Spelling suggestions: "subject:"nutrient ecovery"" "subject:"nutrient fecovery""
11 |
Removal And Recovery Of Nutrients As Struvite From Anaerobic Digestion/co-digestion Residues Of Poultry ManureYilmazel, Yasemin Dilsad 01 July 2009 (has links) (PDF)
The main objective of this study was to investigate the removal and recovery of nutrients from anaerobic digestion residues of poultry manure through struvite (MgNH4PO4.6H2O, MAP) precipitation. To this purpose, three sets of laboratory experiments were conducted.
In the first set, separate and co-digestion of poultry manure and sewage sludge were studied in laboratory-scale mesophilic anaerobic batch reactors and subsequent struvite precipitation experiments were conducted with the reactors effluents. The effects of important parameters on struvite precipitation were investigated and it is illustrated that up to 89 % of NH4-N, 84 % PO4-P and 42 % COD removals were possible. In the second set, the effluents of a full-scale co-digestion plant utilizing poultry manure and maize silage were subjected to struvite precipitation experiments. Acidic phosphorus-dissolution process was successfully applied to the solid phase effluents to obtain phosphorus-enriched solution. By the addition of external Mg and P more than 90% of NH4-N and PO4-P were recovered from phosphorus-enriched solution, whereas the addition of only Mg led to partial recovery of NH4-N. In the third set, the effluents of a full-scale poultry manure digester were subjected to struvite precipitation experiments. The findings illustrated that Ca has inhibitory effects on the struvite reaction and lead to formation of hydroxlyapatite and amorphous calcium phosphates together with struvite.
Based on the results obtained in this study, it is postulated that, struvite precipitation is a viable option for the recovery of the nutrients in the anaerobically digested poultry manure. This study illustrated that, poultry manure, if managed properly, could meet one-fourth of Turkey& / #8217 / s domestic fertilizer demand.
|
12 |
Enhancing Energy Recoverability of Municipal WastewaterSnider-Nevin, Jeffrey 09 May 2013 (has links)
Wastewater contains many valuable constituents, including phosphorus, nitrogen and more energy than what is required to treat it. This, combined with increasingly more stringent effluent requirements and the desire for water reuse, creates a demand for a system capable of both nutrient and energy recovery. The main objective was to develop a new wastewater treatment process configuration capable of maximizing energy recovery while enhancing biological phosphorus removal. Three pilot membrane bioreactors were operated at SRTs ranging from 2 days to 8 days to evaluate membrane fouling, treatment performance, sludge production and sludge settleability. The results showed high organics removal and near complete nitrification at all SRTs. Membrane fouling was highest at lower SRTs. The collected data were then used to calibrate a series of model configurations. The best configuration consisted of two sludge systems in series, with a short SRT anaerobic-aerobic first stage and an extended SRT pre-anoxic second stage. / Canadian Water Network
|
13 |
Assessment of the flat-pannel membrane photobioreactor technology for wastewater treatment: Outdoor application to treat the effluent of an anaerobic membrane bioreactorGonzález Camejo, Josué 12 November 2020 (has links)
Tesis por compendio / [ES] La combinación de reactores anaerobios de membranas (AnMBRs) con el cultivo de microalgas en un fotobiorreactor de membranas (MPBR) aparece como una opción ideal dentro del marco de tecnologías sostenibles para la depuración de aguas residuales. Con esta combinación de tecnologías, se puede obtener biogás a partir de la materia orgánica presente en el agua residual, mientras que los nutrientes del efluente de AnMBR se recuperan con la biomasa algal. Además, la tecnología de membranas permite obtener un efluente limpio y apto para su reutilización.
Estudios previos han demostrado la capacidad de un cultivo de microalgas para recuperar los nutrientes presentes en el efluente de un sistema AnMBR a escala laboratorio. Sin embargo, el traslado de esta tecnología a condiciones controladas de laboratorio a condiciones ambientales variables puede suponer una limitación en su aplicación industrial.
