• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 53
  • 23
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 247
  • 247
  • 121
  • 105
  • 104
  • 87
  • 73
  • 69
  • 69
  • 66
  • 56
  • 55
  • 54
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Aplicação de formulação baseada no método dos elementos finitos posicional na análise bidimensional elástica de compósitos particulados / Application of a positional finite element method based formulation on the elastic two-dimensional analysis of particulate composites

Camila Alexandrino Moura 05 May 2015 (has links)
A utilização de materiais compósitos tornou-se uma alternativa importante em muitas aplicações dentro de diversas áreas da engenharia, pois seus constituintes podem agregar propriedades mecânicas, térmicas e acústicas ao compósito, garantindo eficiência e baixo custo. Com isso, faz-se necessário um maior conhecimento do comportamento mecânico desses materiais diante das solicitações, principalmente no que diz respeito aos campos de deslocamento, deformações e tensões. O presente trabalho tem por finalidade a análise, em nível macroscópico, de estruturas bidimensionais elásticas constituídas de materiais compósitos particulados, utilizando formulação desenvolvida no contexto do Grupo de Mecânica Computacional (GMEC), do Departamento de Engenharia de Estruturas (SET), da Escola de Engenharia de São Carlos (EESC), da Universidade de São Paulo (USP), no qual se insere a presente pesquisa. A formulação utilizada baseia-se no Método dos Elementos Finitos Posicional (MEFP) e foi desenvolvida em nível mesoscópico por tratar da interação entre matriz e partículas. Tal formulação possibilita a consideração da interação partícula-matriz sem a necessidade de coincidência entre as malhas da matriz e das partículas e sem o aumento do número de graus de liberdade dos problemas, admitindo-se aderência perfeita entre as fases. A formulação considera material isotrópico e comportamento não-linear geométrico das fases. A aplicação da formulação foi aqui proposta com o intuito de avaliar a influência da geometria, tamanho, fração volumétrica, distribuição e propriedades mecânicas das partículas adotadas, no comportamento global da estrutura em nível macroscópico. Foram desenvolvidos e apresentados exemplos de aplicação, com comparação dos resultados numéricos das análises com resultados de ensaios experimentais encontrados na literatura, bem como com resultados de modelos matemáticos de homogeneização e modelos numéricos propostos por outros autores, que utilizaram o método dos elementos finitos e técnicas de homogeneização assintótica. / The use of composite materials has become an important alternative in many applications in different areas of engineering, because their constituents can add mechanical, thermal and acoustic properties to the composite, ensuring efficiency and low cost. Thus, it is necessary a better understanding of the mechanical behavior of these materials, mainly regarding displacement, stress and strain fields. This study aims to analyze, in macroscopic scale, two-dimensional elastic structures made of particulate composite materials, using formulation developed in the context of the Grupo de Mecânica Computacional (GMEC), of Departamento de Engenharia de Estruturas (SET), of Escola de Engenharia de São Carlos (EESC), of Universidade de São Paulo (USP). The formulation is based on the Positional Finite Element Method and was developed in mesoscopic level, considering the matrix-particles interaction and neglecting the interface, by means of kinematic relations used to ensure adherence of the particles to the matrix without introducing new degrees of freedom in the problem. The formulation considers isotropic material and geometric non-linear behavior of the composite phases. The application of the formulation was proposed in this work in order to evaluate the influence of geometry, size, volume fraction, distribution and mechanical properties of the particles adopted in the global behavior of the structure in macroscopic level. Numerical examples were developed and presented in order to compare the numerical results of the analysis with results obtained in experimental studies found in the literature, as well as results of mathematical models and numerical models using finite element method and the asymptotic homogenization technique.
212

On the Generalized Finite Element Method in nonlinear solid mechanics analyses / Sobre o método dos Elementos Finitos Generalizados em análises da mecânica dos sólidos não-linear

