Spelling suggestions: "subject:"nonlinear optics"" "subject:"onlinear optics""
481 |
Étude et réalisation par échange d’ions sur verre de guides d’onde à fort confinement pour des applications non-linéaires / Study and fabrication by ino exchange on glass of high confinement waveguides toward nonlinear applicationsGeoffray, Fabien 05 February 2015 (has links)
L’optique intégrée sur verre est une technologie mature dont les nombreuses applica-tions vont des télécommunications optiques aux capteurs. L’amélioration constante des per-formances des dispositifs réalisés est basée sur une densification des fonctions et donc uneréduction des dimensions des guides d’onde ainsi qu’une augmentation de la densité de puis-sance que ceux-ci transportent. Dans ce travail, nous avons donc étudié les performancesultimes de la technologie de l’échange d’ions argent/sodium sur verre en matière de confi-nement et de longueur de propagation. En particulier, dans le cas de la génération d’effetsnon-linéaires, nous avons mis en évidence la nécessité de trouver un compromis entre ces deuxaspects. Nous démontrons alors que les performances des guides d’onde obtenus par échanged’ions argent/sodium sont intrinsèquement limitées par les pertes optiques attribuées à laprésence d’argent métallique. Ceci se traduit par la présence d’un seuil d’endommagementà fortes densités de puissances. Pour dépasser cette limitation nous avons proposé et ini-tié alors un changement radical de technologie dont nous présentons les premiers résultatsobtenus par échange thallium/sodium sur un verre spécifiquement développé. / Glass integrated optics is a key enabling technology which applications range from opticaltelecommunications to sensors. The steady improvement of devices performances is sustainedby an increasing functions density and thus smaller waveguides supporting higher powerdensities. In this work we investigate the ultimate performances in terms of confinementand propagation length of the silver/sodium ion-exchanged waveguides fabricated on glasstechnology. In particular, a trade-off between these two features has been highlighted inthe case of nonlinear effects. We then demonstrate that the performances of silver/sodiumion-exchanged waveguides are mainly limited by optical losses introduced by metallic silveraggregates even for buried low-losses waveguides. Hence the waveguides exhibit a damagethreshold for high power densities. To overcome this limitation a major technology changehas been initiate and we present the first results obtained by thallium/sodium ion exchange.
|
482 |
High-resolution interferometric diagnostics for ultrashort pulsesAustin, Dane R. January 2010 (has links)
I present several new methods for the characterisation of ultrashort pulses using interferometry. A generalisation of the concatenation algorithm for spectral shearing interferometry enables interferograms taken at multiple shears to be combined. This improves the precision of the reconstructed phase in the presence of detector noise, and enables the relative phase between disjoint spectral components to be obtained without decreasing the spectral resolution. The algorithm is applied to experimental data from two different implementations of spectral shearing interferometry for ultrashort optical pulses. In one, the shears are acquired sequentially, and in the other they are acquired simultaneously. I develop a form of spatio-temporal ultrashort pulse characterisation which performs both spatial and spectral shearing interferometry simultaneously. It requires a similar geometrical setup to common implementations of spectral phase interferometry for direct electric-field reconstruction, but provides complete amplitude and phase characterisation in time and one spatial dimension. I develop the theory of lateral shearing interferometry for spectrally resolved wavefront sensing of extended ultraviolet and soft x-ray pulses generated using high-harmonic generation. A comprehensive set of wavefront measurements of harmonics 13-25 in Krypton show good agreement with theory, validating the technique. I propose and numerically demonstrate quantum-path interferometry mediated by a weak control field for high harmonic generation. This is a general technique for measuring the amplitude and relative phases of each contributing quantum path. The control field perturbatively modulates the phase of each path. The differing sensitivity of each path to the parameters of the control field allows their contributions to be distinguished from one another.
