• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Online Voltage Stability Monitoring and Control Using Limited Synchrophasor Measurements

Zhu, Ruoxi January 2019 (has links)
As the scale and complexity of an interconnected power grid has increased significantly, power systems can be operated close to the verge of voltage instability. With the application of Phasor Measurement Units (PMUs), dispatchers are able to monitor long term voltage stability in a real time operational environment. This research addresses the critical issues by proposing three different methods. Voltage Stability Assessment Index (VSAI) is a Thévenin Equivalent (TE) based method considering voltage dynamic mechanisms. To extend the model from one load bus to a critical load center, Optimal Power Flow-Loading limit (OPF-LI) is developed to assess the voltage stability margin. To utilize limited available PMU measurements, State Calculator (SC) is included in the algorithm to approximate the dynamic states at the buses where PMU measurements are not available. The online voltage regulating method in terms of On-load Tap Changer (OLTC) control is also investigated. The methods proposed in this research have been validated with the test cases from the WECC 179 bus system. / M.S. / This thesis proposed a hybrid solution of voltage stability monitoring and control in a power system. For the performance of motors, heaters or other loads in the power system, it is important that the customers are supplied with stable voltage. The variation of the voltage may cause damages to the load. Therefore, the methods in this thesis provides a feasible solution to monitor voltage stability of load centers in a power system. In addition, a novel approach for voltage control is proposed to prevent a voltage collapse of the system. The simulation results illustrate that the approach introduced in this thesis is promising for real time application.
2

Analysis of factory test data of on-load tap-changers for power transformers

Stenhammar, Oscar January 2021 (has links)
On-load tap-changers (OLTC) are devices in the power grid that keeps the voltage level constant for consumers, regardless of the power demand. Hitachi ABB Power Grids, producer of the OLTC family named VUC, guarantees 30 years of lifetime. Such a pledge requires high standard devices. This thesis has analyzed data from routine tests of switching times in the diverter switch of OLTC’s, performed before devices were put in service. The correlation of part switching times for all units leaving the factory during the past year was evaluated by calculating Pearson’s correlation coefficient. A linear trend was fitted to the data, realizing that the prediction errors, as well as the part switching times, were Gaussian distributed. The time while the resistor vacuum interrupter was open could be predicted within the interval of approximately 2ms with 2 standard deviations accuracy. To classify time series from the routine test as expected or unexpected, a model-based algorithm was implemented. The average switching time for all consecutive switches was used to define expected series. A moving average was implemented to neglect outliers and remove oscillating patterns. The majority of all data was classified as expected time series. The ones who did not, still preserved a good correlation between the part switching times. Examining the relationship between part switching times could be a valuable perspective in further classification of expected time series. The possibility of incorporating measurement of part switching times on OLTC’s in normal operation, to use the knowledge gained by this thesis, was investigated. Position sensors were mounted to measure the position of the lifting yokes, opening and closing the vacuum interrupters. The time while the vacuum interrupter contacts were open could be estimated with better accuracy than the position sensor provided. Unfortunately, those sensors cannot be utilized in normal operation. If other possibilities could be found, perhaps a laser position sensor, the implemented algorithm would be valuable.
3