Este trabajo consiste en la evaluación del proceso de cultivo de microalgas en una planta piloto MPBR alimentada con el efluente de un sistema AnMBR. Para ello se han evaluado las condiciones óptimas de operación de la planta, teniendo en cuenta tanto el proceso biológico de microalgas como la velocidad de ensuciamiento de las membranas. También se ha estudiado el efecto de otros parámetros que influyen en el proceso, como la intensidad de luz aplicada a los fotobiorreactores (PBRs), temperatura, concentración de materia orgánica, presencia de otros organismos, etc.; así como el peso específico de cada parámetro dentro del proceso. Otro objetivo consiste en la búsqueda de nuevos parámetros de control del proceso que faciliten la operación en continuo del sistema.
El sistema MPBR utilizado en este estudio se mostró capaz de tratar un efluente de AnMBR, cumpliendo con los límites legales de vertido. Sin embargo, esta operación se consiguió únicamente cuando se cumplían una serie de condiciones:
i) El espesor de los fotobiorreactores era estrecho (10 cm).
ii) Las condiciones de operación (BRT y HRT) se mantenían dentro del rango adecuado.
iii) Temperatura se mantenía habitualmente debajo del límite máximo de 30 ºC.
iv) No existía acumulación de nitrito.
v) La fuente principal de nitrógeno era amonio.
vi) La materia orgánica presente en el cultivo no era excesiva. / [CA] La combinació de reactors anaerobis de membranes (AnMBRs) amb el cultiu de microalgues en un fotobioreactor de membranes (MPBR) apareix com una opció ideal dins el marc de tecnologies sostenibles per a la depuració d'aigües residuals. Amb aquesta combinació de tecnologies, es pot obtenir biogàs a partir de la matèria orgànica present en l'aigua residual, mentre que els nutrients de l'efluent de AnMBR es recuperen amb la biomassa algal. A més, la tecnologia de membranes permet obtenir un efluent net i apte per a la seua reutilització.
Estudis previs han demostrat la capacitat d'un cultiu de microalgues per recuperar els nutrients presents en l'efluent d'un sistema AnMBR a escala laboratori. No obstant això, el trasllat d'aquesta tecnologia de condicions controlades de laboratori a condicions ambientals variables pot suposar una limitació en la seua aplicació industrial.
Aquest treball consisteix en l'avaluació del procés de cultiu de microalgues en una planta pilot MPBR alimentada amb l'efluent d'un sistema AnMBR. Per a això s'han avaluat les condicions òptimes d'operació de la planta, tenint en compte tant el procés biològic de microalgues com la velocitat d'embrutiment de les membranes. També s'ha estudiat l'efecte d'altres paràmetres que influeixen en el procés, com la intensitat de llum aplicada als fotobioreactors (PBRs), temperatura, concentració de matèria orgànica, presència d'altres organismes, etc .; així com el pes específic de cada paràmetre dins del procés. Un altre objectiu consisteix en la recerca de nous paràmetres de control del procés que facilitin l'operació en continu del sistema.
El sistema MPBR utilitzat en aquest estudi es va mostrar capaç de tractar un efluent de AnMBR, complint amb els límits legals d'abocament. No obstant això, aquesta operació es va aconseguir únicament quan es complien una sèrie de condicions:
i) El gruix dels fotobioreactors era estret (10 cm).
ii) Les condicions d'operació (BRT i HRT) es mantenien dins del rang adequat.
iii) La temperatura es mantenia habitualment baix del límit màxim de 30 ºC.
iv) No existia acumulació de nitrit.
v) La font principal de nitrogen era amoni.
vi) La matèria orgànica present en el cultiu no era excessiva. / [EN] The combination of anaerobic membrane reactors (AnMBRs) and microalgae membrane photobioreactor (MPBR) appears as an ideal option within the framework of sustainable technologies for wastewater treatment. This combination enables to produce biogas from the organic matter present in wastewater, while the nutrient content of the AnMBR effluent can be recovered from microalgae biomass. In addition, membrane technology allows obtaining a water effluent which can be suitable for reclamation.
