• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nonlinear Dynamic Analysis of Modular Steel Buildings in Two and Three Dimensions

Fathieh, Amirahmad 22 November 2013 (has links)
Modular construction is a relatively new technique where prefabricated units are assembled on-site to produce a complete building. Due to detailing requirements for the assembly of the modules, these systems are prone to undesirable failure mechanisms during large earthquakes. Specifically, for multi-story Modular Steel Buildings (MSBs), inelasticity concentration in vertical connections can be an area of concern. Diaphragm interaction, relative displacements between modules and the forces in the horizontal connections need to be investigated. In this study, two 4-story MSBs with two different structural configurations were chosen to be analyzed. In the first model which was introduced in a study by Annan et al. (2009 a), some of the unrealistic detailing assumptions were challenged. To have a more accurate assessment of the structural capacity, in the second model, a more realistic MSB model was proposed. Using OpenSees, Incremental Dynamic Analyses (IDA) have been performed and conclusions were made.
12

Nonlinear Dynamic Analysis of Modular Steel Buildings in Two and Three Dimensions

Fathieh, Amirahmad 22 November 2013 (has links)
Modular construction is a relatively new technique where prefabricated units are assembled on-site to produce a complete building. Due to detailing requirements for the assembly of the modules, these systems are prone to undesirable failure mechanisms during large earthquakes. Specifically, for multi-story Modular Steel Buildings (MSBs), inelasticity concentration in vertical connections can be an area of concern. Diaphragm interaction, relative displacements between modules and the forces in the horizontal connections need to be investigated. In this study, two 4-story MSBs with two different structural configurations were chosen to be analyzed. In the first model which was introduced in a study by Annan et al. (2009 a), some of the unrealistic detailing assumptions were challenged. To have a more accurate assessment of the structural capacity, in the second model, a more realistic MSB model was proposed. Using OpenSees, Incremental Dynamic Analyses (IDA) have been performed and conclusions were made.
13

Análise dinâmica não linear em torres de concreto armado submetidas ao vento sintético. / Dynamic nonlinear analysis of reinforced concrete towers submitted to the synthetic wind.

Murilo Sasaki de Paula e Silva 14 June 2017 (has links)
O tema está relacionado com o constante crescimento da necessidade em implantarnovas torres de telecomunicações devido ao crescimento acelerado da infraestrutura de telecomunicações no Brasil. Todos os dias, novos sistemas de transmissão e recepção de ondas eletromagnéticas estão sendo implantados no território brasileiro. O objetivo deste trabalho é propor um procedimento seguro e eficaz para a análise estrutural de torres de telecomunicações em concreto armado de grande esbeltez, com base em um modelo dinâmico não linear, submetendo à carga de vento. Estas cargas são simuladas pelo método do vento sintético proposto por Franco (1993). A análise do concreto armado será realizada de acordo com a NBR-6118 (ABNT, 2007). A fim de determinar com precisão os deslocamentos da estrutura submetida ao carregamento de vento, um método iterativo computacional será utilizado obter as respostas não lineares. Realiza-se uma análise linear e, a partir dos resultados de esforços solicitantes, as tensões e a porção fissurada de cada seção transversal é obtida e parte-se para a determinação dos deslocamentos de 2ª ordem da torre. Em cada iteração, um procedimento do tipo P-Delta será utilizado para levar em conta a não linearidade geométrica da estrutura. As condições de contorno do problema estão relacionadas com a restrição do nível de tensões, deslocamentos e frequências de vibração da estrutura. Ao fim, uma análise dinâmica em torno da configuração não linear será realizada, e o deslocamento total da torre será dado pela somatória da componente estática com a componente flutuante do vento. / The theme is related to the constant growth in the need to deploy new telecommunications towers due to the accelerated growth of telecommunications infrastructure in Brazil. Every day, new systems of transmission and reception of electromagnetic waves are being implanted in the Brazilian territory. The objective of this work is to propose a safe and efficient procedure for the structural analysis of telecommunication towers with high slenderness constructed in reinforced concrete, based on a dynamic nonlinear model, submitting it to the wind load. These loads are simulated by the synthetic wind method proposed by Franco (1993). The analysis of the reinforced concrete will be held according to NBR-6118 (ABNT, 2007). In order to determine accurately the displacements of the structure subjected to wind loading, an iterative computational method will be held to obtain non-linear responses. A linear analysis is carried out and, with the results of the forces, the tensions and the fissured portion of each cross section are obtained and then 2nd order displacements of the tower. In each iteration, a P-Delta type procedure will be held to take into account the geometric non-linearity of the structure. The boundary conditions of the problem are related to the restriction of the stress level, displacements and vibration frequencies of the structure. At the end, a dynamic analysis around the nonlinear configuration will be performed, and the total displacement of the tower will be given by the sum of the static component with the floating component of the wind.
14

O elemento finito T6-3i na análise de placas e dinâmica de cascas. / The finite element T6-3i in plate and dynamic shell analysis.

