• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 23
  • 18
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 187
  • 187
  • 79
  • 41
  • 32
  • 32
  • 25
  • 23
  • 23
  • 20
  • 20
  • 20
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Inferência não paramétrica baseada no método H-splines para a intensidade de processos de Poisson não-homogêneos / Nonparametric inference based on H-splines method for intensity of inhomogeneous Poisson process

Alcantara, Adeilton Pedro de, 1973- 21 August 2018 (has links)
Orientadores: Ronaldo Dias, Nancy Lopes Garcia / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T02:16:44Z (GMT). No. of bitstreams: 1 Alcantara_AdeiltonPedrode_D.pdf: 7403994 bytes, checksum: a1b986bd21c825efb7bc7ecbb40c550f (MD5) Previous issue date: 2012 / Resumo: Esta tese tem por objetivo propor uma nova metodologia baseada no método da expansão por bases B-splines e suas variantes para estimação não paramétrica da função intensidade...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The main goal of this thesis is to propose a new methodology based on the method of expansion by B-splines bases for non-parametric estimate of the intensity function...Note: The complete abstract is available with the full electronic document / Doutorado / Estatistica / Doutor em Estatística
172

Contributions to robust methods in nonparametric frontier models

Bruffaerts, Christopher 10 September 2014 (has links)
Les modèles de frontières sont actuellement très utilisés par beaucoup d’économistes, gestionnaires ou toute personne dite « decision-maker ». Dans ces modèles de frontières, le but du chercheur consiste à attribuer à des unités de production (des firmes, des hôpitaux ou des universités par exemple) une mesure de leur efficacité en terme de production. Ces unités (dénotées DMU-Decision-Making Units) utilisent-elles à bon escient leurs « inputs » et « outputs »? Font-elles usage de tout leur potentiel dans le processus de production? <p>L’ensemble de production est l’ensemble contenant toutes les combinaisons d’inputs et d’outputs qui sont physiquement réalisables dans une économie. De cet ensemble contenant p inputs et q outputs, la notion d’efficacité d ‘une unité de production peut être définie. Celle-ci se définie comme une distance séparant le DMU de la frontière de l’ensemble de production. A partir d’un échantillon de DMUs, le but est de reconstruire cette frontière de production afin de pouvoir y évaluer l’efficacité des DMUs. A cette fin, le chercheur utilise très souvent des méthodes dites « classiques » telles que le « Data Envelopment Analysis » (DEA).<p><p>De nos jours, le statisticien bénéficie de plus en plus de données, ce qui veut également dire qu’il n’a pas l’opportunité de faire attention aux données qui font partie de sa base de données. Il se peut en effet que certaines valeurs aberrantes s’immiscent dans les jeux de données sans que nous y fassions particulièrement attention. En particulier, les modèles de frontières sont extrêmement sensibles aux valeurs aberrantes et peuvent fortement influencer l’inférence qui s’en suit. Pour éviter que certaines données n’entravent une analyse correcte, des méthodes robustes sont utilisées.<p><p>Allier le côté robuste au problème d’évaluation d’efficacité est l’objectif général de cette thèse. Le premier chapitre plante le décor en présentant la littérature existante dans ce domaine. Les quatre chapitres suivants sont organisés sous forme d’articles scientifiques. <p>Le chapitre 2 étudie les propriétés de robustesse d’un estimateur d’efficacité particulier. Cet estimateur mesure la distance entre le DMU analysé et la frontière de production le long d’un chemin hyperbolique passant par l’unité. Ce type de distance très spécifique s’avère très utile pour définir l’efficacité de type directionnel. <p>Le chapitre 3 est l’extension du premier article au cas de l’efficacité directionnelle. Ce type de distance généralise toutes les distances de type linéaires pour évaluer l’efficacité d’un DMU. En plus d’étudier les propriétés de robustesse de l’estimateur d’efficacité de type directionnel, une méthode de détection de valeurs aberrantes est présentée. Celle-ci s’avère très utile afin d’identifier les unités de production influençantes dans cet espace multidimensionnel (dimension p+q). <p>Le chapitre 4 présente les méthodes d’inférence pour les efficacités dans les modèles nonparamétriques de frontière. En particulier, les méthodes de rééchantillonnage comme le bootstrap ou le subsampling s’avère être très utiles. Dans un premier temps, cet article montre comment améliorer l’inférence sur les efficacités grâce au subsampling et prouve qu’il n’est pas suffisant d’utiliser un estimateur d’efficacité robuste dans les méthodes de rééchantillonnage pour avoir une inférence qui soit fiable. C’est pourquoi, dans un second temps, cet article propose une méthode robuste de rééchantillonnage qui est adaptée au problème d’évaluation d’efficacité. <p>Finalement, le dernier chapitre est une application empirique. Plus précisément, cette analyse s’intéresse à l ‘efficacité des universités américaines publiques et privées au niveau de leur recherche. Des méthodes classiques et robustes sont utilisées afin de montrer comment tous les outils étudiés précédemment peuvent s’appliquer en pratique. En particulier, cette étude permet d’étudier l’impact sur l’efficacité des institutions américaines de certaines variables telles que l’enseignement, l’internationalisation ou la collaboration avec le monde de l’industrie.<p> / Doctorat en sciences, Orientation statistique / info:eu-repo/semantics/nonPublished
173