Active management of PV-rich low voltage networks

Procopiou, Andreas January 2017 (has links)
The increased penetration of residential-scale photovoltaic (PV) systems in European-style low voltage (LV) networks (i.e., long feeders with high number of connected customers) is leading to technical issues such as voltage rise and thermal overload of the most expensive network assets (i.e., transformer, cables). As these issues significantly limit the ability of LV networks to accommodate higher PV penetrations, Distribution Network Operators (DNOs) are required to proceed with expensive and time-consuming investments in order to reinforce or replace these assets. In contrast to this traditional approach of network reinforcement, which potentially leads to massive capital expenditure, the transition towards active LV networks where controllable elements, existing (i.e., PV systems) and likely to be adopted (i.e., battery energy storage systems, LV on-load tap changer transformers), can be managed in real-time, poses an attractive alternative. Although several active network management schemes have been recently proposed to increase the hosting capacity of PV-rich LV networks, they are mostly based on managing voltage issues only; and, in general, aim to solve technical issues separately. Integrated solutions aiming at managing simultaneously voltage and thermal issues are required, as recent studies demonstrate that both issues can coexist in PV-rich LV networks. More importantly the majority of studies, which commonly neglect the characteristics of real LV networks (e.g., unbalanced, three-phase, radial, multiple feeders with several branches, different types of customers), use complex optimisation techniques that require expensive communication infrastructure and extensive or full network observability (currently not available in LV networks). However, considering the extensiveness of LV networks around the world, practical, cost-effective and scalable solutions that use limited and already available information are more likely to be adopted by the industry. Considering the above gaps in the literature, this Thesis contributes by proposing innovative and scalable active network management schemes that use limited network monitoring and communication infrastructure to actively manage (1) Residential-scale PV systems, (2) Residential-scale Battery Energy Storage (BES) systems and (3) LV on-load tap changer (OLTC)-fitted transformers. The adoption of the proposed active network management schemes, which makes use of already available devices, information and requires limited monitoring (i.e., secondary distribution substation), allows making the transition towards active LV networks more practical and cost-effective. In addition, to tackle the challenges related to this research (i.e., lack of realistic LV network modelling with high resolution time-series analyses), this Thesis, being part of the industrial project 'Active Management of LV Networks' (funded by EDF R&D) and having access to French data, contributes by considering a fully modelled typical real residential French LV network (three-phase four-wire) with different characteristics and number of customers. Moreover, realistic (1-min resolution) daily time-series household (from real smart meter data) and PV generation profiles are considered while a stochastic approach (i.e., Monte Carlo) is adopted to cater for the uncertainties related to household demand as well as PV generation and location.
4

Voltage-led load management in UK distribution networks

Ballanti, Andrea January 2018 (has links)
The growing uptake of wind and photovoltaic technologies requires further sources of system-level flexibility to avoid or defer significant investments. The ability to control, to some extent, customer demand (load management, LM) is one of these sources of flexibility. However, the direct involvement of a large number of customers makes the scalability of such approach a major challenge. A mostly unexplored solution to overcome the challenges of managing thousands or millions of customers is to leverage the positive correlation between voltage and demand. More precisely, Distribution Network Operators (DNOs) can control existing regulation devices to reduce customer voltages and so triggering a reduction in demand. This scheme, hereafter called voltage-led LM, avoids the direct involvement of customers overcoming one of the major barriers of traditional LM solutions. To understand whether this approach can be of any significance, a methodology able to quantify such reduction in demand need to be developed. However, the few methodologies available in the literature neglect the interactions across voltage levels and their influence on the benefits of the scheme. Moreover, time-varying demand profiles and load models are not always considered. Finally, the impact that the widespread adoption of distributed energy resources might have, is also neglected. This thesis addressed these gaps by developing a four-stage approach in which the time-varying volume of demand reduction that the scheme can unlock is quantified considering for the first time the influences among all voltage levels in distribution network. To reduce the complexity each voltage level is analysed separately whilst maintaining the corresponding dependencies. The methodology, also able to extrapolate the results at national scale, can quantify the impact that the uptake of residential scale PV units might have on the scheme. The methodology is demonstrated with a real UK case study where 10-min resolution time-series daily and seasonal analysis are performed. For the first time real network models across the whole distribution network, from 132 kV to 400 V, have been adopted. The interactions across voltage levels, the adoption of realistic load models, the variety of network models and the use of a time-varying approach, all aspects simultaneously considered for the first time in a case study, have shown to play a key role in the quantification. In Great Britain the scheme is expected to provide a significant volume of flexibility of around 1.8GW (60 GW of peak demand). The presence of PV, at least in the short term, has shown to have only a marginally effect on the benefits unlocked by the voltage-led LM scheme, making such scheme promising even in a low carbon future.
5

Řízení velikosti napětí v NN síti pomocí distribučních a linkových transformátorů na základě distribuovaného měření / Voltage profile regulation in LV distribution systems by means of OLTC equipped distribution transformer and series transformers based on distributed monitoring data