Dorival Piedade Neto 29 November 2013 (has links)
The Generalized Finite Element Method (GFEM) is a numerical method based on the Partition of Unity (PU) concept and inspired on both the Partition of Unity Method (PUM) and the hp-Cloud method. According to the GFEM, the PU is provided by first-degree Lagragian interpolation functions, defined over a mesh of elements similar to the Finite Element Method (FEM) meshes. In fact, the GFEM can be considered an extension of the FEM to which enrichment functions can be applied in specific regions of the problem domain to improve the solution. This technique has been successfully employed to solve problems presenting discontinuities and singularities, like those that arise in Fracture Mechanics. However, most publications on the method are related to linear analyses. The present thesis is a contribution to the few studies of nonlinear analyses of Solid Mechanics by means of the GFEM. One of its main topics is the derivation of a segment-to-segment generalized contact element based on the mortar method. Material and kinematic nonlinear phenomena are also considered in the numerical models. An Object-Oriented design was developed for the implementation of a GFEM nonlinear analyses framework written in Python programming language. The results validated the formulation and demonstrate the gains and possible drawbacks observed for the GFEM nonlinear approach. / O Método dos Elementos Finitos Generalizados (MEFG) é um método numérico baseado no conceito de partição da unidade (PU) e inspirado no Método da Partição da Unidade (MPU) e o método das Nuvens-hp. De acordo com o MEFG, a PU é obtida por meio de funções de interpolação Lagragianas de primeiro grau, definidas sobre uma rede de elementos similar àquela do Método dos Elementos Finitos (MEF). De fato, o MEFG pode ser considerado uma extensão do MEF para a qual se pode aplicar enriquecimentos em regiões específicas do domínio, buscando melhorias na solução. Esta técnica já foi aplicada com sucesso em problemas com descontinuidades e singularidades, como os originários da Mecânica da Fratura. Apesar disso, a maioria das publicações sobre o método está relacionada a análises lineares. A presente tese é uma contribuição aos poucos estudos relacionados a análises não-lineares de Mecânica dos Sólidos por meio do MEFG. Um de seus principais tópicos é o desenvolvimento de um elemento de contato generalizado do tipo segmento a segmento baseado no método mortar. Fenômenos não lineares devidos ao material e à cinemática também são considerados nos modelos numéricos. Um projeto de orientação a objetos para a implementação de uma plataforma de análises não-lineares foi desenvolvido, escrito em linguagem de programação Python. Os resultados validam a formulação e demonstram os ganhos e possíveis desvantagens da abordagem a problemas não lineares por meio do MEFG.
213

Pravděpodobnostní modelování smykové únosnosti předpjatých betonových nosníků: Citlivostní analýza a semi-pravděpodobnostní metody návrhu / Probabilistic modeling of shear strength of prestressed concrete beams: Sensitivity analysis and semi-probabilistic design methods

Novák, Lukáš January 2018 (has links)
Diploma thesis is focused on advanced reliability analysis of structures solved by non--linear finite element analysis. Specifically, semi--probabilistic methods for determination of design value of resistance, sensitivity analysis and surrogate model created by polynomial chaos expansion are described in the diploma thesis. Described methods are applied on prestressed reinforced concrete roof girder.
214

Lávka pro pěší podporovaná kabely / Cable-supported pedestrian bridge

Knotek, Jan January 2019 (has links)
The subject of this diploma thesis is design a cable-supported pedestrian bridge. Three different variants of the solution were created for the design. For detailed processing, variant no.2 was chosen - a suspended bridge with a pylon in the middle of the span. The main task is the static design of the supporting structure. The model for the lengthways is created in ANSYS. The SCIA engineer was used to solve crosswise. The assessment and dimensioning was done according to the limit state principles and valid standards.
215

Železobetonová konstrukce bytového domu / Reinforced concrete construction of apartment building

Fusek, Aleš January 2020 (has links)
This diploma thesis deals with the analysis of reinforced concrete structure with masonry walls. Scia Engineer was used for finite element analysis. The spatial models include nonlinear behavior of masonry. Furthermore, the ceiling slab above the 1st floor, beams and columns were designed.
216

Porovnání různých metod nelineárního výpočtu konstrukcí s hlediska rychlosti, přesnosti a robustnosti. / Comparison of various methods for nonlinear analysis of structures from the point of view of speed, accuracy and robustness.