|
483 |
Quantum cascade lasers based on intra-cavity frequency mixingJang, Min 30 January 2013 (has links)
Quantum cascade lasers (QCLs) operate due to population inversion on intersubband in unipolar mutiple-quantum-well (MQW) heterostructure. QCLs are considered one of the most flexible and powerful light semiconductor sources in the mid- and far-infrared (IR) wavelength range, covering most of the critical spectral regions relevant to IR applications. InGaAs/InAlAs/InP QCLs are the only semiconductor lasers capable of continuous wave (CW) operation at room temperature (RT) in the spectral range 3.4-12 micron. This dissertation details the development of RT QCLs based on passive nonlinear coupled-quantum-well structures monolithically integrated into mid-IR QCLs to provide a giant nonlinear response for the pumping frequency.
The primary focus of short-wavelength approach in this dissertation is to develop of RT InGaAs/InAlAs/InP QCLs for lamda=2.5-3.7 micron region, based on quasi-phase-matched intracavity second harmonic generation (SHG) associated with intersubband transition. Intersubband optical transition can be engineered by the choice of quantum well and barrier thicknesses to provide the appropriate energy levels, optical dipole matrix elements, and electron scattering rates amongst other parameters. Thus, aside from their linear optical properties, resonant intersubband transitions in coupled QW's can also be designed to produce nonlinear optical medium with giant nonlinear optical susceptibilities.
In long-wavelength region, at high temperature, the population inversion is reduced between the upper and lower laser levels due to the longitudinal optical (LO) phonon scattering of thermal carriers in the upper laser state and the thermal backfilling of carriers into the lower laser level from the injector state. This dissertation aims to improve an alternative approach for THz QCL sources based on intra-cavity difference frequency generation (DFG) in dual-wavelength mid-IR QCLs with a passive nonlinear structure, designed for giant optical nonlinearity. Further studies describe that Cerenkov DFG scheme allows for extraction of THz radiation along the whole length of the laser waveguide and provides directional THz emission in 1.2-4.5 THz range. An important requirement for many applications, like chemical sensing and molecular spectroscopy, is single-mode emission. We demonstrate single-mode RT DFG THz QCLs operation in 1-5 THz region by employing devices as integrated dual-period DFB lasers, where efficient solid state RT sources do not exist. / text
|
484 |
Stimulated Raman Scattering in Semiconductor NanostructuresKroeger, Felix 21 December 2010 (has links) (PDF)
The PhD dissertation is organized in two parts. In the first part, we present an experimental study of stimulated Raman scattering in a silicon-on-insulator (SOI) nanowire. We demonstrate that the Raman amplification of a narrow-band Stokes wave experiences a saturation effect for high pump intensities because of self phase modulation of the pump beam. Moreover, an analytical model is presented that describes the experimental results remarkably well. The model furthermore provides an estimation of the Raman gain coefficient γR of silicon. The second part is devoted to the experimental study of stimulated Raman scattering in a doubly resonant planar GaAs microcavity. The nonlinear measurements clearly show some totally unexpected results. We experimentally demonstrate that the relaxation of the electrons in the conduction band of GaAs is significantly modified through the interaction with coherently excited Raman phonons.