Modelagem multinomial para a distribuição espacial do risco epidemiológico / Multinomial models to estimate the spatial risk in epidemiology

Mafra, Ana Carolina Cintra Nunes, 1982- 18 August 2018 (has links)
Orientador: Ricardo Carlos Cordeiro / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-18T15:08:16Z (GMT). No. of bitstreams: 1 Mafra_AnaCarolinaCintraNunes_D.pdf: 19877794 bytes, checksum: a74a4b2bf9bccffacddd691b458d1fd3 (MD5) Previous issue date: 2011 / Resumo: A busca em compreender determinados fenômenos epidemiológicos muitas vezes envolve uma ferramenta denominada análise espacial do risco. O estudo do espaço em que ocorrem determinados desfechos permite ao pesquisador considerar informações não coletadas através de questionários ou prontuários médicos. Também insere questões sobre o que faz com que determinada área dentro da região de estudo se associe com maior risco ou proteção para o desfecho estudado. Existem muitos métodos para obter análises espaciais do risco, como os modelos aditivos generalizados, que permitem incluir nestas análises outras informações de interesse dos indivíduos estudados. Porém, atualmente, os estudos epidemiológicos que consideram a distribuição espacial do risco são analisados apenas com desfechos dicotômicos como, por exemplo, quando se classifica o indivíduo em doente ou não-doente. Esta é uma limitação que este trabalho visa superar ao apresentar um processo analítico da distribuição espacial do risco quando se tem uma variável resposta multinomial. Além de apresentar esta nova ferramenta, este trabalho analisou dois desfechos epidemiológicos: o primeiro é proveniente de um estudo caso-controle sobre acidentes de trabalhado na cidade de Piracicaba em que a resposta foi: casos graves, casos leves ou controles; outra ilustração provém de um estudo transversal sobre criadouros de mosquitos no Distrito Sul de Campinas, onde se encontrou muitos criadouros, poucos criadouros ou nenhum criadouro. Primeiramente, faz-se necessária uma discussão sobre a adequação de cada modelo multinomial a alguns estudos epidemiológicos. Também se discute a escolha de um entre diversos modelos multinomiais e apresenta-se a maneira de interpretar os resultados da análise. Para tornar este método acessível a outros pesquisadores, são apresentadas funções computacionais para o processo analítico / Abstract: The search for understanding some epidemiological phenomena often involves an tool called spatial analysis of risk. The study of space in which certain outcomes occur allows the researcher to consider information that can not be collected through questionnaires or medical records. It also puts questions about what makes a certain area within the study region was associated with greater risk or protection for the outcome studied. Many techniques are used for this kind of study as the generalized additive models that fit the spatial analysis of the risk with others informations of interest. But now, epidemiological studies that consider the spatial distribution of risk are analyzed only with dichotomous outcomes, such as when it classifies the individual in case or control. This is a limitation that this study aims to overcome when presenting an analytical process of the spatial distribution of risk when you have a multinomial response variable. In addition to presenting this new tool, this study analyzed two outcomes: first, from a case-control study of precarious workers in the city of Piracicaba in which the response was: severe cases, mild cases or controls. Another illustration comes from a cross-sectional study on mosquito breeding sites in the Southern District of Campinas, where we met many breeding sites, few or no breeding sites. First, it is necessary a discussion on the appropriateness of each multinomial model to some epidemiological studies. It also discusses the choice of one among several multinomial models and shows the way to interpret the results of the analysis. We present the computational functions for the analytical process to make this method accessible to other researchers / Doutorado / Epidemiologia / Doutor em Saude Coletiva
174

