1 |
"Espectro de excitação para modelos quânticos na rede" / "Excitation Spectra for quantun models on the lattice"Anjos, Petrus Henrique Ribeiro dos 22 October 2004 (has links)
Consideramos nesse trabalho questões relativas a parte inferior do espectro de energia-momento para o modelo de teoria campos na rede com tempo imaginário, associado ao sistema ferromagnético de spins clássicos de $N$-compontentes definido na rede $d$ dimensional: O Modelo de Spin O$(N)$. Esses sistemas são caracterizados por uma distribuição de probabilidade de spin por sítio. Tratamos apenas da região de altas temperaturas. O espectro de energia e momento deste modelo apresenta curvas de dispersão isoladas, que podem ser interpretadas como quasi-partículas. Em particular, estudaremos os estados de uma e duas quasi-partículas. Para o espectro de uma partícula, obteremos a curva de dispersão e a massa de uma partícula. Esse resultado mostra a existência da chamada 'lacuna espectral'. Ainda trabalhando no espectro de uma partícula, demonstraremos a existência de uma banda de espectro contínuo, associada a estados de duas partículas livres, e determinaremos a largura desta banda. Nossa análise de duas partículas é restrita a uma aproximação em escada da equação Bethe-Salpeter. Usando essa aproximação mostraremos que a existência e a localização de estados ligados depende da verificação da dominação gaussiana para a função de correlação de quatro pontos. É sabido que estados ligados de duas partículas aparecem abaixo da banda de duas partículas se não vale a dominação gaussiana. Mostraremos que estados ligados de duas partículas aparecem acima da banda de duas partículas, caso a dominação gaussiana seja verificada. Além disso, mostramos como o padrão espectral de duas partículas para desses modelos podem ser compreendido através da correspondência entre a equação Bethe-Salpeter e um operador hamiltoniano de Schrödinger de duas partículas na rede com potenciais atrativos ou repulsivos do tipo delta e dependentes dos indices de spin. Uma transformação de staggering é utilizada para relacionar os casos de potenciais atrativos e repulsivos e o espectro dos hamiltonianos e suas autofunções. / In this work, we consider the low-lying energy-momentum spectrum for the imaginary-time lattice quantum field model associated with d-dimensional lattice ferromagnetic classical N-component vector spin systems: The O(N) Spin Model. Each system is characterized by a single site 'a priori' spin probability distribution. We work only at high temperature region (0<β<=1). The energy-momentum spectrum exhibits isolated dispersion curves which are identified as single particles and multi-particle bands. In particular, we study states of one and two-particles. For the single particle spectrum, we obtain the dispersion curve and the particle mass. This result show the existence of the so called 'low spectral gap'. Still working with the single particle spectrum, e show the existence of a continuum spectra band, associated to states of two free partciles, and we obtain the band width. Our two-particle bound state analysis is restricted to a ladder approximation of the Bethe-Salpeter equation, and the existence of bound states depend on whether or not Gaussian domination for the four-point function is verified. It is known that two-particle bound states appear below the two-particle band if Gaussian domination does not hold. Here, we show that two two-particle bound states appear above the two-particle band if Gaussian domination is verified. We also show how the complete two-particle spectral pattern for these models can be understood by making a correspondence between the Bethe-Salpeter equation and a two-particle lattice Schrödinger Hamiltonian operator with attractive or repulsive spin-dependent delta potentials at the origin. A staggering transformation is used to relate the attractive and repulsive potential cases, as well as their associated Hamiltonians spectrum and eigenfunctions.