Nadia Suemi Nobre Ota 04 May 2016 (has links)
O método dos elementos finitos é o método numérico mais difundido na análise de estruturas. Ao longo das últimas décadas foram formulados inúmeros elementos finitos para análise de cascas e placas. As formulações de elementos finitos lidam bem com o campo de deslocamentos, mas geralmente faltam testes que possam validar os resultados obtidos para o campo das tensões. Este trabalho analisa o elemento finito T6-3i, um elemento finito triangular de seis nós proposto dentro de uma formulação geometricamente exata, em relação aos seus resultados de tensões, comparando-os com as teorias analíticas de placas, resultados de tabelas para o cálculo de momentos em placas retangulares e do ANSYSr, um software comercial para análise estrutural, mostrando que o T6-3i pode apresentar resultados insatisfatórios. Na segunda parte deste trabalho, as potencialidades do T6-3i são expandidas, sendo proposta uma formulação dinâmica para análise não linear de cascas. Utiliza-se um modelo Lagrangiano atualizado e a forma fraca é obtida do Teorema dos Trabalhos Virtuais. São feitas simulações numéricas da deformação de domos finos que apresentam vários snap-throughs e snap-backs, incluindo domos com vincos curvos, mostrando a robustez, simplicidade e versatilidade do elemento na sua formulação e na geração das malhas não estruturadas necessárias para as simulações. / The Finite Element Method (FEM) is the numerical method most commonly used in structural analysis. A number of shell and plate finite elements has been suggested in the last decades. Finite element formulations deal well with the displacements field, but they usually lack tests that can validate the results obtained for the stress field. This work analyzes the finite element T6-3i, a six-nodes triangular finite element derived from a geometrically exact theory, regarding its stress results, comparing them with analytic plate theories, results from tables of moments in rectangular plates and from ANSYSr, a commercial software for structural analysis, showing that T6-3i can present unsatisfactory results. In the second part of this work, the T6-3i potentialities are expanded as a dynamic formulation for nonlinear shell analysis is proposed. An updated Lagrangian framework has been used and the weak form is obtained from the Principle of VirtualWork. Several numerical examples of folding a thin dome, which present various snap-throughs and snap-backs are presented, including creased shells, showing the robustness, simplicity and versatility of the element formulation and in generation of the unstructured curved meshes indispensable for the simulations.
15

An adaptive model order reduction for nonlinear dynamical problems. / Um modelo de redução de ordem adaptativo para problemas dinâmicos não-lineares.

Paulo Salvador Britto Nigro 21 March 2014 (has links)
Model order reduction is necessary even in a time where the parallel processing is usual in almost any personal computer. The recent Model Reduction Methods are useful tools nowadays on reducing the problem processing. This work intends to describe a combination between POD (Proper Orthogonal Decomposition) and Ritz vectors that achieve an efficient Galerkin projection that changes during the processing, comparing the development of the error and the convergence rate between the full space and the projection space, in addition to check the stability of the projection space, leading to an adaptive model order reduction for nonlinear dynamical problems more efficient. This model reduction is supported by a secant formulation, which is updated by BFGS (Broyden - Fletcher - Goldfarb - Shanno) method to accelerate convergence of the model, and a tangent formulation to correct the projection space. Furthermore, this research shows that this method permits a correction of the reduced model at low cost, especially when the classical POD is no more efficient to represent accurately the solution. / A Redução de ordem de modelo é necessária, mesmo em uma época onde o processamento paralelo é usado em praticamente qualquer computador pessoal. Os recentes métodos de redução de modelo são ferramentas úteis nos dias de hoje para a redução de processamento de um problema. Este trabalho pretende descrever uma combinação entre POD (Proper Orthogonal Decomposition) e vetores de Ritz para uma projecção de Galerkin eficiente que sofre alterações durante o processamento, comparando o desenvolvimento do erro e a taxa de convergência entre o espaço total e o espaço de projeção, além da verificação de estabilidade do espaço de projeção, levando a uma redução de ordem do modelo adaptativo mais eficiente para problemas dinâmicos não-lineares. Esta redução de modelo é assistida por uma formulação secante, que é atualizado pela formula de BFGS (Broyden - Fletcher- Goldfarb - Shanno) com o intuito de acelerar a convergência do modelo, e uma formulação tangente para a correção do espaço de projeção. Além disso, esta pesquisa mostra que este método permite a correção do modelo reduzido com baixo custo, especialmente quando o clássico POD não é mais eficiente para representar com precisão a solução.
16