Hála, Tomáš January 2018 (has links)
This diploma thesis discusses two major topics. The first one is the control size of the voltage in LV networks in regard to the increase in distributed generation concered to renewable energy sources. The study contains a review focused on the current state of low voltagegrid followed by a proposal for the solution of the oncoming state. The solution is identified as a deploying OLTC distribution transformer. In the case of more complex topology is deployed a series voltage transformer. Both methods are part of the Smart Grid. The thesis also analyzes the issue of the data measurement and data transmission. The second part of the thesis consists of the description of selected control strategies and their simulations. The design of individual system elements in the PSCAD is described. From these elements, a test network was constructed and tested the individual simulation scenarios.
6

Distribution On Load Tap Changer Control Using IEC61850 Client/Server Architecture

Maneikis, Andrius January 2016 (has links)
Distributed generation is transforming the power system grid to decentralized system where separate units like wind power generators or solar panel shall coexist and operate in tandem in order to supplement each other and make one extensive system as a whole so called smart grid. It is utmost important to have a control ability over such units not only on a field level but on a system level as well. To be able to communicate with numerous devices and maintain interoperability universal standard is a must. Therefore, one of the core standards relevant to smart grids is IEC 61850 – Power Utility Automation which comes into assistance and tackles aforementioned challenges. This project uses IEC61850 architecture to implement client/server windows applications for on-load tap changer remote control. The proposed solution and designed applications are tested together with a real time simulator where simple power system is modelled to emulate the system response to control signals in a real time. In this way, the implemented applications can be tried and assessed as if performing in real environment. Consequently, a user of the client application is able to remotely control voltage on the power transformer's secondary side and manipulate the switching equipment simulated in the model. / Distribuerad generation håller på att förändra transmissionsnätet till decentraliserat system där separata enheter som vindkraftverk eller solpanel skall samexistera och fungera tillsammans för att komplettera varandra och att göra ett omfattande system som helhet så kallade smarta elnät. Det är ytterst viktigt att ha en kontroll förmåga över sådana enheter inte bara på ett fältnivå utan även på systemnivå. För att kunna kommunicera med många enheter och bibehålla interoperabiliten som universell standard är ett måste. En av de grundläggande normer som är relevanta för smarta nät är IEC 61850 - Skydd & Automation, som kommer in i bistånd och möter ovan nämnda utmaningar. Detta projekt använder IEC61850-struktur för att implementera klient/server windows applikation för lindningskopplarens fjärrkontroll. Den föreslagna lösningen och utformade applikationer testas tillsammans med en realtidssimulator där enkelt kraftsystem modelleras för att emulera systemets svar på de givna styrsignalerna i realtid. På detta sätt kan de implementerade programmen prövas och bedömas hur de utföras i verklig miljö. Följaktligen kan användare av klientapplikationen fjärrstyra spänningen på transformatorns sekundärsida och manipulera ställverk som simuleras i modellen.
7