Inférence statistique dans le modèle de mélange à risques proportionnels / Statistical inference in mixture of proportional hazards models

Ben elouefi, Rim 05 September 2017 (has links)
Dans ce travail, nous nous intéressons à l'inférence statistique dans deux modèles semi-paramétrique et non-paramétrique stratifiés de durées de vie censurées. Nous proposons tout d'abord une statistique de test d'ajustement pour le modèle de régression stratifié à risques proportionnels. Nous établissons sa distribution asymptotique sous l'hypothèse nulle d'un ajustement correct du modèle aux données. Nous étudions les propriétés numériques de ce test (niveau, puissance sous différentes alternatives) au moyen de simulations. Nous proposons ensuite une procédure permettant de stratifier le modèle à 1isques proportionnels suivant un seuil inconnu d'une variable de stratification. Cette procédure repose sur l'utilisation du test d'ajustement proposé précédemment. Une étude de simulation exhaustive est conduite pour évaluer les pe1fonnances de cette procédure. Dans une seconde partie de notre travail, nous nous intéressons à l'application du test du logrank stratifié dans un contexte de données manquantes (nous considérons la situation où les strates ne peuvent être observées chez tous les individus de l'échantillon). Nous construisons une version pondérée du logrank stratifié adaptée à ce problème. Nous en établissons la loi limite sous l'hypothèse nulle d'égalité des fonctions de risque dans les différents groupes. Les propriétés de cette nouvelle statistique de test sont évaluée au moyen de simulations. Le test est ensuite appliqué à un jeu de données médicales. / In this work, we are interested in the statistical inference in two semi-parametric and non-parametric stratified models for censored data. We first propose a goodnessof- fit test statistic for the stratified proportional hazards regression model. We establish its asymptotic distribution under the null hypothesis of a correct fit of the model. We investigate the numerical properties of this test (level, power under different alternatives) by means of simulations. Then, we propose a procedure allowing to stratify the proportional hazards model according to an unknown threshold in a stratification variable. This procedure is based on the goodness-of-fit test proposed earlier. An exhaustive simulation study is conducted to evaluate the performance of this procedure. In a second part of our work, we consider the stratified logrank test in a context of missing data (we consider the situation where strata can not be observed on all sample individuals). We construct a weighted version of the stratified logrank, adapted to this problem. We establish its asymptotic distribution under the null hypothesis of equality of the hazards functions in the different groups. The prope1ties of this new test statistic are assessed using simulatious. Finally, the test is applied to a medical dataset.
175

Statistical Analysis Of Visible Absorption Spectra And Mass Spectra Obtained From Dyed Textile Fibers