Bravenec, Ladislav January 2013 (has links)
The aim of the thesis is to compare the iterative methods which program RFEM 5 uses the non-linear calculations of structures, namely the analysis of large deformations and post critical analysis. Comparison should serve as a basis for which calculation method is the most accurate, fastest and most reliable in terms of getting results. Time-consuming will be judged according to the calculation of the solution and the time needed to compute one iterativ. Robustness we will compare the reliability of methods in in normal use. Accuracy of the calculation will be determined by comparing the maximum deformation structures. Comparison will be made with examples from practice.
217

Letištní terminál / Airport Terminal

Fojtík, Petr January 2016 (has links)
My diploma thesis is focused on design and assessment of structural system of airport terminal. The design is processed in two options. Both of them has the same dimensions but structural system is changed. Floor plan is in the shape of part of annulus. Width of the hall is changing, in the middle of the hall is aproximatly 90 m. Length is 52,5 m, 10 m of this length is porch. Roof slope is 3° towards to the front of the hall.
218

Numerical analysis of the interaction between rockbolts and rock mass for coal mine drifts in Vietnam

Le Van, Cong 19 December 2008 (has links)
The thesis describes the application of anchors in mining and tunneling and gives an up-to-date overview about anchor types, design principles and the interaction mechanisms between anchors and rockmass. A constitutive model was developed, implemented and tested for the 2- and 3-dimensional numerical codes FLAC and FLAC3D to simulate non-linear anchor behaviour including unloading and reloading. The interaction between rockbolts and rockmass was studied in detail via numerical simulations for 5 Vietnamese coal mines. An extended version of the so-called c-Φ reduction method and a new introduced reinforcement factor were applied to quantify the effect of bolting. Mine specific and generalised relations were deduced to quantify the influence of anchor length and distance between anchors on the effect of bolting.
219

Análisis de riesgo sísmico de colegios públicos de San Juan de Miraflores mediante la metodología de Rapid Visual Screening y evaluación del desempeño sísmico con análisis no-lineales del pabellón 780 Pre

Cardenas Angeles, Omar Percy, Farfán Bonett, Aaron Gabriel 16 January 2021 (has links)
Perú se localiza en una zona de alta sismicidad, debido a que se encuentra encima del área de subducción entre la placa tectónica de Nazca y Sudamericana, perteneciente al cinturón de fuego del Pacífico. Perú es un país en vía de desarrollo, por lo que es de suma importancia estar preparados para auxiliar a los miles de damnificados que pueda haber ante un evento sísmico importante. La evaluación del riesgo sísmico de edificaciones esenciales como colegios y hospitales es necesario para trabajos de reforzamiento estructural en este tipo de infraestructura. En el presente artículo científico, se presenta cuán vulnerables son los colegios públicos del distrito de San Juan de Miraflores en la ciudad de Lima ante un evento sísmico. Para ello, se utilizó la metodología de Inspección Visual Rápida del FEMA P-154. Además, se analizó de forma cuantitativa el pabellón 780 Pre, un módulo educativo estandarizado y construido en los años noventa cuya presencia es frecuente en dicho distrito. Para ello, se realizó un análisis no-lineal estático y no-lineal dinámico. Los resultados de la investigación concluyen que la mayoría de las edificaciones educativas presentan una alta vulnerabilidad sísmica y no cumplen con los requerimientos de uso post-sismo como se exige en la norma sismorresistente; así como también se verificó la deficiencia del módulo 780 Pre frente a un sismo severo cuando este fue sometido a los análisis no-lineales. / Peru is located in a high seismicity zone because it is set above the subduction area between the Nazca and South American tectonic plates, both belonging to the Pacific’s Ring of Fire. Being a developing country, it is of utmost importance to be prepared to help the thousands of victims that may be in the face of a major seismic event. The assessment of the seismic vulnerability of essential buildings —such as schools and hospitals— is necessary for structural reinforcement procedures in this type of infrastructure if needed. In this thesis, it is presented how vulnerable are the public schools of the district of San Juan de Miraflores in the city of Lima to a seismic event. For this, the FEMA P-154 Rapid Visual Screening methodology was used. In addition, the “780 Pre” public school building, a standardized educational building built in the 1990s and whose presence is frequent in that district, was analyzed quantitatively. For this, a static nonlinear and dynamic nonlinear analysis were performed. The results of the investigation show that most of the educational buildings present high seismic vulnerability and do not meet the requirements of post-earthquake use as required by the Peruvian seismic design provisions. Also, the deficiency of the 780 Pre building against a severe earthquake when it was subjected to non-linear analyzes was verified. / Tesis
220