|
485 |
Research on spontaneous parametric down-conversion pumped by incoherent light sources / Parametrinės fluorescencijos žadinamos nekoherentiniais šviesos šaltiniais tyrimasGalinis, Justinas 25 September 2014 (has links)
Spontaneous parametric down conversion (SPDC) – incoherent light scattering – is one of the main entangled photons source applied in quantum optics experiments. The tradition to pump SPDC by laser radiation was established from the very first SPDC experiments in 1968. The aim of this thesis was experimentally to investigate the ability to generate an SPDC pumping by both temporal and spatially incoherent radiation - a high-power blue LED. Weak SPDC signals were registered with high sensitivity CCD cameras, photons coincidences were detected with photon counters. The theoretical simulations were performed in parallel with experiments. Therefore, mathematical simulation code was written in order to estimate the SPDC power distribution and simulate photon coincidence experiment changing the properties of pump beam and detection system. Experimental results reveal that incoherent light sources can be good alternative for the laser systems in order to generate average quality biphoton fields especially in those experiments in which low biphoton field coherency would be advantage. The main advantages of the incoherent sources over laser systems are low cost, simple production technology and the huge commercial variety of different wavelength sources. / Parametrinė fluorescencija (PF) – nekoherentinė šviesos sklaida – yra vienas pagrindinių susietųjų fotonų šaltinių taikomų kvantinės optikos eksperimentuose. Nuo pat pirmųjų PF eksperimentinių tyrimų 1968 metais įsigalėjo tradicija šį reiškinį žadinti išimtinai lazerine spinduliuote. Šios disertacijos tikslas – eksperimentiškai ištirti galimybę generuoti PF tiek laikiškai, tiek ir erdviškai nekoherentine spinduliuote – didelės galios šviesos diodu. Atliekant tyrimus didelio jautrio CCD kamera buvo registruojami silpni PF signalai, pavienių fotonų skaitliukais buvo registruojami fotonų sutapimai,. Lygiagrečiai eksperimentiniams tyrimams buvo atliekami teoriniai skaičiavimai. Šiuo tikslu buvo parašytas matematinio modeliavimo programinis kodas, skirtas įvertinti PF erdvinį galios pasiskirstymą bei modeliuoti fotonų sutapimų eksperimentą, keičiant kaupinimo pluošto ir detekcijos sistemos savybes. Šio darbo rezultatai atskleidžia, kad nekoherentiniai šaltiniai gali būti puiki alternatyva lazerinėms sistemoms siekiant žadinti vidutinės kokybės dvyninius laukus, ypatingai tokiose tyrimų srityse, kuriose mažas dvyninio lauko koherentiškumas būtų didžiulis privalumas. Pagrindiniai nekoherentinių šaltinių pranašumai prieš lazerines sistemas: maža kaina, paprasta gamybos technologija ir didžiulė komercinė skirtingo bangos ilgio šaltinių įvairovė.
|
486 |
Parametrinės fluorescencijos žadinamos nekoherentiniais šviesos šaltiniais tyrimas / Research on spontaneous parametric down-conversion pumped by incoherent light sourcesGalinis, Justinas 25 September 2014 (has links)
Parametrinė fluorescencija (PF) – nekoherentinė šviesos sklaida – yra vienas pagrindinių susietųjų fotonų šaltinių taikomų kvantinės optikos eksperimentuose. Nuo pat pirmųjų PF eksperimentinių tyrimų 1968 metais įsigalėjo tradicija šį reiškinį žadinti išimtinai lazerine spinduliuote. Šios disertacijos tikslas – eksperimentiškai ištirti galimybę generuoti PF tiek laikiškai, tiek ir erdviškai nekoherentine spinduliuote – didelės galios šviesos diodu. Atliekant tyrimus didelio jautrio CCD kamera buvo registruojami silpni PF signalai, pavienių fotonų skaitliukais buvo registruojami fotonų sutapimai,. Lygiagrečiai eksperimentiniams tyrimams buvo atliekami teoriniai skaičiavimai. Šiuo tikslu buvo parašytas matematinio modeliavimo programinis kodas, skirtas įvertinti PF erdvinį galios pasiskirstymą bei modeliuoti fotonų sutapimų eksperimentą, keičiant kaupinimo pluošto ir detekcijos sistemos savybes. Šio darbo rezultatai atskleidžia, kad nekoherentiniai šaltiniai gali būti puiki alternatyva lazerinėms sistemoms siekiant žadinti vidutinės kokybės dvyninius laukus, ypatingai tokiose tyrimų srityse, kuriose mažas dvyninio lauko koherentiškumas būtų didžiulis privalumas. Pagrindiniai nekoherentinių šaltinių pranašumai prieš lazerines sistemas: maža kaina, paprasta gamybos technologija ir didžiulė komercinė skirtingo bangos ilgio šaltinių įvairovė. / Spontaneous parametric down conversion (SPDC) – incoherent light scattering – is one of the main entangled photons source applied in quantum optics experiments. The tradition to pump SPDC by laser radiation was established from the very first SPDC experiments in 1968. The aim of this thesis was experimentally to investigate the ability to generate an SPDC pumping by both temporal and spatially incoherent radiation - a high-power blue LED. Weak SPDC signals were registered with high sensitivity CCD cameras, photons coincidences were detected with photon counters. The theoretical simulations were performed in parallel with experiments. Therefore, mathematical simulation code was written in order to estimate the SPDC power distribution and simulate photon coincidence experiment changing the properties of pump beam and detection system. Experimental results reveal that incoherent light sources can be good alternative for the laser systems in order to generate average quality biphoton fields especially in those experiments in which low biphoton field coherency would be advantage. The main advantages of the incoherent sources over laser systems are low cost, simple production technology and the huge commercial variety of different wavelength sources.