Advanced voltage control for energy conservation in distribution networks

Gutierrez Lagos, Luis Daniel January 2018 (has links)
The increasing awareness on the effect of carbon emissions in our planet has led to several countries to adopt targets for their reduction. One way of contributing to this aim is to use and distribute electricity more efficiently. In this context, Conservation Voltage Reduction (CVR), a well-known technique that takes advantage of the positive correlation between voltage and demand to reduce energy consumption, is gaining renewed interest. This technique saves energy by only reducing customer voltages, without relying on customer actions and, therefore, can be controlled by the Distribution Network Operator (DNO). CVR not only brings benefits to the electricity system by reducing generation requirements (fewer fossil fuel burning and carbon emissions), but also to customers, as energy bill reductions. The extent to which CVR can bring benefits mainly depends on the customers load composition and their voltages. While the former dictates the voltage-demand correlation, the latter constraints the voltage reduction that can be applied without violating statutory limits. Although CVR has been studied for many years, most of the studies neglect the time-varying voltage-demand characteristic of loads and/or do not assess end customer voltages. While these simplifications could be used to estimate CVR benefits for fixed and limited voltage reductions, realistic load and network models are needed to assess the performance of active CVR schemes, where voltages are actively managed to be close to the minimum limit. Moreover, distribution networks have been traditionally designed with limited monitoring and controllability. Therefore, CVR has been typically implemented by adopting conservative voltage reductions from primary substations, for both American and European-style networks. However, as new infrastructure is deployed in European-style LV networks (focus of this work), such as monitoring and on-load tap changers (OLTCs), the opportunity arises to actively manage voltages closer to end customer (unlocking further energy savings). Although these technologies have shown to effectively control voltages in LV networks, their potential for CVR has not been assessed before. Additionally, most CVR studies were performed in a context where distributed generation (DG) was not common. However, this has changed in many countries, with residential photovoltaic (PV) systems becoming popular. As this is likely to continue, the interactions of residential PV and CVR need to be studied. This thesis contributes to address the aforementioned literature gaps by: (i) proposing a simulation framework to characterise the time-varying voltage-demand correlation of individual end customers; (ii) developing a process to model real distribution networks (MV and LV) from DNO data; (iii) adopting a Monte Carlo-based quantification process to cater for the uncertainties related to individual customer demand; (iv) assessing the CVR benefits that can be unlocked with new LV infrastructure and different PV conditions. To accomplish (iv), first, a simple yet effective rule-based scheme is proposed to actively control voltages in OLTC-enabled LV networks without PV and using limited monitoring. It is demonstrated that by controlling voltages closer to customers, annual energy savings can increase significantly, compared to primary substation voltage reductions. Also, to understand the effect of PV on CVR, a centralized, three-phase AC OPF-based CVR scheme is proposed. This control, using monitoring, OLTCs and capacitors across MV and LV networks, actively manages voltages to minimize energy consumption in high PV penetration scenarios whilst considering MV-LV constraints. Results demonstrate that without CVR, PV systems lead to higher energy imports for customers without PV, due to higher voltages. Conversely, the OPF-based CVR scheme can effectively manage voltages throughout the day, minimising energy imports for all customers. Moreover, if OLTCs at secondary substations are available (and managed in coordination with the primary substation OLTC), these tend to regulate customer voltages close to the minimum statutory limit (lower tap positions), while the primary OLTC delivers higher voltages to the MV network to also reduce MV energy losses.
8

[en] AN IMPROVED STEADY-STATE MODEL FOR TAP-CHANGING TRANSFORMER / [pt] NOVO MODELO DE TRANSFORMADOR COM TAP VARIÁVEL EM REGIME PERMANENTE

CARLOS APARECIDO FERREIRA 25 June 2013 (has links)
[pt] O fenômeno de estabilidade de tensão vem despertando grande interesse acadêmico e das principais empresas de energia elétrica do mundo desde que começou a ser observado em sistemas reais, no final da década de setenta. Sua ocorrência está relacionada ao carregamento excessivo das linhas de transmissão. Modelar transformador com tap variável adequadamente é fundamental em análises de estabilidade de tensão, tanto no que diz respeito às informações fornecidas ao operador referentes às margens de estabilidade de tensão, quanto aos efeitos de ações de controle de tensão. O modelo de transformador com tap variável utilizado mundialmente consiste de uma impedância, obtida através do ensaio em curto-circuito e com tap nominal, em série com um transformador ideal. Esta tese mostra que, em estudos de estabilidade de tensão, o uso desse modelo leva a resultados qualitativamente errados. Para demonstração, utiliza-se um circuito pequeno e os conceitos de máxima potência transmitida, impedância equivalente da carga, e efeito do controle de tensão. Propõe-se um novo modelo coerente com os resultados obtidos em laboratório, com as leis de circuitos elétricos e com a teoria de estabilidade de tensão. Esse modelo pode ser utilizado em qualquer estudo em regime permanente. Através de diversas simulações computacionais, diferenças quantitativas e principalmente qualitativas foram obtidas comparando-se os resultados dos dois modelos. / [en] The voltage stability phenomenon is of interest since it began to be observed in real systems in the late seventies. It happens due to excessive loading of transmission lines. The modeling of tap-changing transformers is fundamental in voltage stability analysis, in terms of the information provided to the operator about voltage stability margins and the effects of voltage control actions. The model for tap-changing transformers currently in widespread use consists of an impedance, measured in a short-circuit test with a nominal tap, in series with an ideal transformer. The use of this model in voltage stability studies leads to qualitatively incorrect results, as shown in this thesis. For demonstration purpose a small circuit and the concepts of maximum load, equivalent load impedance and voltage control effects are used. An improved model that takes into account laboratory results, circuit laws and voltage stability theory is proposed. This model can be used in any steady-state study. It gives results that are not only more accurate than those obtained with the conventional model, but also, as shown in this thesis, qualitatively different.
9