A comparative evaluation of hydrostatic pressure and buckling of a large cylindrical steel tank designed according to EN14015 and according to the Eurocodes

Kambita, Musole January 2022 (has links)
Above ground steel storage tanks are used worldwide for the storage of various liquids. EN 14015:2005, which has traditionally been used to design the tanks, does not necessarily fulfil the requirements of the Swedish Building Code. This has been underlined by hand calculation models in EN 1993-1-6:2007, EN 1993-4-2:2007 and numerical analysis using Finite Element Method (FEM). Therefore, this thesis investigates the differences between these design models and, preliminarily, the use of high-strength steel in tank shells. A 10600 m3 cylindrical steel tank of diameter 26 m and height of 21 m located in Gothenburg, Sweden is studied. The study is limited to the assessment of the stress in the shell courses due to the hydrostatic pressure from the fluid action of a filled tank, and the buckling behaviour of the shell courses of an empty tank subjected to self-weight, snow and wind loads. Particularly, models of the tank shell with a yield strength of 355 MPa are investigated in detail, while the results of the 700 MPa model are considered as preliminary study, since the material is currently not used for tank shells. An analysis of the fluid action on the tank shell courses in each of the three hand calculation models, showed that the EN 14015 model utilizes thicker courses than both Eurocodes. One benefit of the Eurocode models is that they do not limit the thickness of the shell courses, but it is still necessary to have thicker courses in the upper part of the tank in order to achieve sufficient resistance against buckling. EN 14015:2005, on the other hand, limits the minimum thickness to 6 mm for the investigated tank. Furthermore, only EN 1993-1-6 is applicable to the models with a yield strength of 700 MPa as per EN 1993-1-12 and this resulted in a uniform shell thickness of 6 mm. However, an increase in yield strength has no buckling benefits whatsoever.  Buckling is the most critical aspect as observed in this study. EN 14015 has no specific buckling calculations but uses the approach of determining the number of stiffening rings which are deemed adequate against buckling. In this study, 3 secondary stiffening rings were found to be adequate. In comparison, the results of EN 1993-4-2 are very conservative and lead to a very high and uneconomical number of stiffening rings, ranging from 30 to 52 stiffening rings depending on the reliability class. EN 1993-1-6 resulted in 6-17 stiffening rings, for reliability classes 1-3 and fabrication classes A-C. Therefore, the so-called analytical models in the Eurocodes result in a much denser spacing of stiffening rings than 14015:2005.  The buckling stresses due to the design loads were found to be lower than the yield strength of the tank shells for both hand calculation and FEM models. This means that the tank shells failed in buckling before the yield strength of the material was reached. Based on the parametric study of the EN 1993-1-6 (355 MPa) model regarding reliability class 1 and fabrication class A using FEM, the spacing of the stiffening rings can be increased up to 60 % (from 3825 mm to 6120 mm) with the variable loads also increased simultaneously up to 3.8 times before the shell buckles. Therefore, the design of future tanks using numerical analysis guarantee’s more reliability than all the aforementioned standards.  The design for buckling according to EN 14015 is only valid for a design snow load and under-pressure ≤ 1.2 KN/m2. However, according to the standard itis possible to agree to use it for larger actions or use another design model for buckling.

Page generated in 0.0523 seconds