|
487 |
Ultrashort Light Sources from High Intensity Laser-Matter InteractionKöhler, Christian 31 May 2012 (has links) (PDF)
The thesis deals with the development and characterization of new light sources, which are mandatory for applications in atomic and molecular spectroscopy, medical and biological imaging or industrial production. For that purpose, the employment of interactions of high intensity ultra-short laser pulses with gaseous media offers a rich variety of physical effects which can be exploited. The effects are characterized by a nonlinear dependency on the present light fields. Therefore, accurate modeling of the nonlinearities of the gas is crucial. In general, the nonlinearities are due to the electronic response of the gas atoms to the light field and one distinguishes between the response of bound and ionized electrons.
The first part investigates laser pulse self compression, where the consideration of a purely bound electron response is sufficient. We apply an exotic setup with an negative Kerr nonlinearity in order to avoid spatial collapse of the beam on the cost of dealing with an highly dispersive nonlinearity. Analytical analysis and numerical simulations prove the possibility of laser pulse compression in such setups and reveals a new compression scheme, where the usually disturbing dispersion of the nonlinaerity is responsible for compression.
Dealing with tera-Hertz generation by focusing an ionizing two-color laser pulse into gas, the second part exploits a medium nonlinearity caused by ionized electrons. We reveal in a mixed analytical and numerical analysis the underlying physical mechanism for THz generation: ionized electrons build up a current, which radiates. Thereby, the the two-color nature of the input laser is crucial for the emitted radiation to be in the tera-Hertz range. Combining this physical model with a pulse propagation equation allows us to achieve remarkable agreement with experimental measurements.
Finally, the third part deals with nonlinearities from bound as well from ionized electrons on a fundamental level. We advance beyond phenomenological models for responses of bound and ionized electrons and quantum mechanically model the interaction of an ultra-short laser pulse with a gas. Already the simplest case of one dimensional hydrogen reveals basic features. For low intensities, the Kerr nonlinearity excellently describes the response of bound electrons. For increasing intensity, ionization becomes important and the response from ionized electrons is the governing one for high intensities. This quantum mechanical correct modeling allows us to explain saturation and change of sing of the nonlinear refractive index and to deduce suited approximate models for optical nonlinearities.