Previous studies have proved the capability of a microalgae culture to recover the nutrients present in AnMBR effluent at lab scale. However, up-scaling from controlled lab conditions to varying outdoor conditions could limit the industrial applications of this technology.
This study consists of the assessment of a microalgae culture in an MPBR pilot plant fed by effluent of an AnMBR system. For this, optimal operating conditions of the MPBR plant were evaluated, considering both the microalgae biological process and the membrane fouling rate. The effect of other parameters that have an influence on the process such as light intensity applied to the photobioreactors (PBRs), temperature, organic matter concentration, presence of other organisms, etc., was also studied; as well as the specific weight of each parameter on the process. Another goal consisted of finding new controlling parameters that ease the continuous operation of the system.
The MPBR system used in this study showed appeared to be capable of treating AnMBR effluent, successfully accomplishing legal discharge limits. However, this was only achieved when the following conditions were reached:
i) PBR light path was as narrow as 10 cm.
ii) Operating conditions (BRT and HRT) were in the appropriate range.
iii) Temperature was under the máximum limit of around 30 ºC.
iv) Nitrite was not accumulated.
v) Ammonium was the main nitrogen source.
vi) Organic matter concentration in the culture was not high. / González Camejo, J. (2019). Assessment of the flat-pannel membrane photobioreactor technology for wastewater treatment: Outdoor application to treat the effluent of an anaerobic membrane bioreactor [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133056 / Compendio
|
14 |
Physicochemical Properties of Residuals from Anaerobic Digestion of Dairy Manure and Food Waste: Nutrient Cycling Implications and Opportunities for Edible Mushroom CultivationO'Brien, Brendan J. 01 January 2019 (has links)
Organics recycling is increasing in New England as multiple states have enacted laws to divert organic materials, including food scraps and food processing residuals, away from landfills. Anaerobic digesters on dairy farms represent an attractive approach to food waste recycling because existing infrastructure is in place and co-digestion of dairy manure with food waste can increase renewable biogas production. In addition, anaerobic digestion results in effluents that can be separated into solid and liquid residual materials, or 'digestates'. Screw-press separated solids consist of lignocellulosic biomass resistant to microbial degradation during anaerobic digestion. These separated solids are typically recycled on farms as animal bedding before returning to the digester, whereas remaining liquid digestates are typically spread as fertilizer for nearby feed crops or pasture fields. Within this model, anaerobic digestion is not a nutrient management solution and repeated land application of digestate nutrients can create eutrophication risk over time. Alternative models are needed where digestate materials are converted into valuable products to be sold off-farm, enabling the removal of nutrients to help meet nutrient management goals. In this thesis, I address two research questions related to the pursuit of such alternative models. First, how do physicochemical characteristics of digestate materials vary across full-scale systems in the region, including systems with and without food waste as a substantial proportion of feedstock, and how do these variations affect the potential for conversion of digestates into valuable products (e.g., soil amendments)? Second, can separated digestate solids be used for commercial cultivation of gourmet oyster mushrooms (Pleurotus ostreatus) to produce food for human consumption, providing synchronous nutrient recovery and food production? Results from my first research chapter indicate that increasing food waste inputs (and thus diversification of feedstock recipes) will likely increase the variability of some solid and liquid digestate characteristics and can result in greater contamination with synthetic particles, with implications for nutrient recovery efforts and associated products. My second research chapter shows that screw-press separated digestate solids can offset non-local substrate ingredients to a degree while achieving oyster mushroom yields comparable to commercial recipes. Furthermore, this strategy could divert nutrients away from land adjacent to digesters and directly into safe, nutritious, protein-rich food for humans, while also producing a useful spent mushroom substrate product.
