• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 163
  • 35
  • 28
  • 22
  • 17
  • 14
  • 9
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 671
  • 126
  • 119
  • 119
  • 99
  • 96
  • 66
  • 62
  • 58
  • 55
  • 52
  • 50
  • 50
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Effects of Layer Thickness on Electroluminescence of Fully Conjugated Rigid-rod Polymer Light Emitting Diodes

Tseng, Hua-wei 12 July 2008 (has links)
A heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) was applied as the opto-electronic layer¡Fand a conducting material of poly(3,4-ethylenedioxythio-phene):poly(4-styrenesulfonic acid) (PEDOT: PSS) was used as the hole transport layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode¡Arespectively, fabricated into a bi-layer structure of ITO/PEDOT:PSS/PBO/Al for electrical and luminescence responses. This research demonstrated an increase of current density and a decrease of threshold voltage with a decrease of PBO layer thickness from 90 nm to 27 nm to facilitate electron tunneling and electron-hole recombination. With a lower spin coating speed, polymer chain would aggregate and inter-penetrate resulted in red-shift of electroluminescence (EL) emission spectrum. Furthermore, micro-cavity effect might influence EL spectrum by varying layer thickness. Modulation of PBO layer thickness led to tunable EL emission color. It was also demonstrated that an increase of current density and a slightly decrease of threshold voltage with a PEDOT:PSS film thickness changing from 96 nm to 17 nm at a constant PBO layer thickness of 90 nm. Micro-cavity effect thus influenced EL emission for a tunable emission color. Photolithography was applied to obtain ITO substrate of grating depth of periodic variation and then coated with a PEDOT:PSS leading to a grated PEDOT:PSS layer of periodic thickness. This led to ITO/PEDOT:PSS/PBO/Al device showing broadened EL emission spectra.
202

Design of an Intermittent Gear Cam Mechanism

Huang, Chih-wei 06 August 2009 (has links)
Intermittent Mechanisms are widely used in automation equipment, including delivery, assembly, and indexing systems. The aim of this research is to set up a systematic design and analysis procedure of a conjugate intermittent gear cam mechanism. The output of a conjugate intermittent gear cam mechanism is the intermittent motion of sun gear, which has a dwell function in a working period. The intermittent of sun gear is the combination of carrier constant rotation and planet gear variable rotation that is influenced by the conjugate cam profiles. This research first is to set up the design and analysis procedure including applications of rational B-splines to synthesis of output intermittent motion curve and the ALM optimization method for motion tuning to meet specific demands. Secondly, for kinematic analysis, the rigid body transformation methos is used to determinate the conjugate cam profiles so that the geometric analysis can be performed. Then, the rigid body dynamic behavior of the mechanism is analyzed. Finally, to verify the usefulness and effectiveness of the developed procedure, it is conducted to design and analyze a real paper conveyor system of a die cutting and creasing machine. The research results obtained in this study have been applied in the industry due to its validation.
203

Application of cellulose nanowhisker and lignin in preparation of rigid polyurethane nanocomposite foams

Li, Yang 18 May 2012 (has links)
Cellulose nanowhisker (CNW) prepared by acid hydrolysis of softwood Kraft pulp was incorporated as nanofiller in rigid polyurethane (PU) foam synthesis. The density, morphology, chemical structure, mechanical properties and thermal behavior of the products were characterized. The nanocomposites exhibited better performance especially at high CNW¡¯s content which was probably due to the high specific strength and aspect ratio of CNW, the hydrogen bonding and crosslinking between CNW and polymer matrix, a higher crosslinking density compared to the control, and the function of CNW as an insulator and mass transfer insulator. Lignin polyol was synthesized through oxypropylation and used for rigid PU foam preparation. The density, morphology, chemical structure, compressive property and thermal behavior of the product were characterized. Lingin-based rigid PU foam showed improved compressive property compared to its commercial counterpart. Ethanol organosolv lignin-based PU showed a slightly stronger compressive property than Kraft lignin-based PU. The enhancement was primarily attributed to the rigid phenolic structure and the high hydroxyl functionality of lignin. Lignin-based PU generated more char than common PUs which was possibly related to the better flame retardant property. This study provided an alternative way to valorize the two most abundant biopolymers and resulted in relatively environmentally benign rigid PU nanocomposite foam.
204