Seismic Damage Assessment of Reinforced Concrete Frame Buildings in Canada

Al Mamun, Abdullah January 2017 (has links)
The emphasis on seismic design and assessment of reinforced concrete (RC) frame structure has shifted from force-based to performance-based design and assessment to accommodate strength and ductility for required performance of building. RC frame structure may suffer different levels of damage under seismic-induced ground motions, with potentials for formation of hinges in structural elements, depending on the level of stringency in design. Thus it is required to monitor the seismic behaviour and performance of buildings, which depend on the structural system, year of construction and the level of irregularities in the structural system. It is the objective of the current research project to assess seismic performance of RC frame buildings in Canada, while developing fragility curves as analytical tools for such assessment. This was done through dynamic inelastic analysis by modelling selected building structures and using PERFORM-3D as analysis software, while employing incremental dynamic analysis to generate performance data under incrementally increasing seismic intensity of selected earthquake records. The results lead to probabilistic tools to assess the performance of buildings designed following the National Building Code of Canada in different years of construction with and without irregularities. The research consists of three phases; i) regular buildings designed after 1975, ii) regular buildings designed prior to 1975, and iii) irregular buildings designed prior to 1975. The latter two phases address older buildings prior to the development of modern seismic building codes. All three phases were carried out by selecting and designing buildings in Ottawa, representing the seismic region in eastern Canada, as well as buildings in Vancouver, representing the seismic region in western Canada. Buildings had three heights (2; 5; and 10-stories) to cover a wide range of building periods encountered in practice. The resulting fragility curves indicated that the older buildings showed higher probabilities of exceeding life safety and/or collapse prevention performance levels. Newer buildings showed higher probabilities of exceeding target performance levels in western Canada than those located in the east.
17

Corotational formulation for nonlinear analysis of flexible beam structures

Le, Thanh Nam January 2012 (has links)
Flexible beam structures are popular in civil and mechanical engineering. Many of these structures undergo large displacements and finite rotations, but with small deformations. Their dynamic behaviors are usually investigated using finite beam elements. A well known method to derive such beam elements is the corotational approach. This method has been extensively used in nonlinear static analysis. However, its application in nonlinear dynamics is rather limited. The purpose of this thesis is to investigate the nonlinear dynamic behavior of flexible beam structures using the corotational method. For the 2D case, a new dynamic corotational beam formulation is presented. The idea is to adopt the same corotational kinetic description in static and dynamic parts. The main novelty is to use cubic interpolations to derive both inertia terms and internal terms in order to capture correctly all inertia effects. This new formulation is compared with two classic formulations using constant Timoshenko and constant lumped mass matrices. This work is presented in the first appended journal paper. For the 3D case, update procedures of finite rotations, which are central issues in development of nonlinear beam elements in dynamic analysis, are discussed. Three classic and one new formulations of beam elements based on the three different parameterizations of the finite rotations are presented. In these formulations, the corotational method is used to develop expressions of the internal forces and the tangent stiffness matrices, while the dynamic terms are formulated into a total Lagrangian context. Many aspects of the four formulations are investigated. First, theoretical derivations as well as practical implementations are given in details. The similarities and differences between the formulations are pointed out. Second, numerical accuracy and computational efficiency of these four formulations are compared. Regarding efficiency, the choice of the predictor at each time step and the possibility to simplify the tangent inertia matrix are carefully investigated. This work is presented in the second appended journal paper. To make this thesis self-contained, two chapters concerning the parametrization of the finite rotations and the derivation of the 3D corotational beam element in statics are added. / QC 20120521
18