|
2 |
"Espectro de excitação para modelos quânticos na rede" / "Excitation Spectra for quantun models on the lattice"Petrus Henrique Ribeiro dos Anjos 22 October 2004 (has links)
Consideramos nesse trabalho questões relativas a parte inferior do espectro de energia-momento para o modelo de teoria campos na rede com tempo imaginário, associado ao sistema ferromagnético de spins clássicos de $N$-compontentes definido na rede $d$ dimensional: O Modelo de Spin O$(N)$. Esses sistemas são caracterizados por uma distribuição de probabilidade de spin por sítio. Tratamos apenas da região de altas temperaturas. O espectro de energia e momento deste modelo apresenta curvas de dispersão isoladas, que podem ser interpretadas como quasi-partículas. Em particular, estudaremos os estados de uma e duas quasi-partículas. Para o espectro de uma partícula, obteremos a curva de dispersão e a massa de uma partícula. Esse resultado mostra a existência da chamada 'lacuna espectral'. Ainda trabalhando no espectro de uma partícula, demonstraremos a existência de uma banda de espectro contínuo, associada a estados de duas partículas livres, e determinaremos a largura desta banda. Nossa análise de duas partículas é restrita a uma aproximação em escada da equação Bethe-Salpeter. Usando essa aproximação mostraremos que a existência e a localização de estados ligados depende da verificação da dominação gaussiana para a função de correlação de quatro pontos. É sabido que estados ligados de duas partículas aparecem abaixo da banda de duas partículas se não vale a dominação gaussiana. Mostraremos que estados ligados de duas partículas aparecem acima da banda de duas partículas, caso a dominação gaussiana seja verificada. Além disso, mostramos como o padrão espectral de duas partículas para desses modelos podem ser compreendido através da correspondência entre a equação Bethe-Salpeter e um operador hamiltoniano de Schrödinger de duas partículas na rede com potenciais atrativos ou repulsivos do tipo delta e dependentes dos indices de spin. Uma transformação de staggering é utilizada para relacionar os casos de potenciais atrativos e repulsivos e o espectro dos hamiltonianos e suas autofunções. / In this work, we consider the low-lying energy-momentum spectrum for the imaginary-time lattice quantum field model associated with d-dimensional lattice ferromagnetic classical N-component vector spin systems: The O(N) Spin Model. Each system is characterized by a single site 'a priori' spin probability distribution. We work only at high temperature region (0<β<=1). The energy-momentum spectrum exhibits isolated dispersion curves which are identified as single particles and multi-particle bands. In particular, we study states of one and two-particles. For the single particle spectrum, we obtain the dispersion curve and the particle mass. This result show the existence of the so called 'low spectral gap'. Still working with the single particle spectrum, e show the existence of a continuum spectra band, associated to states of two free partciles, and we obtain the band width. Our two-particle bound state analysis is restricted to a ladder approximation of the Bethe-Salpeter equation, and the existence of bound states depend on whether or not Gaussian domination for the four-point function is verified. It is known that two-particle bound states appear below the two-particle band if Gaussian domination does not hold. Here, we show that two two-particle bound states appear above the two-particle band if Gaussian domination is verified. We also show how the complete two-particle spectral pattern for these models can be understood by making a correspondence between the Bethe-Salpeter equation and a two-particle lattice Schrödinger Hamiltonian operator with attractive or repulsive spin-dependent delta potentials at the origin. A staggering transformation is used to relate the attractive and repulsive potential cases, as well as their associated Hamiltonians spectrum and eigenfunctions.
|
3 |
Géométrie et percolation sur des cartes à bord aléatoires / Geometry and percolation on random maps with a boundaryRichier, Loïc 30 June 2017 (has links)
Cette thèse porte sur des limites de grandes cartes à bord aléatoires. Dans un premier temps, nous nous intéressons aux propriétés géométriques de telles cartes. Nous montrons d'abord des résultats concernant les limites d'échelle et les limites locales du bord de cartes de Boltzmann dont le périmètre tend vers l'infini, que nous appliquons à l'étude du modèle O(n) rigide sur les quadrangulations. Ensuite, nous introduisons une famille de quadrangulations du demi-plan aléatoires avec un paramètre de torsion, dont on étudie les limites d'échelle et la structure de branchement. Enfin, nous établissons une propriété de confluence des géodésiques dans les cartes uniformes infinies du demi-plan, qui sont des limites locales de triangulations et quadrangulations à bord uniformes.Dans un second temps, nous considérons des modèles de percolation de Bernoulli sur les cartes uniformes infinies du demi-plan. Nous calculons le seuil de percolation par site critique pour les quadrangulations, et établissons une propriété d'universalité de ces modèles de percolation au point critique à partir des probabilités de croisement. Pour finir, nous étudions la limite locale de grands amas de percolation critiques en construisant l'amas critique émergent, une triangulation uniforme infinie du demi-plan munie d'un amas de percolation critique infini. / This thesis deals with limits of large random planar maps with a boundary. First, we are interested in geometric properties of such maps. We prove scaling and local limit results for the boundary of Boltzmann maps whose perimeter goes to infinity, which we apply to the study of the rigid O(n) loop model on quadrangulations. Next, we introduce a family of random half-planar quadrangulations with a skewness parameter, and study their scaling limits and branching structure. Finally, we establish a confluence property of geodesics in uniform infinite half-planar maps, which are local limits of uniform triangulations and quadrangulations with a boundary.Second, we consider Bernoulli percolation models on uniform infinite half-planar maps. We compute the critical site percolation threshold for quadrangulations, and prove a universality property of these percolation models at criticality involving crossing probabilities. To conclude, we study the local limit of large critical percolation clusters by defining the incipient infinite cluster, a uniform infinite half-planar triangulation equipped with an infinite critical percolation cluster.