Simulation of a Clinch Unit by using Cosmos and Abaqus

Björn, Jonathan January 2007 (has links)
<p>The following report contains an evaluation of the use of mathematical simulation programs at the company Isaberg Rapid AB. The work includes booth FE and motion simulations where the results are compared with real life test data.</p><p>The goal of the report is to evaluate the accuracy of simulations which can be performed by engineers as a part of the design process. By using mathematical simulation tools it is possible to find a good design solution early in the development phase and thereby shorten lead time and reduce costs.</p>
205

Video-Based Person Identification Using Facial Strain Maps as a Biometric

Manohar, Vasant 13 April 2006 (has links)
Research on video-based face recognition has started getting increased attention in the past few years. Algorithms developed for video have an advantage from the availability of plentitude of frames in videos to extract information from. Despite this fact, most research in this direction has limited the scope of the problem to the application of still image-based approaches to some selected frames on which 2D algorithms are expected to perform well. It can be realized that such an approach only uses the spatial information contained in video and does not incorporate the temporal structure.Only recently has the intelligence community begun to approach the problem in this direction. Video-based face recognition algorithms in the last couple of years attempt to simultaneously use the spatial and temporal information for the recognition of moving faces. A new face recognition method that falls into the category of algorithms that adopt spatio-temporal representation and utilizes dynamic information extracted from video is presented. The method was designed based on the hypothesis that the strain pattern exhibited during facial expression provides a unique "fingerprint" for recognition. First, a dense motion field is obtained with an optical flow algorithm. A strain pattern is then derived from the motion field. In experiments with 30 subjects, results indicate that strain pattern is an useful biometric, especially when dealing with extreme conditions such as shadow light and face camouflage, for which conventional face recognition methods are expected to fail. The ability to characterize the face using the elastic properties of facial skin opens up newer avenues to the face recognition community in the context of modeling a face using features beyond visible cues.
206

Effect of Dosage of Non-Chloride Accelerator versus Chloride Accelerator on the Cracking Potential of Concrete Repair Slabs

Meagher, Thomas F. 01 January 2015 (has links)
Due to strict placement time and strength constraints during the construction of concrete pavement repair slabs, accelerators must be incorporated into the mixture design. Since the most common accelerator, calcium chloride, promotes corrosion of concrete reinforcement, a calcium nitrate-based accelerator was studied as an alternative. To replicate mixtures used in the field, commercial accelerators commonly used in concrete pavement repair slabs were used in the current study. Crack risk of different mixtures was assessed using modeling and cracking frame testing. HIPERPAV modeling was conducted using several measured mixture properties; namely, concrete mechanical properties, strength-based and heat of hydration-based activation energies, hydration parameters using calorimetric studies, and adiabatic temperature rise profiles. Autogenous shrinkage was also measured to assess the effect of moisture consumption on concrete volume contraction. The findings of the current study indicate that the cracking risk associated with calcium nitrate-based accelerator matches the performance of a calcium-chloride based accelerator when placement is conducted during nighttime hours.
207

The dynamics of deployment and observation of a rigid body spacecraft system in the linear and non-linear two-body problem

Ottesen, David Ryan 04 March 2013 (has links)
Modern space situational awareness entails the detection, tracking, identification, and characterization of resident space objects. Characterization is typically accomplished through the use of ground and space based sensors that are able to identify some specific physical feature, monitor unique dynamical behaviors, or deduce some information about the material properties of the object. The present investigation considers the characterizaiton aspects of situational awareness from the perspective of a close-proximity formation reconnaissance mission. The present study explores both relative translational and relative rotational motion for deployment of a spacecraft and observation of a resident space object. This investigation is motivated by specific situations in which characterization with ground or fixed space based sensors is insufficient. Instead, one or more vehicles are deployed in the vicinity of the object of interest. These could be, for instance, nano-satellites with imaging sensors. Nano-satellites offer a low-cost and effective technological platform, which makes consideration of the proposed scenario more feasible. Although the motivating application is rooted in space situational awareness, the techniques explored are generally applicable to flight in the vicinity of asteroids, and both cooperative vs. non-cooperative resident space objects. The investigation is initially focused on identifying the key features of the relative dynamics that are relevant to space situational awareness applications. Subsequently, effective spacecraft control techniques are considered to achieve the reconnaissance goals. / text
208