|
15 |
Opportunities for increased nutrient recovery at centralised wastewater treatment plants through urine separation / Möjligheter till ökad näringsåtervinning vid centraliserade avloppsreningsverk genom urinsorteringGustavsson, Hanna January 2021 (has links)
Municipal wastewater contains a significant amount of nutrients such as phosphorus (P) and nitrogen (N). Therefore have the interest of recovering these nutrients at wastewater treatment plants (WWTP) increased. Nutrient recovery would generate revenue for the WWTP, as it is possible to sell the products as fertiliser. Today, there are several techniques on the market to recover P as magnesium ammonium phosphate (MAP) and N as ammonium sulphate (AMS). Urine is the fraction contributing with the highest concentration of nutrients. Techniques to separate urine from the rest of the wastewater have been developed. These techniques enable the possibility to recover nutrients from the urine fraction separately; this is beneficial since the nutrient concentration would be higher. The purpose with this study was to examine the possibility for increased nutrient recovery at centralised WWTPs through urine separation. Different techniques for nutrient recovery were compared by their recovery efficiency, chemical demand, and hydraulic retention time (HRT). A WWTP with enhanced biological P removal was modelled with Danish Hydraulic Institute’s (DHI) software WEST. Eight scenarios, with different percentage of the population equivalents using urine separation techniques, were simulated. The P recovery was calculated from phosphate (PO4) in the hydrolysed excess sludge and the separated urine. The N recovery was calculated from the ammonium (NH4) in the supernatant from the anaerobe digester. The theoretical biogas production was also calculated, from the modelled sludge. The comparison of P recovery techniques showed no substantial differences in their recovery efficiency, chemical demand, and HRT. The comparison of N recovery techniques showed three techniques with a higher efficiency than the other methods. Ekobalans Fenix AB, CMI Europe Environment, and Organics developed these techniques. To determine which method to use, requests for proposal from different providers are recommended. As the urine separation increased, the influent P and N load decreased. When the urine separation increased and the operational parameters were kept constant, the effluent concentration of P and N decreased. The ratio of total Kjeldahl nitrogen (TKN) and total nitrogen (TN) however increased as the urine separation increased. The total MAP production calculated from the modelled hydrolysis showed that the production increased as the urine separation increased. On the other hand, the total MAP production from calculated hydrolysis showed a decrease in production as the urine separation increased. The difference in these results could be because of the performance of the modelled hydrolysis was better with a smaller nutrient load, resulting in a larger release of PO4 as the urine separation increased. The total AMS production increased as the urine separation increased. This, due to the increase of the TKN:TN ratio. The biogas production was not substantially affected by the increased urine separation.
|
16 |
Consortium algues-bactéries des lagunes à haut rendement algal : évaluation des performances, devenir des nutriments des eaux usées et conception à base de modèles expérimentaux et numériques / Algal-bacterial consortium in high rate algal pond : evaluation of performances, wastewater nutrient recovery and experimental and numerical models based designPham, Le Anh 13 September 2018 (has links)
La présente thèse porte sur des travaux expérimentaux et de modélisation visant à étudier les processus bactériens et algaux au sein d’une lagune a haut rendement algal (HRAP). Un système pilote HRAP a été construit et les impacts des différentes conditions opérationnelles sur l’hydrodynamique et le transfert gaz/liquide du pilote ont été étudiés. De plus, le rapport d'inoculation optimal entre les algues et les bactéries (Al-Bac) a également été étudié. La biomasse Al-Bac a ensuite été inoculée dans le système HRAP pour une évaluation à long terme du traitement des eaux usées et de la récupération des nutriments. Le HRAP dans cette étude peut être appliqué en traitement secondaire de eaux usées ou comme étape primaire éliminant rapidement les charges élevées de DCO et de TKN des retour en tête de digesteurs anaérobies (centrats). Les résultats expérimentaux obtenus ont également été utilisés pour calibrer et valider des modèles de type « boîte noire » et mécanistes. Les deux modèles peuvent décrire le fonctionnement à long terme du système. Le premier permet ainsi d'évaluer rapidement les performances du système ainsi que de le dimensionner, tandis que le second simule avec succès les résultats à long (général) et à court (détaillé) terme. L'étape suivante devrait être l'application du système à grande échelle. / The thesis focused on both experimental and modeling works aiming to investigate the algal bacterial processes in High-Rate Algal Pond (HRAP) system. A pilot HRAP system was built and the impacts of different operational conditions on hydraulic and gas transfer rate of the pilot were investigated. Moreover, optimal inoculation ratio between algae and bacteria (Al-Bac) was also studied. The Al-Bac biomass was theninoculated in the HRAP system for long term assessment of wastewater treatment and nutrient recovery. The HRAP in this study can be applied for secondary treatment application or as a primary step removing rapidly high loads of COD and TKN from centrate wastewater. Experimental results obtained were also employed in calibrating and validating black box and comprehensive algal bacterial models. Both models coulddescribe the system in long term. The former was adequate for giving quick assessment of the system performance as well as sizing application while the latter successfully simulated the results both in long (general) and short (detailed) time scale. A next step should be applying the system in large scale.