White, Katie Margaret 01 January 2010 (has links)
The National Academy of Sciences recently published a report which calls for improvements to the field of forensic science. Their report criticized many forensic disciplines for failure to establish rigorously-tested methods of comparison, and encouraged more research in these areas to establish limitations and assess error rates. This study applies chemometric and statistical methods to current and developing analytical techniques in fiber analysis. In addition to analysis of commercially available dyed textile fibers, two pairs of dyes are selected based for custom fabric dyeing on the similarities of their absorbance spectra and dye molecular structures. Visible absorption spectra for all fiber samples are collected using microspectrophotometry (MSP) and mass spectra are collected using electrospray ionization (ESI) mass spectrometry. Statistical calculations are performed using commercial software packages and software written in-house. Levels of Type I and Type II error are examined for fiber discrimination based on hypothesis testing of visible absorbance spectra using a nonparametric permutation method. This work also explores evaluation of known and questioned fiber populations based on an assessment of p-value distributions from questioned-known fiber comparisons with those of known fiber self-comparisons. Results from the hypothesis testing are compared with principal components analysis (PCA) and discriminant analysis (DA) of visible absorption spectra, as well as PCA and DA of ESI mass spectra. The sensitivity of a statistical approach will also be discussed in terms of how instrumental parameters and sampling methods may influence error rates.
176

Essays on Modern Econometrics and Machine Learning

Keilbar, Georg 16 June 2022 (has links)
Diese Dissertation behandelt verschiedene Aspekte moderner Ökonometrie und Machine Learnings. Kapitel 2 stellt einen neuen Schätzer für die Regressionsparameter in einem Paneldatenmodell mit interaktiven festen Effekten vor. Eine Besonderheit unserer Methode ist die Modellierung der factor loadings durch nichtparametrische Funktionen. Wir zeigen die root-NT-Konvergenz sowie die asymptotische Normalverteilung unseres Schätzers. Kapitel 3 betrachtet die rekursive Schätzung von Quantilen mit Hilfe des stochastic gradient descent (SGD) Algorithmus mit Polyak-Ruppert Mittelwertbildung. Der Algorithmus ist rechnerisch und Speicher-effizient verglichen mit herkömmlichen Schätzmethoden. Unser Fokus ist die Untersuchung des nichtasymptotischen Verhaltens, indem wir eine exponentielle Wahrscheinlichkeitsungleichung zeigen. In Kapitel 4 stellen wir eine neue Methode zur Kalibrierung von conditional Value-at-Risk (CoVaR) basierend auf Quantilregression mittels Neural Networks vor. Wir modellieren systemische Spillovereffekte in einem Netzwerk von systemrelevanten Finanzinstituten. Eine Out-of-Sample Analyse zeigt eine klare Verbesserung im Vergleich zu einer linearen Grundspezifikation. Im Vergleich mit bestehenden Risikomaßen eröffnet unsere Methode eine neue Perspektive auf systemisches Risiko. In Kapitel 5 modellieren wir die gemeinsame Dynamik von Kryptowährungen in einem nicht-stationären Kontext. Um eine Analyse in einem dynamischen Rahmen zu ermöglichen, stellen wir eine neue vector error correction model (VECM) Spezifikation vor, die wir COINtensity VECM nennen. / This thesis focuses on different aspects of the union of modern econometrics and machine learning. Chapter 2 considers a new estimator of the regression parameters in a panel data model with unobservable interactive fixed effects. A distinctive feature of the proposed approach is to model the factor loadings as a nonparametric function. We show that our estimator is root-NT-consistent and asymptotically normal, as well that it reaches the semiparametric efficiency bound under the assumption of i.i.d. errors. Chapter 3 is concerned with the recursive estimation of quantiles using the stochastic gradient descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm offers a computationally and memory efficient alternative to the usual empirical estimator. Our focus is on studying the nonasymptotic behavior by providing exponentially decreasing tail probability bounds under minimal assumptions. In Chapter 4 we propose a novel approach to calibrate the conditional value-at-risk (CoVaR) of financial institutions based on neural network quantile regression. We model systemic risk spillover effects in a network context across banks by considering the marginal effects of the quantile regression procedure. An out-of-sample analysis shows great performance compared to a linear baseline specification, signifying the importance that nonlinearity plays for modelling systemic risk. A comparison to existing network-based risk measures reveals that our approach offers a new perspective on systemic risk. In Chapter 5 we aim to model the joint dynamics of cryptocurrencies in a nonstationary setting. In particular, we analyze the role of cointegration relationships within a large system of cryptocurrencies in a vector error correction model (VECM) framework. To enable analysis in a dynamic setting, we propose the COINtensity VECM, a nonlinear VECM specification accounting for a varying system-wide cointegration exposure.
177