Complexity Analysis of Physiological Time Series with Applications to Neonatal Sleep Electroencephalogram Signals

Li, Chang 08 March 2013 (has links)
No description available.
19

Multi-hazard performance of steel moment frame buildings with collapse prevention systems in the central and eastern United States

Judd, Johnn P. 05 June 2015 (has links)
This dissertation discusses the potential for using a conventional main lateral-force resisting system, combined with the reserve strength in the gravity framing, and or auxiliary collapse-inhibiting mechanisms deployed throughout the building, or enhanced shear tab connections, to provide adequate serviceability performance and collapse safety for seismic and wind hazards in the central and eastern United States. While the proposed concept is likely applicable to building structures of all materials, the focus of this study is on structural steel-frame buildings using either non-ductile moment frames with fully-restrained flange welded connections not specifically detailed for seismic resistance, or ductile moment frames with reduced beam section connections designed for moderate seismic demands. The research shows that collapse prevention systems were effective at reducing the conditional probability of seismic collapse during Maximum Considered Earthquake (MCE) level ground motions, and at lowering the seismic and wind collapse risk of a building with moment frames not specifically detailed for seismic resistance. Reserve lateral strength in gravity framing, including the shear tab connections was a significant factor. The pattern of collapse prevention component failure depended on the type of loading, archetype building, and type of collapse prevention system, but most story collapse mechanisms formed in the lower stories of the building. Collapse prevention devices usually did not change the story failure mechanism of the building. Collapse prevention systems with energy dissipation devices contributed to a significant reduction in both repair cost and downtime. Resilience contour plots showed that reserve lateral strength in the gravity framing was effective at reducing recovery time, but less effective at reducing the associated economic losses. A conventional lateral force resisting system or a collapse prevention system with a highly ductile moment frame would be required for regions of higher seismicity or exposed to high hurricane wind speeds, but buildings with collapse prevention systems were adequate for many regions in the central and eastern United States. / Ph. D.
20

Σεισμική αποτίμηση και ενίσχυση τριορόφου κτηρίου οπλισμένου σκυροδέματος / Seismic assessment and strengthening of a 3-story reinforced concrete building