Development Of Algorithms For Security Oriented Power System Operation

Yesuratnam, G 07 1900 (has links)
The objective of an Energy Control Center (ECC) is to ensure secure and economic operation of power system. The challenge to optimize power system operation, while maintaining system security and quality of power supply to customers, is increasing. Growing demand without matching expansion of generation and transmission facilities and more tightly interconnected power systems contribute to the increased complexity of system operation. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems to be operated closure to design limits, with smaller safety margins and hence greater exposure to unsatisfactory operating conditions following a disturbance. Investigations of recent blackouts indicate that the root cause of most of these major power system disturbances is voltage collapse. Information gathered and preliminary analysis, from the most recent blackout incident in North America on 14th August 2003, is pointing the finger on voltage instability due to some unexpected contingency. In this incident, reports indicate that approximately 50 million people were affected interruption from continuous supply for more than 15 hours. Most of the incidents are related to heavily stressed system where large amounts of real and reactive power are transported over long transmission lines while appropriate real and reactive power resources are not available to maintain normal system conditions. Hence, the problem of voltage stability and voltage collapse has become a major concern in power system planning and operation. Reliable operation of large scale electric power networks requires that system voltages and currents stay within design limits. Operation beyond those limits can lead to equipment failures and blackouts. In the last few decades, the problem of reactive power control for improving economy and security of power system operation has received much attention. Generally, the load bus voltages can be maintained within their permissible limits by reallocating reactive power generations in the system. This can be achieved by adjusting transformer taps, generator voltages, and switchable Ar sources. In addition, the system losses can be minimized via redistribution of reactive power in the system. Therefore, the problem of the reactive power dispatch can be optimized to improve the voltage profile and minimize the system losses as well. The Instability in power system could be relieved or at least minimized with the help of most recent developed devices called Flexible AC Transmission System (FACTS) controllers. The use of Flexible AC Transmission System (FACTS) controllers in power transmission system have led to many applications of these controllers not only to improve the stability of the existing power network resources but also provide operating flexibility to the power system. In the past, transmission systems were owned by regulated, vertically integrated utility companies. They have been designed and operated so that conditions in close proximity to security boundaries are not frequently encountered. However, in the new open access environment, operating conditions tend to be much closer to security boundaries, as transmission use is increasing in sudden and unpredictable directions. Transmission unbundling, coupled with other regulatory requirements, has made new transmission facility construction more difficult. In fact, there are numerous technical challenges emerging from the new market structure. There is an acute need for research work in the new market structure, especially in the areas of voltage security, reactive power support and congestion management. In the last few decades more attention was paid to optimal reactive power dispatch. Since the problem of reactive power optimization is non-linear in nature, nonlinear programming methods have been used to solve it. These methods work quite well for small power systems but may develop convergence problems as system size increases. Linear programming techniques with iterative schemes are certainly the most promising tools for solving these types of problems. The thesis presents efficient algorithms with different objectives for reactive power optimization. The approach adopted is an iterative scheme with successive power-flow analysis using decoupled technique, formulation and solution of the linear-programmingproblem with only upper-bound limits on the state variables. Further the thesispresents critical analysis of the three following objectives, Viz., •Minimization of the sum of the squares of the voltage deviations (Vdesired) •Minimization of sum of the squares of the voltage stability L indices (Vstability) •Minimization of real power losses (Ploss) Voltage stability problems normally occur in heavily stressed systems. While the disturbance leading to voltage collapse may be initiated by a variety of causes, the underlying problem is an inherent weakness in the power system. The factors contributing to voltage collapse are the generator reactive power /voltage control limits, load characteristics, characteristics of reactive compensation devices, and the action of the voltage control devices such as transformer On Load Tap Changers (OLTCs). Power system experiences abnormal operating conditions following a disturbance, and subsequently a reduction in the EHV level voltages at load centers will be reflected on the distribution system. The OLTCs of distribution transformers would restore distribution voltages. With each tap change operation, the MW and MVAR loading on the EHV lines would increase, thereby causing great voltage drops in EHV levels and increasing the losses. As a result, with each tap changing operation, the reactive output of generators throughout the system would increase gradually and the generators may hit their reactive power capability limits, causing voltage instability problems. Thus, the operation of certain OLTCs has a significant influence on voltage instability under some operating conditions. These transformers can be made manual to avoid possible voltage instability due to their operation during heavy load conditions. Tap blocking, based on local measurement of high voltage side of load tap changers, is a common practice of power utilities to prevent voltage collapse. The great advantage of this method