the quantum capacity of some unital and non-unital channels
-- two-qubit Pauli channels, two-qubit depolarizing channels, two-qubit locally symmetric channels,
shifted qubit depolarizing channels, and shifted two-qubit Pauli channels --
using the coherent information of some degradable channels. We use the notion
of twirling quantum channels, and Smith and Smolin's method of constructing
degradable extensions of quantum channels extensively. The degradable channels we
introduce, study and use are two-qubit amplitude damping channels. Exploiting the
notion of covariant quantum channels, we give sufficient conditions for the quantum
capacity of a degradable channel to be the optimal value of a concave program with
linear constraints, and show that our two-qubit degradable amplitude damping channels have this property.
|
216 |
Origamis et groupes de permutation.Zmiaikou, David 08 September 2011 (has links) (PDF)
Un origami est un revêtement du tore T2, éventuellement ramifié au-dessus de l'origine.Cet objet a été introduit par William P. Thurston et William A. Veech dans les années 1970.Un origami peut être vu comme un ensemble fini de copies du carreau unitaire qui sont collées par translations. Ainsi, un origami est un cas particulier d'une surface de translation,un élément de l'espace des modules de surfaces de Riemann munies d'une 1-forme holomorphe.Un origami O avec n carreaux correspond à une paire de permutations (σ, τ ) Є 2 Sn X Sn définie à conjugaison près. Le groupe Mon(O) engendré par une telle paire s'appelle le groupe de monodromie de O. On dit qu'un origami est primitif si son groupe de monodromie est un groupe de permutation primitif. Il y a une action naturelle du groupeGL2(Z) sur les origamis, le stabilisateur de O pour cette action est le groupe de Veechdésigné par GL(O). Le groupe de monodromie est un invariant des GL2(Z)-orbites.Dans le chapitre 3 de la thèse, nous montrons que le groupe de monodromie de tout origami primitif à n carreaux dans la strate H(2k) est An ou Sn si n ≥ 3k + 2, et noustrouvons la borne exacte quand 2k + 1 est premier. La même proposition est vraie pourla strate H(1; 1) si n =/= 6. Dans le chapitre 4, nous considérons les origamis réguliers,i.e. ceux pour lesquels le nombre de carreaux est égal à l'ordre du groupe de monodromie.Nous construisons de nouvelles familles d'origamis intéressantes et cherchons leurs strates et groupes de Veech. Nous estimons également le nombre de GL2(Z)-orbites et strates distinctes des origamis réguliers ayant un groupe de monodromie donné. Afin de trouver une borne inférieure pour les origamis alternés, nous prouvons que chaque permutation dans An quifixe peu de points est le commutateur d'une paire engendrant An. Dans le chapitre 6, nous étudions une propriété de sous-groupes de PSL2(Z) qui est liée à la propriété d'être le groupe de Veech d'un origami.
|
217 |
Consecutive patterns and statistics on restricted permutationsElizalde Torrent, Sergi 16 July 2004 (has links)
El tema d'aquesta tesi és l'enumeració de permutacions amb subseqüències prohibides respecte a certs estadístics, i l'enumeració de permutacions que eviten subseqüències generalitzades.Després d'introduir algunes definicions sobre subseqüències i estadístics en permutacions i camins de Dyck, comencem estudiant la distribució dels estadístics -nombre de punts fixos' i -nombre d'excedències' en permutacions que eviten una subseqüència de longitud 3. Un dels resultats principals és que la distribució conjunta d'aquest parell de paràmetres és la mateixa en permutacions que eviten 321 que en permutacions que eviten 132. Això generalitza un teorema recent de Robertson, Saracino i Zeilberger. Demostrem aquest resultat donant una bijecció que preserva els dos estadístics en qüestió i un altre paràmetre. La idea clau consisteix en introduir una nova classe d'estadístics en camins de Dyck, basada en el que anomenem túnel.A continuació considerem el mateix parell d'estadístics en permutacions que eviten simultàniament dues o més subseqüències de longitud 3. Resolem tots els casos donant les funcions generadores corresponents. Alguns casos són generalitzats a subseqüències de longitud arbitrària. També descrivim la distribució d'aquests paràmetres en involucions que eviten qualsevol subconjunt de subseqüències de longitud 3. La tècnica principal consisteix en fer servir bijeccions entre permutacions amb subseqüències prohibides i certs tipus de camins de Dyck, de manera que els estadístics en permutacions que considerem corresponen a estadístics en camins de Dyck que són més fàcils d'enumerar.Tot seguit presentem una nova família de bijeccions del conjunt de camins de Dyck a sí mateix, que envien estadístics que apareixen en l'estudi de permutacions amb subseqüències prohibides a estadístics clàssics en camins de Dyck, la distribució dels quals s'obté fàcilment. En particular, això ens dóna una prova bijectiva senzilla de l'equidistribució de punts fixos en les permutacions que eviten 321 i en les que eviten 132. A continuació donem noves interpretacions dels nombres de Catalan i dels nombres de Fine. Considerem una classe de permutacions definida en termes d'aparellaments de 2n punts en una circumferència sense creuaments. N'estudiem l'estructura i algunes propietats, i donem la distribució de diversos estadístics en aquests permutacions.En la següent part de la tesi introduïm una noció diferent de subseqüències prohibides, amb el requeriment que els elements que formen la subseqüència han d'aparèixer en posicions consecutives a la permutació. Més en general, estudiem la distribució del nombre d'ocurrències de subparaules (subseqüències consecutives) en permutacions. Resolem el problema en diversos casos segons la forma de la subparaula, obtenint-ne les funcions generadores exponencials bivariades corresponents com a solucions de certes equacions diferencials lineals. El mètode està basat en la representació de permutacions com a arbres binaris creixents i en mètodes simbòlics.La part final tracta de subseqüències generalitzades, que extenen tant la noció de subseqüències clàssiques com la de subparaules. Per algunes subseqüències obtenim nous resultats enumeratius. Finalment estudiem el comportament assimptòtic del nombre de permutacions de mida n que eviten una subseqüència generalitzada fixa quan n tendeix a infinit. També donem fites inferiors i superiors en el nombre de permutacions que eviten certes subseqüències.