Βουσβούκης, Ιωάννης 14 May 2007 (has links)
Η παρούσα διατριβή έχει ως θέμα την σεισμική αποτίμηση υφισταμένου τριώροφου δομήματος οπλισμένου σκυροδέματος. Συγκεκριμένα γίνεται έλεγχος των μέτρων επέμβασης για το κτήριο αιθουσών διδασκαλίας του ΤΕΛ Ναυπάκτου. Για τον σκοπό αυτό χρησιμοποιούνται μη-γραμμικές αναλύσεις (στατικές και δυναμικές) με βάση τις αρχές των κανονιστικών κειμένων ΚΑΝ.ΕΠΕ και EC8 για την αποτίμηση και τον ανασχεδιασμό κατασκευών. Στο πρώτο κεφάλαιο γίνεται τεκμηρίωση του υφιστάμενου δομήματος. Δίνονται στοιχεία για την θέση, την γεωμετρία, τις κατασκευαστικές μεθόδους που εφαρμόστηκαν. Δίνονται τα αποτελέσματα των οπτικών και των ενόργανων ελέγχων και προσδιορίζεται η γεωμετρία του φορέα. Στο δεύτερο κεφάλαιο δίνονται οι παραδοχές και οι αρχές με βάση τις οποίες έγινε η εξιδανίκευση του φορέα για την πραγματοποίηση των μη γραμμικών στατικών αναλύσεων. Για τις αναλύσεις χρησιμοποιείται το πακέτο λογισμικού ANSRuop που έχει αναπτυχθεί στο Εργαστήριο Κατασκευών του Τμήματος. Το μοντέλο μονότονης και ανακυκλιζόμενης φόρτισης που χρησιμοποιείται είναι το γνωστό προσομοίωμα Τakeda με εννέα κανόνες υστέρησης. Προσδιορίζονται οι παραδοχές για τον υπολογισμό των διαθέσιμων αντιστάσεων σε όρους παραμορφώσεων και δυνάμεων που υιοθετούνται από τον ΚΑΝΕΠΕ και τον EC8 καθώς και τα κριτήρια που αποδέχεται το κάθε κείμενο για την επιθυμητή στάθμη αποτίμησης και ανασχεδιασμού του φορέα. Ακόμα γίνεται αναφορά στο μοντέλο προσομοίωσης του λικνισμού των θεμελίων για θεώρηση διαφόρων εδαφών. Εν συνεχεία στο τρίτο Κεφάλαιο γίνεται αναφορά στους στόχους σχεδιασμού που θέτει ο κάθε κανονισμός και στις στάθμες επιτελεστικότητας για τον κάθε κανονισμό. Γίνεται παρουσίαση των τεχνητών σεισμικών καταγραφών που λήφθηκαν υπόψη για την πραγματοποίηση των μη γραμμικών δυναμικών αναλύσεων. Οι καταγραφές είναι κανονικοποιημένες πάνω στο φάσμα του EC8 για τύπο εδάφους C που διαφέρει από το φάσμα σχεδιασμού κατά ΕΑΚ για την στάθμη επιτελεστικότητας «Προστασία ζωής και περιουσίας των ενοίκων » μόνο κατά τον εδαφικό συντελεστή S. Ακόμα δίνεται η μεθοδολογία που υιοθετήθηκε για την εκτίμηση της ικανότητας του κτηρίου έναντι των απαιτήσεων που θέτει ο κανονισμός και προτείνεται εναλλακτικά και από τα δύο κείμενα. Στα κεφάλαια 4 και 5 παρουσιάζονται τα αποτελέσματα των μη-γραμμικών αναλύσεων. Συνολικά πραγματοποιήθηκαν 56 μη-γραμμικές στατικές αναλύσεις και 84 μη-γραμμικές δυναμικές. Για τις μη-γραμμικές στατικές αναλύσεις παρουσιάζονται οι καταγραφές τέμνουσας βάσης μετατόπισης κορυφής ενώ τα αποτελέσματα των μη-γραμμικών δυναμικών αναλύσεων δίνονται με την μορφή των μέσων όρων των δεικτών βλάβης. Τέλος στο 6ο κεφάλαιο γίνεται προσπάθεια ερμηνείας των αποτελεσμάτων για τις αναλύσεις πρίν και μετά την δομητική επέμβαση. / The present project deals with a seismic assessment analysis of an existing reinforced concrete building. A fully performance-based procedure is adopted based on the principals of the draft Greek Retrofitting Code and the draft part 3 of the Eurocode 8 : Assessment and retrofitting of Buildings. The method is subjected on an existing building, which has been constructed, during early 70’ s, prior to the principals of the modern codes for earthquake resistant design. The building is located in the area of Nafpaktos. In the first chapter a summary of the characteristics of the existing building is given. Special data concerning the site, the geometry and the construction methods at the time in which the building was constructed. The results of the damage investigation according to the visual and the instrumental inspection are also given. The basic principals according to which the modelling and the non-linear analysis procedures took place is given in the 2nd chapter. For the analysis procedures the program ANSR University of Patras is used which has been developed in the Structural Laboratory of The Civil Engineering Department of the University of Patras. One-component, point-hinge macromodels are used for the RC members, to relate the end-moment to the chord rotation at member ends within each plane of bending. The M-θ relation in monotonic loading is taken bilinear, with a post-yield hardening ratio p computed assuming antisymmetric bending and using empirical expressions according to the Greek Retrofitting Code and Part-3 of the EC8 (according to the selected limit state). The hysteresis rules supplementing the bilinear monotonic M-θ curve are of the modified-Takeda type. Also the monotonic M-θ relation which is used for the modelling of the foundation uplift is given. In the 3rd chapter the performance objectives of the assessment procedure are given according to the appropriate levels of protection for the selected limit state. The synthetic accellerograms which are used for the Nonlinear dynamic procedure are compatible to the EC8 elastic spectrum for type soil C for the limit state of Significant Damage. Moreover the methodology of the determination of the target displacement according to the Annex B of the EC8-part 1 and the draft Greek Retrofitting Code. Finally in chapters 4 and 5 the results of the nonlinear static and dynamic analysis are presented. For the nonlinear static procedures the results are given in terms of base shear vs roof displacement and in terms of Spectral acceleration vs Spectral displacement for the determination of the target displacement. The results of the NonLinear dynamic procedures are given in terms of mean values of the damage index.

Page generated in 0.0718 seconds