is that it can be easily implemented, but does not guarantee voltage stability. So a proper approach for identification of critical OLTC s based on voltage stability criteria is essential to guide the operator in ECC, which has been proposed in this thesis. It discusses the effect of OLTCs with different objectives of reactive power dispatch and proposes a technique to identify critical OLTCs based on voltage stability criteria. The fast development of power electronics based on new and powerful semiconductor devices has led to innovative technologies, such as High Voltage DC transmission (HVDC) and Flexible AC Transmission System (FACTS), which can be applied in transmission and distribution systems. The technical and economicalBenefits of these technologies represent an alternative to the application in AC systems. Deregulation in the power industry and opening of the market for delivery of cheaper energy to the customers is creating additional requirements for the operation of power systems. HVDC and FACTS offer major advantages in meeting these requirements. .A method for co-ordinated optimum allocation of reactive power in AC/DC power systems by including FACTS controller UPFC, with an objective of minimization of the sum of the squares of the voltage deviations of all the load buses has been proposed in this thesis. The study results show that under contingency conditions, the presence of FACTS controllers has considerable impact on over all system voltage stability and also on power loss minimization.minimization of the sum of the squares of the voltage deviations of all the load buses has been proposed in this thesis. The study results show that under contingency conditions, the presence of FACTS controllers has considerable impact on over all system voltage stability and also on power loss minimization. As power systems grow in their size and interconnections, their complexity increases. For secure operation and control of power systems under normal and contingency conditions, it is essential to provide solutions in real time to the operator in ECC. For real time control of power systems, the conventional algorithmic software available in ECC are found to be inadequate as they are computationally very intensive and not organized to guide the operator during contingency conditions. Artificial Intelligence (AI) techniques such as, Expert systems, Neural Networks, Fuzzy systems are emerging decision support system tools which give fast, though approximate, but acceptable right solutions in real time as they mostly use symbolic processing with a minimum number of numeric computations. The solution thus obtained can be used as a guide by the operator in ECC for power system control. Optimum real and reactive power dispatch play an important role in the day-to-day operation of power systems. Existing conventional Optimal Power Flow (OPF) methods use all of the controls in solving the optimization problem. The operators can not move so many control devices within a reasonable time. In this context an algorithm using fuzzy-expert approach has been proposed in this thesis to curtail the number of control actions, in order to realize real time objectives in voltage/reactive power control. The technique is formulated using membership functions of linguistic variables such as voltage deviations at all the load buses and the voltage deviation sensitivity to control variables. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. Control variables considered are switchable VAR compensators, OLTC transformers and generator excitations. A fuzzy rule based system is formed to select the critical controllers, their movement direction and step size. Results show that the proposed approach is effective for improving voltage security to acceptable levels with fewer numbers of controllers. So, under emergency conditions the operator need not move all the controllers to different settings and the solution obtained is fast with significant speedups. Hence, the proposed method has the potential to be integrated for on-line implementation in energy management systems to achieve the goals of secure power system operation. In a deregulated electricity market, it may not be always possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. System operators try to manage congestion, which otherwise increases the cost of the electricity and also threatens the system security and stability. An approach for alleviation of network over loads in the day-to-day operation of power systems under deregulated environment is presented in this thesis. The control used for overload alleviation is real power generation rescheduling based on Relative Electrical Distance (RED) concept. The method estimates the relative location of load nodes with respect to the generator nodes. The contribution of each generator for a particular over loaded line is first identified , then based on RED concept the desired proportions of generations for the desired overload relieving is obtained, so that the system will have minimum transmission losses and more stability margins with respect to voltage profiles, bus angles and better transmission tariff. The results obtained reveal that the proposed method is not only effective for overload relieving but also reduces the system power loss and improves the voltage stability margin. The presented concepts are better suited for finding the utilization of resources generation/load and network by various players involved in the day-to-day operation of the system under normal and contingency conditions. This will help in finding the contribution by various players involved in the congestion management and the deviations can be used for proper tariff purposes. Suitable computer programs have been developed based on the algorithms presented in various chapters and thoroughly tested. Studies have been carried out on various equivalent systems of practical real life Indian power networks and also on some standard IEEE systems under simulated conditions. Results obtained on a modified IEEE 30 bus system, IEEE 39 bus New England system and four Indian power networks of EHV 24 bus real life equivalent power network, an equivalent of 36 bus EHV Indian western grid, Uttar Pradesh 96 bus AC/DC system and 205 Bus real life interconnected grid system of Indian southern region are presented for illustration purposes.
10

