• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 68
  • 51
  • 19
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 417
  • 145
  • 73
  • 67
  • 63
  • 55
  • 54
  • 51
  • 46
  • 44
  • 42
  • 38
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Gas flow observer for Diesel Engines with EGR / Gasflödesobservatör för dieselmotorer med EGR

Swartling, Fredrik January 2005 (has links)
Due to stricter emission legislation, there is a need for more efficient control of diesel engines with exhaust gas recirculation(EGR). In particular, it is important to estimate the air/fuel ratio accurately in transients. Therefore a new engine gas flow model has been developed. This model divides the gas into one part for oxygen and one part for inert gases. Based on this model an observer has been designed to estimate the oxygen concentration in the gas going into the engine, which can be used to calculate the air/fuel ratio. This observer can also be used to estimate the intake manifold pressure. The advantage of estimating the pressure, instead of low pass filtering the noisy signal, is that the observer does not cause time delay.
102

Gas flow observer for a Scania Diesel Engine with VGT and EGR

Jerhammar, Andreas, Höckerdal, Erik January 2006 (has links)
Today’s diesel engines are complex with systems like VGT and EGR to be able to fulfil the stricter emission legislations and the demands on the fuel consumption. Controlling a system like this demands a sophisticated control system. Furthermore, the authorities demand on self diagnosis requires an equal sophisticated diagnosis system. These systems require good knowledge about the signals present in the system and how they affect each other. One way to achieve this is to have a good model of the system and based on this calculate an observer. The observer is then used to estimate signals used for control and diagnosis. Advantages with an observer instead of using just sensors are that the sensor signals often are noisy and need to be filtered before they can be used. This causes time delay which further complicates the control and diagnosis systems. Other advantages are that sensors are expensive and that some engine quantities are hard to measure. In this Master’s thesis a model of a Scania diesel engine is developed and an observer is calculated. Due to the non-linearities in the model the observer is based on a constant gain extended Kalman filter.
103

Motion Planning and Observer Synthesis for a Two-Span Web Roller Machine

Fletcher, Joshua January 2010 (has links)
A mathematical model for a Two-Span Web Roller machine is defined in order to facilitate motion planning, motion tracking and state observer design for tracking web tension and web velocity. Differential Flatness is utilized to create reference trajectories that are tracked with a high convergence rate. Flatness also allows for nominal input torque generation without integration. Constraints on the inputs are satisfied through the motion planning phase. A partial state feedback linearization is performed and an exponential tracking dynamic feedback controller is defined. An exponential Kalman-related tension observer is also defined with semi-optimal gain formulation. The observer takes advantage of the bilinearity of the dynamics up to additive output nonlinearity. The closed-loop system is simulated in MatLab with comparisons to reference trajectories previously employed in literature. The importance of proper motion planning is demonstrated by producing excellent performance compared with existing tracking and tension observing methods.
104

allt är nytt under solen : betraktaren som medskapare

Ånskog, Emelie January 2011 (has links)
Vi behöver öppna våra ögon innan vi kan ta konst till våra hjärtan och vi behöver öppna våra hjärtan innan vi kan betrakta konst. Det handlar om att se. Och att vara en medskapare. / We need to open our eyes before we can take art to our hearts and we need to open our hearts before we can observe art. It’s about seeing. And being a co-creator.
105

Adaptive control of combution instabilities using real-time modes observation

Johnson, Clifford Edgar 07 April 2006 (has links)
Combustion instabilities are a significant problem in combustion systems, particularly in Low NOx Gas Turbine combustors. These instabilities result in large-scale pressure oscillations in the combustor, leading to degraded combustor performance, shortened lifetime, and catastrophic combustor failure. The objective of this research was to develop a practical adaptive active control system that, coupled with an appropriate actuator, is capable of controlling the combustor pressure oscillations without a priori knowledge of the combustor design, operating conditions or instability characteristics. The adaptive controller utilizes an observer that determines the frequencies, phases and amplitudes of the dominant modes of the oscillations in real time. The research included development and testing of the adaptive controller on several combustors and on an unstable acoustic feedback system in order to analyze its performance. The research also included investigations of combustor controllability and combustor stability margin, which are critical issues for practical implementation of an active control system on an industrial combustor. The results of this research are directly applicable to a variety of combustors and can be implemented on full-scale industrial combustion systems.
106