|
17 |
Uppskalning av källsorterande avloppssystem : från living lab till linjearbete / Scaling up source-separated sewage systems : from living lab to day-to-day operationsSteiner, Nina January 2024 (has links)
För att nå en hållbar stadsutveckling behöver nya tekniker och lösningar inte bara testas, de måste också spridas och skalas upp. Den här uppsatsen undersöker uppskalningen av det källsorterande avloppssystemet i stadsdelen Oceanhamnen till Östra Ramlösa, båda i Helsingborg. Huvudaktörerna i uppskalningsprocessen är Helsingborgs stad och NSVA (Nordvästra Skånes Vatten och Avlopp). Utifrån teorier om uppskalning och offentlig organisation undersöker uppsatsen vilka utmaningar som uppstår samt vilka hinder och framgångsfaktorer som går att identifiera i uppskalningsprocessen. Syftet är att bidra till en bättre förståelse för, och ny kunskap om, processen när offentlig sektor skalar upp socio-tekniska infrastrukturlösningar. Uppsatsen utgår från en kvalitativ forskningsmetod, och är gjord som en fallstudie, baserad på intervjuer med nyckelpersoner samt analys av dokument och webbsidor. Att skala upp lösningar och samtidigt behålla kontakten med den fortsatta utvecklingen och utvärderingen av ursprungslösningen framstår i det här fallet som den största utmaningen. De tydligaste hindren är brist på fungerande rutiner för dokumentation och kunskapsöverföring, brist på gemensam vision i de två organisationerna samt brist på kommunikation inom och mellan alla nivåer. Bland framgångsfaktorerna finns den starka innovationsidentiteten i Helsingborgs stad, eldsjälar med starkt driv och hög yrkeskompetens samt tongivande visionärer i uppstarten av projektet. Osäkerhet kring miljötillstånd, långa handläggningstider, politiskt styre och krav på upphandling utgör mindre hinder än förväntat. Alla identifierade hinder och svårigheter förstärks med två organisationer som huvudaktörer. En roll som har mandat över hela uppskalningsprocessen, oavsett organisation, skulle därför vara till nytta för arbetet. Det skulle öka möjligheten att ha tydliga strukturer, processer och kommunikation kring uppskalning. / To achieve sustainable urban development, new technologies and solutions must not only be tested, they also need to be disseminated and scaled up. This paper examines the scaling up of the source-separated sewage system from the Oceanhamnen district to Östra Ramlösa, both in Helsingborg. The main actors in the scaling process are the City of Helsingborg and NSVA (the municipal water and wastewater company). Drawing on theories of upscaling and public organisation, the paper explores the challenges that arise, as well as the obstacles and success factors identifiable in the scaling process. The aim is to contribute to a better understanding of, and new knowledge about, the process when the public sector scales up socio-technical infrastructure solutions. The paper is based on a qualitative research method and conducted as a case study, involving interviews with key personnel and analysis of documents and websites. Scaling solutions while maintaining engagement with the ongoing development and evaluation of the original solution presents the greatest challenge in this case. The most significant barriers include a lack of effective routines for documentation and knowledge transfer, a lack of a shared vision within the two organisations, and inadequate communication within and between all levels. Among the success factors are the strong innovation identity of the City of Helsingborg, dedicated individuals with strong drive and high professional competence, and leading visionaries at the start of the project. Uncertainty around environmental permits, long processing times, political governance, and procurement requirements pose less of a hindrance than expected. All identified barriers and difficulties are amplified with two organisations as the main actors. A role with a mandate over the entire scaling process, regardless of organisation, would therefore be beneficial to the work. It would increase the opportunity to have clear structures, processes, and communication around scaling.