|
488 |
Nonlinear Microscopy for HistologyTuer, Adam 13 August 2013 (has links)
Histology has long recognized the intimate link between structure and function. Over centuries histologists have utilized an assortment of optical microscopy techniques to elucidate functional attributes of tissues through investigating tissue architecture. This thesis includes developments in the field of nonlinear optical microscopy for use in histology
and pathology. The main contributions focused on the study of fibrillar collagen in the extracellular matrix (ECM) with polarization-dependent second harmonic generation (P-SHG) microscopy and the study of harmonophore-stained cellular nuclei with third harmonic generation (THG) microscopy. The P-SHG microscopy technique, “polarization-in, polarization-out” (PIPO), was developed to accurately determine the second-order polarization properties of thin tissue sections. The polarization instrumentation was implemented into a nonlinear optical microscope and a custom fitting algorithm extracted ratios of the second-order nonlinear susceptibility elements at every pixel of an obtained image. Hierarchical organization, at every level of structure, can contribute significantly to the macroscopic second-order polarization properties of fibrillar collagen in the ECM and quantifiable differences between the various tissue architectures were observed. A framework was developed, based on the collagen hierarchical organization, to interpret the submicron polarization properties of various tissues. Complimentary to the P-SHG study of connective tissue, the structure of hematoxylin and eosin (H&E) stained nuclei was revealed by THG microscopy. Imaging the 3D organization of nuclei was possible using the inherent optical sectioning provided by nonlinear microscopy. The origin of THG was investigated with spectrally- and temporally-resolved measurements, as well as the THG ratio method. A rather complex situation involving multiple dye complexes was revealed. The structure of dye aggregates was investigated with THG PIPO microscopy.
The techniques of PIPO and harmonophore-stained harmonic generation microscopy show great potential for ultimately furthering understanding of tissue structure and function. H&E stained tissue investigations with THG microscopy has applications as a tool for cancer diagnostics. PIPO can elucidate the symmetry and organization of materials beyond tissues, including starch, nanowires, and protein crystals. In pathology, the developed collagen framework has strong implications, as collagen is recognized as playing a more active role in a number of diseases including idiopathic pulmonary fibrosis, wound repair, and tumour development and progression.
|
489 |
Nonlinear Microscopy for HistologyTuer, Adam 13 August 2013 (has links)
Histology has long recognized the intimate link between structure and function. Over centuries histologists have utilized an assortment of optical microscopy techniques to elucidate functional attributes of tissues through investigating tissue architecture. This thesis includes developments in the field of nonlinear optical microscopy for use in histology
and pathology. The main contributions focused on the study of fibrillar collagen in the extracellular matrix (ECM) with polarization-dependent second harmonic generation (P-SHG) microscopy and the study of harmonophore-stained cellular nuclei with third harmonic generation (THG) microscopy. The P-SHG microscopy technique, “polarization-in, polarization-out” (PIPO), was developed to accurately determine the second-order polarization properties of thin tissue sections. The polarization instrumentation was implemented into a nonlinear optical microscope and a custom fitting algorithm extracted ratios of the second-order nonlinear susceptibility elements at every pixel of an obtained image. Hierarchical organization, at every level of structure, can contribute significantly to the macroscopic second-order polarization properties of fibrillar collagen in the ECM and quantifiable differences between the various tissue architectures were observed. A framework was developed, based on the collagen hierarchical organization, to interpret the submicron polarization properties of various tissues. Complimentary to the P-SHG study of connective tissue, the structure of hematoxylin and eosin (H&E) stained nuclei was revealed by THG microscopy. Imaging the 3D organization of nuclei was possible using the inherent optical sectioning provided by nonlinear microscopy. The origin of THG was investigated with spectrally- and temporally-resolved measurements, as well as the THG ratio method. A rather complex situation involving multiple dye complexes was revealed. The structure of dye aggregates was investigated with THG PIPO microscopy.
The techniques of PIPO and harmonophore-stained harmonic generation microscopy show great potential for ultimately furthering understanding of tissue structure and function. H&E stained tissue investigations with THG microscopy has applications as a tool for cancer diagnostics. PIPO can elucidate the symmetry and organization of materials beyond tissues, including starch, nanowires, and protein crystals. In pathology, the developed collagen framework has strong implications, as collagen is recognized as playing a more active role in a number of diseases including idiopathic pulmonary fibrosis, wound repair, and tumour development and progression.
|
490 |
Μελέτη της μη γραμμικής οπτικής απόκρισης Φουλλερενίων, παραγώγων τους και λεπτών υμενίων νανοσωματιδίων χρυσούΞενογιαννοπούλου, Ευαγγελία Π. 31 August 2010 (has links)
- / -
|
Page generated in 0.0834 seconds