Analyse de sensibilité fiabiliste avec prise en compte d'incertitudes sur le modèle probabiliste - Application aux systèmes aérospatiaux / Reliability-oriented sensitivity analysis under probabilistic model uncertainty – Application to aerospace systems

Chabridon, Vincent 26 November 2018 (has links)
Les systèmes aérospatiaux sont des systèmes complexes dont la fiabilité doit être garantie dès la phase de conception au regard des coûts liés aux dégâts gravissimes qu’engendrerait la moindre défaillance. En outre, la prise en compte des incertitudes influant sur le comportement (incertitudes dites « aléatoires » car liées à la variabilité naturelle de certains phénomènes) et la modélisation de ces systèmes (incertitudes dites « épistémiques » car liées au manque de connaissance et aux choix de modélisation) permet d’estimer la fiabilité de tels systèmes et demeure un enjeu crucial en ingénierie. Ainsi, la quantification des incertitudes et sa méthodologie associée consiste, dans un premier temps, à modéliser puis propager ces incertitudes à travers le modèle numérique considéré comme une « boîte-noire ». Dès lors, le but est d’estimer une quantité d’intérêt fiabiliste telle qu’une probabilité de défaillance. Pour les systèmes hautement fiables, la probabilité de défaillance recherchée est très faible, et peut être très coûteuse à estimer. D’autre part, une analyse de sensibilité de la quantité d’intérêt vis-à-vis des incertitudes en entrée peut être réalisée afin de mieux identifier et hiérarchiser l’influence des différentes sources d’incertitudes. Ainsi, la modélisation probabiliste des variables d’entrée (incertitude épistémique) peut jouer un rôle prépondérant dans la valeur de la probabilité obtenue. Une analyse plus profonde de l’impact de ce type d’incertitude doit être menée afin de donner une plus grande confiance dans la fiabilité estimée. Cette thèse traite de la prise en compte de la méconnaissance du modèle probabiliste des entrées stochastiques du modèle. Dans un cadre probabiliste, un « double niveau » d’incertitudes (aléatoires/épistémiques) doit être modélisé puis propagé à travers l’ensemble des étapes de la méthodologie de quantification des incertitudes. Dans cette thèse, le traitement des incertitudes est effectué dans un cadre bayésien où la méconnaissance sur les paramètres de distribution des variables d‘entrée est caractérisée par une densité a priori. Dans un premier temps, après propagation du double niveau d’incertitudes, la probabilité de défaillance prédictive est utilisée comme mesure de substitution à la probabilité de défaillance classique. Dans un deuxième temps, une analyse de sensibilité locale à base de score functions de cette probabilité de défaillance prédictive vis-à-vis des hyper-paramètres de loi de probabilité des variables d’entrée est proposée. Enfin, une analyse de sensibilité globale à base d’indices de Sobol appliqués à la variable binaire qu’est l’indicatrice de défaillance est réalisée. L’ensemble des méthodes proposées dans cette thèse est appliqué à un cas industriel de retombée d’un étage de lanceur. / Aerospace systems are complex engineering systems for which reliability has to be guaranteed at an early design phase, especially regarding the potential tremendous damage and costs that could be induced by any failure. Moreover, the management of various sources of uncertainties, either impacting the behavior of systems (“aleatory” uncertainty due to natural variability of physical phenomena) and/or their modeling and simulation (“epistemic” uncertainty due to lack of knowledge and modeling choices) is a cornerstone for reliability assessment of those systems. Thus, uncertainty quantification and its underlying methodology consists in several phases. Firstly, one needs to model and propagate uncertainties through the computer model which is considered as a “black-box”. Secondly, a relevant quantity of interest regarding the goal of the study, e.g., a failure probability here, has to be estimated. For highly-safe systems, the failure probability which is sought is very low and may be costly-to-estimate. Thirdly, a sensitivity analysis of the quantity of interest can be set up in order to better identify and rank the influential sources of uncertainties in input. Therefore, the probabilistic modeling of input variables (epistemic uncertainty) might strongly influence the value of the failure probability estimate obtained during the reliability analysis. A deeper investigation about the robustness of the probability estimate regarding such a type of uncertainty has to be conducted. This thesis addresses the problem of taking probabilistic modeling uncertainty of the stochastic inputs into account. Within the probabilistic framework, a “bi-level” input uncertainty has to be modeled and propagated all along the different steps of the uncertainty quantification methodology. In this thesis, the uncertainties are modeled within a Bayesian framework in which the lack of knowledge about the distribution parameters is characterized by the choice of a prior probability density function. During a first phase, after the propagation of the bi-level input uncertainty, the predictive failure probability is estimated and used as the current reliability measure instead of the standard failure probability. Then, during a second phase, a local reliability-oriented sensitivity analysis based on the use of score functions is achieved to study the impact of hyper-parameterization of the prior on the predictive failure probability estimate. Finally, in a last step, a global reliability-oriented sensitivity analysis based on Sobol indices on the indicator function adapted to the bi-level input uncertainty is proposed. All the proposed methodologies are tested and challenged on a representative industrial aerospace test-case simulating the fallout of an expendable space launcher.
178