|
18 |
Utilization of electrocoagulation for water and wastewater treatment and nutrient recovery:techno-economic studiesKuokkanen, V. (Ville) 16 February 2016 (has links)
Abstract
Electrocoagulation (EC) is an emerging technology that combines the functions and advantages of conventional coagulation, flotation, and electrochemistry in water and wastewater treatment. The aims of this work included doing an updated literary review of recent feasible applications of EC, which were found to be plentiful. Since the economic and practical operational key figures related to EC haven’t been extensively mapped out before, this was a prime objective of this part of the work.
The aim of the next part of this work was to find new feasible applications for EC in the treatment of water and wastewater. The studied wastewaters included bio- and synthetic oil-in-water emulsions, various industrial nutrient-containing wastewaters, and peat bog drainage water containing humic substances (an interesting and topical problem, especially in Finland). These studies proved the feasibility of EC. In addition, larger-scale experiments were also conducted successfully, thus proving the scalability of the EC process. Extensive economic analyses of the studied EC applications were also done. The operational costs and energy consumption of EC were found to be very low—typically about 0.1–1.0 €/m3 and 0.4–4.0 kWh/m3.
It has been forecasted that in the future there will be a shortage of virgin phosphorus. Therefore, another essential purpose of this work was to conduct a preliminary study on the feasibility of using EC for nutrient (especially phosphorus, but also nitrogen) removal and recovery from different types of real wastewater. Specifically, it may be possible to use EC sludges containing notable amounts of phosphorus and nitrogen as additives in granulated bio ash-based fertilizer products for various applications. This is a novel idea and a “hot topic” in the waste utilization sector and in circular and bioeconomy. / Tiivistelmä
Elektrokoagulaatio (electrocoagulation, EC) on nosteessa oleva teknologia, joka yhdistää perinteisen koagulaation, flotaation ja sähkökemian hyödyt ja mahdollisuudet vesien ja jätevesien käsittelyssä. Tämän työn ensimmäisenä tavoitteena oli laatia kirjallisuuskatsaus EC:n viimeaikaisista käyttökelpoisista sovelluksista, joita löytyi runsaasti. Koska EC:n toiminnallisia ja taloudellisia avainlukuja ei ole kartoitettu kattavasti aiemmin, tämän tekeminen oli tämän osion tärkein tavoite.
Väitöstyön seuraavana tavoitteena oli löytää uusia sovellutuksia EC:lle vesien ja jätevesien käsittelyssä. Tutkittuja vesiä olivat bio- ja synteettisistä öljyistä valmistetut öljy-vesiemulsiot, erilaiset teolliset ravinnepitoiset jätevedet ja humusainepitoiset turvesoiden valumavedet (kiinnostava ja ajankohtainen ongelma, erityisesti Suomessa). EC todettiin käyttökelpoiseksi teknologiaksi näissä kokeissa. Suuremman skaalan kokeilla todistettiin lisäksi EC-prosessin skaalautuvuus. Lisäksi, em. EC-sovellutuksista suoritettiin kattavat taloudelliset analyysit. EC:n käyttökustannukset ja energiankulutus todettiin erittäin pieniksi, tyypillisesti ne olivat välillä 0.1–1.0 €/m3 ja 0.4–4.0 kWh/m3.