Voltage Stability Analysis of Unbalanced Power Systems

Santosh Kumar, A January 2016 (has links) (PDF)
The modern day power system is witnessing a tremendous change. There has been a rapid rise in the distributed generation, along with this the deregulation has resulted in a more complex system. The power demand is on a rise, the generation and trans-mission infrastructure hasn't yet adapted to this growing demand. The economic and operational constraints have forced the system to be operated close to its design limits, making the system vulnerable to disturbances and possible grid failure. This makes the study of voltage stability of the system important more than ever. Generally, voltage stability studies are carried on a single phase equivalent system assuming that the system is perfectly balanced. However, the three phase power system is not always in balanced state. There are a number of untransposed lines, single phase and double phase lines. This thesis deals with three phase voltage stability analysis, in particular the voltage stability index known as L-Index. The equivalent single phase analysis for voltage stability fails to work in case of any unbalance in the system or in presence of asymmetrical contingency. Moreover, as the system operators are giving importance to synchrophasor measurements, PMUs are being installed throughout the system. Hence, the three phase voltages can be obtained, making three phase analysis easier. To study the effect of unbalanced system on voltage stability a three phase L-Index based on traditional L-Index has been proposed. The proposed index takes into consideration the unbalance resulting due to untransposed transmission lines and unbalanced loads in the system. This index can handle any unbalance in the system and is much more realistic. To obtain bus voltages during unbalanced operation of the system a three phase decoupled Newton Raphson load ow was used. Reactive power distribution in a system can be altered using generators voltage set-ting, transformers OLTC settings and SVC settings. All these settings are usually in balanced mode i.e. all the phases have the same setting. Based on this reactive power optimization using LP technique on an equivalent single phase system is proposed. This method takes into account generator voltage settings, OLTC settings of transformers and SVC settings. The optimal settings so obtained are applied to corresponding three phase system. The effectiveness of the optimal settings during unbalanced scenario is studied. This method ensures better voltage pro les and decrease in power loss. Case studies of the proposed methods are carried on 12 bus and 24 bus EHV systems of southern Indian grid and a modified IEEE 30 bus system. Both balanced and unbalanced systems are studied and the results are compared.

Page generated in 0.0161 seconds