Objective assessment of image quality (OAIQ) in fluorescence-enhanced optical imaging

Sahu, Amit K. 15 May 2009 (has links)
The statistical evaluation of molecular imaging approaches for detecting, diagnosing, and monitoring molecular response to treatment are required prior to their adoption. The assessment of fluorescence-enhanced optical imaging is particularly challenging since neither instrument nor agent has been established. Small animal imaging does not address the depth of penetration issues adequately and the risk of administering molecular optical imaging agents into patients remains unknown. Herein, we focus upon the development of a framework for OAIQ which includes a lumpy-object model to simulate natural anatomical tissue structure as well as the non-specific distribution of fluorescent contrast agents. This work is required for adoption of fluorescence-enhanced optical imaging in the clinic. Herein, the imaging system is simulated by the diffusion approximation of the time-dependent radiative transfer equation, which describes near infra-red light propagation through clinically relevant volumes. We predict the time-dependent light propagation within a 200 cc breast interrogated with 25 points of excitation illumination and 128 points of fluorescent light collection. We simulate the fluorescence generation from Cardio-Green at tissue target concentrations of 1, 0.5, and 0.25 µM with backgrounds containing 0.01 µM. The fluorescence boundary measurements for 1 cc spherical targets simulated within lumpy backgrounds of (i) endogenous optical properties (absorption and scattering), as well as (ii) exogenous fluorophore crosssection are generated with lump strength varying up to 100% of the average background. The imaging data are then used to validate a PMBF/CONTN tomographic reconstruction algorithm. Our results show that the image recovery is sensitive to the heterogeneous background structures. Further analysis on the imaging data by a Hotelling observer affirms that the detection capability of the imaging system is adversely affected by the presence of heterogeneous background structures. The above issue is also addressed using the human-observer studies wherein multiple cases of randomly located targets superimposed on random heterogeneous backgrounds are used in a “double-blind” situation. The results of this study show consistency with the outcome of above mentioned analyses. Finally, the Hotelling observer’s analysis is used to demonstrate (i) the inverse correlation between detectability and target depth, and (ii) the plateauing of detectability with improved excitation light rejection.
107

The role of seasonal wetlands in the ecology of the American alligator

Subalusky, Amanda Lee 15 May 2009 (has links)
The American alligator (Alligator mississippiensis) has been frequently studied in large reservoirs and coastal marshes. Large ontogenetic shifts in their diet and morphology have been linked with changes in habitat use, with adult males using deep, open water and juveniles and nesting females relying on vegetated marsh. In certain regions of the inland portion of the alligator’s range, these different aquatic habitats are represented by seasonal wetlands and riverine systems that are separated by a terrestrial matrix. Ontogenetic habitat shifts, therefore, would require overland movements between systems, which has important implications for conservation of the species. I tested several commonly used methods of surveying alligator populations to determine the most effective method of studying alligators in seasonal wetlands. I then used systematic trapping, nest surveys and radio telemetry to determine habitat use and overland movement rates by different sex and size classes. I found that seasonal wetlands provided nesting and nursery sites for these inland alligator populations, but that both juveniles undergoing an ontogenetic shift and nesting females move between the wetlands and riverine systems. Overland movements by alligators between the wetland and riverine habitats establish a level of functional connectivity between these aquatic ecosystems. I constructed a habitat suitability index of both the wetlands and the surrounding landscape to determine which patch and landscape characteristics were important to wetland use by alligators. I found that both descriptive wetland characteristics and the spatial relationships between wetlands were important predictors of alligator use. Overland movement was related to upland landuse as well as distance between aquatic habitats. Conserving a variety of wetland sizes and types within an intact upland matrix is critical to maintaining connectivity across the landscape. Furthermore, understanding how species may act as mobile links between ecosystems, particularly those with ontogenetic niche shifts, illustrates the importance of approaching conservation from a landscape perspective.
108