On ennustettu, että tulevaisuudessa on pulaa neitseellisestä fosforista. Tästä johtuen eräs tämän työn keskeisistä tarkoituksista oli suorittaa alustavia kokeita liittyen EC:n käyttökelpoisuuteen ravinteiden (erityisesti fosfori, mutta myös typpi) poistossa ja talteenotossa aidoista jätevesistä. Erityisesti jatkossa voisi olla järkevää hyödyntää runsaasti fosforia ja typpeä sisältäviä EC-sakkoja lisäaineina rakeistetuissa biotuhkapohjaisissa lannoitteissa eri sovellutuksissa. Tämä idea on uusi ja on jo herättänyt suurta kiinnostusta mm. kierto- ja biotaloussektoreilla.
|
19 |
Energy and nutrient recovery from dairy manure : Process design and economic performance of a farm based systemCelander, Filip, Haglund, Johan January 2014 (has links)
This thesis assessed the technical and economic premises for installing systems that process manure in order to recover nutrients and inherent energy. The main purpose of recovering nutrients was to extract phosphorus from the manure, so as to be able to distribute more of the manure on the farm without exceeding the phosphorus regulation. Three other scenarios were included as reference; conventional manure handling, solid-liquid separation only and solid-liquid separation including energy recovery. Since most important parameters for modeling scenarios in agriculture are site-specific (e.g. soil type, crop rotation and manure composition), the thesis results were based on a case farm. The case farm is a 675 ha dairy farm with approx. 1400 milking cows, located in Östergötland, Sweden. As for the results, it was first concluded that the central characteristics of manure were the content of dry matter (DM), nitrogen (N), phosphorus (P) and potassium (K). The higher the DM content, the more fuel for energy recovery, and the higher the N:P-ratio, the more on-farm N can be utilized before having to consider the P regulation. The technical premises for farm-scale nutrient recovery were limited to commercial techniques from companies operating in Sweden, and included various possible processing methods, such as; pH modification, anaerobic digestion, coagulation-flocculation, precipitation, filtration and reverse osmosis. However, most methods were either too costly or simply not realistic to install on stand-alone farms, resulting in only two feasible options; struvite precipitation and secondary solid-liquid separation with a decanter centrifuge. The comparison in economic performance for all scenarios resulted as follows: nutrient recovery by struvite precipitation was the most profitable scenario of all, if struvite was allowed to replace mineral P fertilizer (i.e. end-product on-farm utilization). If not, it was more profitable to invest in only energy recovery, as nutrient recovery by secondary solid-liquid separation or struvite precipitation with end-product sales were not as profitable. However, the absolutely largest increase in profitability lies within investing in a primary solid-liquid separation. As for the case farm, this investment reduced costs by more than 2 MSEK, while any of the latter scenarios reduce costs by 0,1-0,2 MSEK. Furthermore, the possible utilization of the waste heat from energy recovery increased profitability by a factor of ten.