Contributions à l'estimation de quantiles extrêmes. Applications à des données environnementales / Some contributions to the estimation of extreme quantiles. Applications to environmental data.

Methni, Jonathan El 07 October 2013 (has links)
Cette thèse s'inscrit dans le contexte de la statistique des valeurs extrêmes. Elle y apporte deux contributions principales. Dans la littérature récente en statistique des valeurs extrêmes, un modèle de queues de distributions a été introduit afin d'englober aussi bien les lois de type Pareto que les lois à queue de type Weibull. Les deux principaux types de décroissance de la fonction de survie sont ainsi modélisés. Un estimateur des quantiles extrêmes a été déduit de ce modèle mais il dépend de deux paramètres inconnus, le rendant inutile dans des situations pratiques. La première contribution de cette thèse est de proposer des estimateurs de ces paramètres. Insérer nos estimateurs dans l'estimateur des quantiles extrêmes précédent permet alors d'estimer des quantiles extrêmes pour des lois de type Pareto aussi bien que pour des lois à queue de type Weibull d'une façon unifiée. Les lois asymptotiques de nos trois nouveaux estimateurs sont établies et leur efficacité est illustrée sur des données simulées et sur un jeu de données réelles de débits de la rivière Nidd se situant dans le Yorkshire en Angleterre. La seconde contribution de cette thèse consiste à introduire et estimer une nouvelle mesure de risque appelé Conditional Tail Moment. Elle est définie comme le moment d'ordre a>0 de la loi des pertes au-delà du quantile d'ordre p appartenant à ]0,1[ de la fonction de survie. Estimer le Conditional Tail Moment permet d'estimer toutes les mesures de risque basées sur les moments conditionnels telles que la Value-at-Risk, la Conditional Tail Expectation, la Conditional Value-at-Risk, la Conditional Tail Variance ou la Conditional Tail Skewness. Ici, on s'intéresse à l'estimation de ces mesures de risque dans le cas de pertes extrêmes c'est-à-dire lorsque p tend vers 0 lorsque la taille de l'échantillon augmente. On suppose également que la loi des pertes est à queue lourde et qu'elle dépend d'une covariable. Les estimateurs proposés combinent des méthodes d'estimation non-paramétrique à noyau avec des méthodes issues de la statistique des valeurs extrêmes. Le comportement asymptotique de nos estimateurs est établi et illustré aussi bien sur des données simulées que sur des données réelles de pluviométrie provenant de la région Cévennes-Vivarais. / This thesis can be viewed within the context of extreme value statistics. It provides two main contributions to this subject area. In the recent literature on extreme value statistics, a model on tail distributions which encompasses Pareto-type distributions as well as Weibull tail-distributions has been introduced. The two main types of decreasing of the survival function are thus modeled. An estimator of extreme quantiles has been deduced from this model, but it depends on two unknown parameters, making it useless in practical situations. The first contribution of this thesis is to propose estimators of these parameters. Plugging our estimators in the previous extreme quantiles estimator allows us to estimate extreme quantiles from Pareto-type and Weibull tail-distributions in an unified way. The asymptotic distributions of our three new estimators are established and their efficiency is illustrated on a simulation study and on a real data set of exceedances of the Nidd river in the Yorkshire (England). The second contribution of this thesis is the introduction and the estimation of a new risk measure, the so-called Conditional Tail Moment. It is defined as the moment of order a>0 of the loss distribution above the quantile of order p in (0,1) of the survival function. Estimating the Conditional Tail Moment permits to estimate all risk measures based on conditional moments such as the Value-at-Risk, the Conditional Tail Expectation, the Conditional Value-at-Risk, the Conditional Tail Variance or the Conditional Tail Skewness. Here, we focus on the estimation of these risk measures in case of extreme losses i.e. when p converges to 0 when the size of the sample increases. It is moreover assumed that the loss distribution is heavy-tailed and depends on a covariate. The estimation method thus combines nonparametric kernel methods with extreme-value statistics. The asymptotic distribution of the estimators is established and their finite sample behavior is illustrated both on simulated data and on a real data set of daily rainfalls in the Cévennes-Vivarais region (France).
179