Some Aspects of Observer-based Control Design for a Class of Neutral Systems

Kuo, Jim-Ming 18 June 2004 (has links)
In this dissertation, the stabilization problem and observer-based control of neutral systems are investigated. Firstly, the Lyapunov functional theory is used to guarantee the stability of the system under consideration. The delay-dependent and the delay-independent stabilization criteria are proposed to guarantee asymptotic stability for the neutral systems via linear control. Linear matrix inequality (LMI) approach is used to design the observer and the controller. Secondly, by using the same techniques, we will provide an observer-based controller design method. The delay-dependent and the delay-independent stabilization criteria are proposed to guarantee asymptotic stability for the neutral systems with multiple time delays. Finally, a guaranteed-cost observer-based control for the neutral systems is considered. The analysis is also based on Lyapunov functional so as to establish an upper bound on the closed-loop value of a quadratic cost function. Delay-independent stabilization criterion is proposed to guarantee asymptotic stability for the neutral systems via linear control. By using the LMI approach, we will provide a criterion to design the observer gain and the controller gain simultaneously. Some examples and computer simulation results will also be provided to illustrate our main results.
109

Robust model-based fault diagnosis for chemical process systems

Rajaraman, Srinivasan 16 August 2006 (has links)
Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large number of sensors in process plants. Moreover, since industrial processes operate in closed loop with appropriate output feedback to attain certain performance objectives, instrument faults have a direct effect on the overall performance of the automation system. Extracting essential information about the state of the system and processing the measurements for detecting, discriminating, and identifying abnormal readings are important tasks of a fault diagnosis system. The goal of this dissertation is to develop such fault diagnosis systems, which use limited information about the process model to robustly detect, discriminate, and reconstruct instrumentation faults. Broadly, the proposed method consists of a novel nonlinear state and parameter estimator coupled with a fault detection, discrimination, and reconstruction system. The first part of this dissertation focuses on designing fault diagnosis systems that not only perform fault detection and isolation but also estimate the shape and size of the unknown instrument faults. This notion is extended to nonlinear processes whose structure is known but the parameters of the process are a priori uncertain and bounded. Since the uncertainty in the process model and instrument fault detection interact with each other, a novel two-time scale procedure is adopted to render overall fault diagnosis. Further, some techniques to enhance the convergence properties of the proposed state and parameter estimator are presented. The remaining part of the dissertation extends the proposed model-based fault diagnosis methodology to processes for which first principles modeling is either expensive or infeasible. This is achieved by using an empirical model identification technique called subspace identification for state-space characterization of the process. Finally the proposed methodology for fault diagnosis has been applied in numerical simulations to a non-isothermal CSTR (continuous stirred tank reactor), an industrial melter process, and a debutanizer plant.
110

Applying a model-based observer to quantitatively assess spatial disorientation and loss of energy state awareness

Bozan, Anil Emilio 08 June 2015 (has links)
This thesis demonstrates how a model-based observer can be applied to estimate the reference pilot expectation that can be achieved with any instrument scanning behavior and established models of vestibular inputs. The MBO, developed by the Georgia Tech Cognitive Engineering Center, is applied here in both simple maneuvers examining spatial disorientation and full Air Traffic Control concepts of operations examining loss of energy state awareness. The computational experiments presented in this thesis examine how different effects (i.e., instrument scan pattern, accuracy of pilot perception of flight display information, and awareness of control surface deflections) can prevent or mitigate the susceptibility to spatial disorientation and loss of energy state awareness, thus setting requirements for intervention and countermeasure designs in terms of the scanning behavior they must foster.

Page generated in 0.0406 seconds