|
20 |
Teknikutvärdering av Urintorkning i Pilotskala – ett Fältförsök i Finland : Technical Evaluation of Urine Drying in Pilot Scale - a Field Experiment in FinlandKarlsson, Caroline January 2019 (has links)
Av samtliga globala processer som reglerar jordsystemet är de biogeokemiska flödena av kväve (N) och fosfor (P) mest påverkade av mänskliga aktiviteter. Inerta former av N och P omvandlas till reaktiva former som sprids i miljön, där de orsakar eutrofiering och påverkar marina ekosystem negativt. Majoriteten av de reaktiva N- och P-formerna används för framställningen av mineralgödsel. Ett alternativt sätt att producera gödsel är att återvinna näringsämnena i avloppet. En teknik som återvinner näringsämnen i urin är basisk urintorkning. Teknologin stabiliserar urea med ett basiskt torkningsmedium och koncentrerar näringsämnena genom att evaporera vattnet i urinen. Slutprodukten är ett torrt gödsel i pulverform. I det här projektet testades urintorkningsteknologin för första gången i ett fältförsök. Ett system för urintorkning med kapacitet att förånga 40 kg urin dygn-1 m-2 konstruerades och integrerades i ett befintligt torrt sanitetssystem för användning under en period på tre månader. I projektet utvärderades 13 dygn av de 3 månaderna. Resultaten visade att 24 kg urin tillfördes systemet och att systemet kunde upprätthålla en kontinuerlig torkning av urinen. Efter torkningen återvanns majoriteten (97 %) av N i slutprodukten. På grund av att den tillförda mängden urin var liten blev växtnäringshalterna i slutprodukten och i torrsubstansen (TS) av slutprodukten låga. Systemet hade emellertid potential att torka mycket större kvantiteter urin. Om systemets fulla potential hade använts, det vill säga att torka 40 kg urin dygn-1 m-2, så hade särskilt N- och P-halterna ökat avsevärt. N-halterna hade även ökat ytterligare om torkningen hade utförts vid en lägre temperatur. Systemets energiförbrukning var hög, eftersom systemet hade en kontinuerlig energikonsumtion och även komponenter med hög effekt. I jämförelse med den konventionella avloppsvattenreningen och produktionen av mineralgödsel har systemet en hög energikonsumtion, men i jämförelse med en förbränningstoalett är systemets energiförbrukning likvärdig. För att minska energiförbrukningen kunde reglertekniska åtgärder utföras så att systemets energitillförsel upphör när systemet inte används. Systemets energiförbrukning får även ställas i relation till de problem som dagens system för livsmedelsproduktion och sanitet medför. Till skillnad från nämnda system möjliggör urintorkningsteknologin besparing av dricksvattenresurser, ett slutet kretslopp av näringsämnen och en minskad påverkan på miljön. / Of all global processes that regulate the earth system, the biogeochemical flows ofnitrogen (N) and phosphorus (P) are the most affected by human activities. Inert forms of N and P are converted into reactive forms that are dispersed in the environment, causing eutrophication and affecting marine ecosystems. The majority of the reactive N and P are used for the production of mineral fertilizers. An alternative way of producing fertilizers is to recycle nutrients from waste water. A technology that reuses nutrients in urine is alkaline urine drying. The technology stabilizes urea with an alkaline drying medium and concentrates the nutrients by evaporating the water in urine. The end-product is a dry fertilizer in powder form. In this master project, the alkaline urine drying technology was tested for the first time in field conditions. A system for urine drying with the capacity to evaporate 40 kg of urine day-1 m-2 was constructed and integrated into an existing dry sanitation system for use over a period of three months. The master project evaluated the system for 13 days of the 3 months. The results showed that 24 kg of urine was collected in the system, significantly less than what the system had been designed to dry. Furthermore, the results showed that the system functioned smoothly recovering 97 % of the urine-N in the end-product. The nutrient content in the end-product and the dry matter of the end-product was low due to the low amount of urine that was collected. However, the system had the potential to dry much larger quantities of urine. If the system would have been operated to function at full potential (drying 40 kg of urine day-1 m-2) the N- and P-content in the end-product would be much higher than that observed during the 13 days. Furthermore, the system if operated at lower temperatures has the potential to recover more N. The system’s energy consumption was high, as the system had a continuous energy consumption. In comparison with the conventional waste water treatment and the production of mineral fertilizers, the system has a high energy consumption, but compared to an incineration toilet, the system’s energy consumption is equivalent. In order to reduce the energy consumption, automatic control could be implemented so that the energy is switched off when the system is not used. The system’s energy consumption may also be set in relation to the problems that today’s systems for food production and sanitation entail. Unlike the aforementioned systems, the urine dehydration technology does not consume drinking water, it enables recycling of nutrients as well as a reduced impact on aquatic life.
|
Page generated in 0.0825 seconds