O uso de quase U-estatísticas para séries temporais uni e multivaridas / The use of quasi U-statistics for univariate and multivariate time series

Valk, Marcio 17 August 2018 (has links)
Orientador: Aluísio de Souza Pinheiro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatítica e Computação Científica / Made available in DSpace on 2018-08-17T14:57:09Z (GMT). No. of bitstreams: 1 Valk_Marcio_D.pdf: 2306844 bytes, checksum: 31162915c290291a91806cdc6f69f697 (MD5) Previous issue date: 2011 / Resumo: Classificação e agrupamento de séries temporais são problemas bastante explorados na literatura atual. Muitas técnicas são apresentadas para resolver estes problemas. No entanto, as restrições necessárias, em geral, tornam os procedimentos específicos e aplicáveis somente a uma determinada classe de séries temporais. Além disso, muitas dessas abordagens são empíricas. Neste trabalho, propomos métodos para classificação e agrupamento de séries temporais baseados em quase U-estatísticas(Pinheiro et al. (2009) e Pinheiro et al. (2010)). Como núcleos das U-estatísticas são utilizadas métricas baseadas em ferramentas bem conhecidas na literatura de séries temporais, entre as quais o periodograma e a autocorrelação amostral. Três situações principais são consideradas: séries univariadas; séries multivariadas; e séries com valores aberrantes. _E demonstrada a normalidade assintética dos testes propostos para uma ampla classe de métricas e modelos. Os métodos são estudados também por simulação e ilustrados por aplicação em dados reais. / Abstract: Classifcation and clustering of time series are problems widely explored in the current literature. Many techniques are presented to solve these problems. However, the necessary restrictions in general, make the procedures specific and applicable only to a certain class of time series. Moreover, many of these approaches are empirical. We present methods for classi_cation and clustering of time series based on Quasi U-statistics (Pinheiro et al. (2009) and Pinheiro et al. (2010)). As kernel of U-statistics are used metrics based on tools well known in the literature of time series, including the sample autocorrelation and periodogram. Three main situations are considered: univariate time series, multivariate time series, and time series with outliers. It is demonstrated the asymptotic normality of the proposed tests for a wide class of metrics and models. The methods are also studied by simulation and applied in a real data set. / Doutorado / Estatistica / Doutor em Estatística
180

Multivariate Analysis of Korean Pop Music Audio Features

Solomon, Mary Joanna 20 May 2021 (has links)
No description available.

Page generated in 0.1151 seconds