|
4 |
Anomalous Dimensions in the WF O(N) Model with a Monodromy Line DefectSöderberg, Alexander January 2017 (has links)
General ideas in the conformal bootstrap program are covered. Both numerical and analytical approaches to the bootstrap equation are reviewed to show how it can be manipulated in different ways. Further analytical approaches are studied for theories with defects. We consider the three-dimensional CFT at the corresponding WF fixed point in the O(N) \phi^4 model with a co-dimension two, monodromy defect. Anomalous dimensions for bulk- and defect-local fields as well as one of the OPE coefficients are found to the first loop order. Implications of inserting this defect and constraints that arises from symmetries of the theory are investigated.
|
5 |
Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann / Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysisBorot, Gaëtan 23 June 2011 (has links)
La géométrie complexe est un outil puissant pour étudier les systèmes intégrables classiques, la physique statistique sur réseau aléatoire, les problèmes de matrices aléatoires, la théorie topologique des cordes, …Tous ces problèmes ont en commun la présence de relations, appelées équations de boucle ou contraintes de Virasoro. Dans le cas le plus simple, leur solution complète a été trouvée récemment, et se formule naturellement en termes de géométrie différentielle sur une surface de Riemann : la "courbe spectrale", qui dépend du problème. Cette thèse est une contribution au développement de ces techniques et de leurs applications.Pour commencer, nous abordons les questions de développement asymptotique à tous les ordres lorsque N tend vers l’infini, des intégrales N-dimensionnelles venant de la théorie des matrices aléatoires de taille N par N, ou plus généralement des gaz de Coulomb. Nous expliquons comment établir, dans les modèles de matrice beta et dans un régime à une coupure, le développement asymptotique à tous les ordres en puissances de N. Nous appliquons ces résultats à l'étude des grandes déviations du maximum des valeurs propres dans les modèles beta, et en déduisons de façon heuristique des informations sur l'asymptotique à tous les ordres de la loi de Tracy-Widom beta, pour tout beta positif. Ensuite, nous examinons le lien entre intégrabilité et équations de boucle. En corolaire, nous pouvons démontrer l'heuristique précédente concernant l'asymptotique de la loi de Tracy-Widom pour les matrices hermitiennes.Nous terminons avec la résolution de problèmes combinatoires en toute topologie. En théorie topologique des cordes, une conjecture de Bouchard, Klemm, Mariño et Pasquetti affirme que des séries génératrices bien choisies d'invariants de Gromov-Witten dans les espaces de Calabi-Yau toriques, sont solution d'équations de boucle. Nous l'avons démontré dans le cas le plus simple, où ces invariants coïncident avec les nombres de Hurwitz simples. Nous expliquons les progrès récents vers la conjecture générale, en relation avec nos travaux. En physique statistique sur réseau aléatoire, nous avons résolu le modèle O(n) trivalent sur réseau aléatoire introduit par Kostov, et expliquons la démarche à suivre pour résoudre des modèles plus généraux.Tous ces travaux soulignent l'importance de certaines "intégrales de matrices généralisées" pour les applications futures. Nous indiquons quelques éléments appelant à une théorie générale, encore basée sur des "équations de boucles", pour les calculer / Complex analysis is a powerful tool to study classical integrable systems, statistical physics on the random lattice, random matrix theory, topological string theory, … All these topics share certain relations, called "loop equations" or "Virasoro constraints". In the simplest case, the complete solution of those equations was found recently : it can be expressed in the framework of differential geometry over a certain Riemann surface which depends on the problem : the "spectral curve". This thesis is a contribution to the development of these techniques, and to their applications.First, we consider all order large N asymptotics in some N-dimensional integrals coming from random matrix theory, or more generally from "log gases" problems. We shall explain how to use loop equations to establish those asymptotics in beta matrix models within a one cut regime. This can be applied in the study of large fluctuations of the maximum eigenvalue in beta matrix models, and lead us to heuristic predictions about the asymptotics of Tracy-Widom beta law to all order, and for all positive beta. Second, we study the interplay between integrability and loop equations. As a corollary, we are able to prove the previous prediction about the asymptotics to all order of Tracy-Widom law for hermitian matrices.We move on with the solution of some combinatorial problems in all topologies. In topological string theory, a conjecture from Bouchard, Klemm, Mariño and Pasquetti states that certain generating series of Gromov-Witten invariants in toric Calabi-Yau threefolds, are solutions of loop equations. We have proved this conjecture in the simplest case, where those invariants coincide with the "simple Hurwitz numbers". We also explain recent progress towards the general conjecture, in relation with our work. In statistical physics on the random lattice, we have solved the trivalent O(n) model introduced by Kostov, and we explain the method to solve more general statistical models.Throughout the thesis, the computation of some "generalized matrices integrals" appears to be increasingly important for future applications, and this appeals for a general theory of loop equations.
|
Page generated in 0.0629 seconds