|
218 |
Simultaneous Graph Representation ProblemsJampani, Krishnam Raju January 2011 (has links)
Many graphs arising in practice can be represented in a concise and intuitive way that conveys their structure. For example: A planar graph can be represented in the plane with points for vertices and non-crossing curves for edges. An interval graph can be represented on the real line with intervals for vertices and intersection of intervals representing edges. The concept of ``simultaneity'' applies for several types of graphs: the idea is to find representations for two graphs that share some common vertices and edges, and ensure that the common vertices and edges are represented the same way. Simultaneous representation problems arise in any situation where two related graphs should be represented consistently. A main instance is for temporal relationships, where an old graph and a new graph share some common parts. Pairs of related graphs arise in many other situations. For example, two social networks that share some members; two schedules that share some events, overlap graphs of DNA fragments of two similar organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study the simultaneous
representation problem for several graph classes.
For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing some vertices and edges. The simultaneous planar embedding problem asks whether there exist planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is mapped to the same point and every shared edge is mapped to the same curve in both embeddings. Over the last few years there has been a lot of work on simultaneous planar embeddings, which have been called `simultaneous embeddings with fixed edges'. A major open question is whether simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is either common to all graphs
or belongs to exactly one of them.
Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs, chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I. G1 and G2 are said to be `simultaneous interval graphs' if there exist interval representations of G1 and G2 such that any vertex of I is assigned to the same interval in both the representations. The `simultaneous representation problem' for interval graphs asks whether G1 and G2 are simultaneous interval graphs. The problem is defined in a similar way for other intersection graph classes.
For comparability graphs and any intersection graph class, we show that the simultaneous representation problem for the graph class is equivalent to a graph augmentation problem: given graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges E' between G1-I and G2-I such that the graph G1 U G_2 U E' belongs to the graph class. This equivalence implies that the simultaneous representation problem is closely related to other well-studied classes in the literature, namely, sandwich graphs and probe graphs.
We give efficient algorithms for solving the simultaneous representation problem for interval graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms for comparability and permutation graphs solve a more general version of the problem when there are multiple graphs, any two of which share the same common graph. This version of the problem also generalizes probe graphs.
|
219 |
Inclusion-exclusion and pigeonhole principlesHung, Wei-cheng 25 June 2009 (has links)
In this paper, we will review two fundamental counting methods: inclusionexclusion and pigeonhole principles. The inclusion-exclusion principle considers
the elements of the sets satisfied some conditions, and avoids repeat counting by disjoint sets. We also use the inclusion-exclusion principle to solve the problems of Euler phi function and the number of onto functions in number theory, and derangement and the number of nonnegative integer solutions of equations in combinatorics. We derive the closed-form formula to those problems. For the forbidden positions problems, we use the rook polynomials to simplify the counting process. We also show the form of the inclusion-exclusion principle in probability, and use it to solve some probability problems.
The pigeonhole principle is an easy concept. We can establish some sets and use the pigeonhole principle to discuss the extreme value about the number of
elements. Choose the pigeons and pigeonholes, properly, and solve problems by the concept of the pigeonhole principle. We also introduce the Ramsey theorem which is an important application of the pigeonhole principle. This theorem provides a method to solve problems by complete graph. Finally, we give some contest problems about the inclusion-exclusion and pigeonhole principles to show how those principles are used.
|
220 |
Insensibilité dans les réseaux de files d'attente et applications au partage de ressources informatiquesTran, Minh Anh 29 October 2007 (has links) (PDF)
Nous abordons dans cette thèse le problème de l'insensibilité dans les réseaux de files d'attente et quelques applications au partage de ressources informatiques. Tout d'abord, nous montrons que les réseaux de files d'attente symétriques avec le routage de Jackson ou de Kelly sont tous insensibles à la distribution des demandes de service même si à l'arrivée, au départ ou au changement de files d'un client quelconque, les autres clients dans chaque file sont permutés au hasard selon certaine loi dépendante de l'état du réseau. Nous identifions également certaines disciplines de service non symétriques pour lesquellesla propriété d'insensibilité est satisfaite. Ensuite, nous proposons deux nouvelles métriques de débit pour les réseaux de données. Nous montrons quelques propriétés génériques satisfaites par ces deux métriques et nous illustrons leur différence à travers quelques exemples. Enfin, nous montrons que l'équilibrage de sources de trafic élastique détériore la performance en termes de débit, et en présence de contrôle d'admission, de probabilité de blocage.
|
Page generated in 0.0699 seconds