Temporal registration of mammograms by finite element simulation of MR breast volume deformation

Qiu, Yan 01 June 2009 (has links)
Clinically it is important to combine information provided by mammographic images from multiple views or at different times. Taking regular mammographic screening and comparing corresponding mammograms are necessary for early detection of breast cancer, which is the key to successful treatment. However, mammograms taken at different times are often obtained under different compressions, orientations or body positions. A temporal pair of mammograms may vary quite significantly due to the spatial disparities caused by the variety in acquisition environments, including the 3D position of the breast, the amount of the pressure applied, etc. Such disparities can be corrected through the process of temporal registration. We have implemented and utilized finite element models for temporal registration of digital mammography. In our work, we applied the patient specific breast model, where patients have both mammograms and MRIs available, and generic model, where only patient mammograms are available. After we applied the temporal registration algorithm, the average error among the 14 patient datasets was 3.4 plus/minus 0.86 mm for Euclidean distance and 4.3 plus/minus 0.52 mm for predicted 2D lesion position. With generic model, the average error among the 14 patient datasets using the measure of Euclidean distance between the predicted lesion position in T1 and T2 was 5.0 plus/minus 0.74 mm for Euclidean distance and 5.7 plus/minus 0.83 mm for predicted 2D lesion position. Compared with the average lesion size (10mm~40mm), this error is acceptable. With lesion correspondence, our finite element method can be used to suppress technical variations (e.g., mammogram positioning or compression) and to emphasize genuine alterations in the breast.
209

Kinematics of curved flexible beam

Jagirdar, Saurabh 01 June 2006 (has links)
Compliant mechanism theory permits a procedure called rigidbody replacement, in which two or more rigid links of the mechanism are replaced by a compliant flexure with equivalent motion. Methods for designing flexure with equivalent motion to replace rigid links are detailed in Pseudo-Rigid-Body Models (PRBMs). Such models have previously been developed for planar mechanisms. This thesis develops the first PRBM for spherical mechanisms. In formulating this PRBM for a spherical mechanism, we begin by applying displacements are applied to a curved beam that cause it todeflect in a manner consistent with spherical kinematics. The motion of the beam is calculated using Finite Element Analysis. These results areanalyzed to give the PRBM parameters. These PRBM parameters vary with the arc length and the aspect ratio of the curved beam.
210

Cooperative shape and orientation control of autonomous vehicle formations

Summers, Tyler Holt 02 February 2011 (has links)
This dissertation solves variations of three mathematical problems for autonomous vehicle formations: (1) formation shape control in the plane, (2) robust information architecture design, and (3) formation attitude synchronization. An autonomous vehicle formation is a collection of vehicles, each with computation, communication, sensing, and control capabilities, that cooperate to achieve a common objective. Accelerating advancements are making possible a range of science and engineering applications, such as satellite formations for deep-space imaging, teams of unmanned aircraft for military reconnaissance and surveillance missions, and submarine swarms for oceanic exploration. The ubiquitous potential of these applications is driving theoretical work on autonomous vehicle formations across a range of disciplines. A major theoretical question in the field of control theory, and the main focus of this dissertation, is how the properties of the information architecture (i.e. a mapping of the information flow amongst the agents), relate to the stability properties of the desired shape and orientation under certain control laws. A secondary focus is how to design the information flow so that loss of an agent does not destroy the formation's ability to maintain a desired shape. As a motivating example, a solution to a coordinated standoff tracking problem is presented to demonstrate how an instance of a class of information architectures, which are called persistent and related to rigid graph theory, can be used to achieve a formation objective in a practical scenario involving a team of unmanned aircraft. A generalized formation shape control problem is then solved for a class of persistent architectures. This solution gives only local stability results; global stability is analyzed for a four-agent formation and several open problems are identified. The problem of agent loss is addressed by performing a self-repair operation in the event of agent loss and separately by designing robustness into the information architecture a priori. Finally, a rigid body attitude synchronization problem with communication time delays is solved for a class of information architectures based on spectral graph theory. / text

Page generated in 0.0424 seconds