• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 163
  • 163
  • 100
  • 38
  • 30
  • 30
  • 30
  • 27
  • 26
  • 25
  • 25
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide

Karna, Sanjay K. 05 1900 (has links)
A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains correspond to pure carbon-carbon bond i.e. pristine graphene while sp3 hybridized domains correspond to the oxide bond with carbon i.e. defect in graphene structure. This is the uniqueness of the graphene-base material. Graphene is a gapless material i.e. having no bandgap energy and this property prevents it from switching device applications and also from the optoelectronic devices applications. The main challenge for this material is to tune as a semiconducting which can open the optical characteristics and emit light of desired color. There may be several possibilities for the modification of graphene-base material that can tune a band gap. One way is to find semiconducting property by doping the defects into pristine graphene structure. Other way is oxides functional groups in graphene structure behaves as defects. The physical properties of graphene depend on the amount of oxides present in graphene structure. So if there are more oxides in graphene structure then this material behaves as a insulating. By any means if it can be reduced then oxides amount to achieve specific proportion of sp2 and sp3 that can emit light of desired color. Further, after achieving light emission from graphene base material, there is more possibility for the study of non-linear optical property. In this work, plasmonic effect in graphene oxide has been focused. Mainly there are two kinds of plasmon effects have been studied, one is long range (surface) and short range (localized) plasmon. For long range plasmon gold thin film was deposited on partially reduced graphene oxide and for short range plasmon silver nanoparticles have used. Results show that there are 10-fold enhancement in light emission from partial graphene oxide coated with gold thin film while 4-fold enhancement from reduced graphene oxide solution with silver nanoparticles. Chemical method and photocatalytic method have been employed for the reduction of graphene oxide for the study of surface plasmon and localized plasmon. For the characterization UV-Vis spectrometer for absorption, spectrofluorophotometer for fluorescent emission, Raman spectrometer for material characterization, photoluminescence and time resolved photoluminescence have been utilized. Silver and gold nanoparticles are spherical of average size of 80 nm and 40 nm have been used as plasmons.
132

Nonlinear Optical Response of Simple Molecules and Two-Photon Semiconductor Lasers

Reichert, Matthew 01 January 2015 (has links)
This dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms is important for many applications including filamentation, white-light continuum generation, all-optical switching, and nonlinear spectroscopy. In this work the nonlinear dynamics of molecules are investigated in both liquid and gas phase with the recently developed beam deflection technique which measures nonlinear refraction directly in the time domain. Thanks to the utility of the beam deflection technique we are able to completely determine the third-order response function of one of the most important molecular liquids in nonlinear optics, carbon disulfide. This allows the prediction of essentially any nonlinear refraction or two-photon absorption experiment on CS2. Measurements conducted on air (N2 and O2) and gaseous CS2 reveal coherent rotational revivals in the degree of alignment of the ensemble at a period that depends on its moment of inertia. This allows measurement of the rotational and centrifugal distortion constants of the isolated molecules. Additionally, the rotational contribution to the beam deflection measurement can be eliminated thanks to the particular polarization dependence of the mechanism. At a specific polarization, the dominant remaining contribution is due to the bound-electrons. Thus both the bound-electronic nonlinear refractive index of air, and second hyperpolarizability of isolated CS2 molecules, are measured directly. The later agrees well with liquid CS2 measurements, where local field effects are significant. The second major portion of this dissertation addresses the possibility of using bulk semiconductors as a two-photon gain medium. A two-photon laser has been a goal of nonlinear optics since shortly after the original laser*s development. In this case, two-photons are emitted from a single electronic transition rather than only one. This processes is known as two-photon gain (2PG). Semiconductors have large two-photon absorption coefficients, which are enhanced by ~2 orders of magnitude when using photons of very different energies, e.g., ћωa≈10ћωb. This enhancement should translate into large 2PG coefficients as well, given the inverse relationship between absorption and gain. Here, we experimentally demonstrate both degenerate and nondegenerate 2PG in optically excited bulk GaAs via pump-probe experiments. This constitutes, to my knowledge, the first report of nondegenerate two-photon gain. Competition between 2PG and competing processes, namely intervalence band and nondegenerate three-photon absorption (ND-3PA), in both cases are theoretically analyzed. Experimental measurements of ND-3PA agree with this analysis and show that it is enhanced much more than ND-2PG. It is found for both degenerate and nondegenerate photon pairs that the losses dominate the two-photon gain, preventing the possibility of a two-photon semiconductor laser.
133

Fabrication and Characterization of Torsional Micro-Hinge Structures

Marrujo, Mike Madrid 01 June 2012 (has links) (PDF)
ABSTRACT Fabrication and Characterization of Torsional Micro-Hinge Structures Mike Marrujo There are many electronic devices that operate on the micrometer-scale such as Digital Micro-Mirror Devices (DMD). Micro actuators are a common type of DMD that employ a diaphragm supported by torsional hinges, which deform during actuation and are critical for the devices to have high stability and reliability. The stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. Electrostatically driven micro actuators observe to have a fully recoverable non-linear viscoelastic response. The device consists of a micro-hinge which is suspended by two hinges that sits inside a micro machined well. To achieve a specific angle of rotation when actuated, the mechanical forces need to be characterized with a range of different forces applied to the edge of the micro-hinge. This research investigates the mechanical properties and the amount of force needed to rotate to specific angles by comparing theoretical performance to experimentally measured values. Characterizing the mechanical forces on the micro-hinge will further the understanding of how the device operates under a specific applied force. The material response to the amount of stress within the hinges will control the amount of actuation that is achieved by that force. The test devices were fabricated using common semiconductor fabrication techniques. The micro-hinge device was created on a 500µm, double-sided polished, single crystal (100) silicon wafer. In order to create this device, both wet etching and dry etching techniques were employed to produce an 8µm thick plate structure. The bulk etching of 480µm was achieved by wet etching down into the silicon (Si) to create the wells. Dry etching was used for its high precision to release the micro-hinge structure. Once fabricated, the micro-hinge actuators were tested using a Technics turntable arm with a built in micrometer that applied a constant force while measuring the displacement of the actuator. The rotation of the hinge was measured by reflecting a Helium-Neon (HeNe) laser beam off a mirror, which is attached to the pivot of the arm that’s applying the force, and any type of displacement was recorded with a Photo Sensitive Device (PSD). The test stand applied a small force which replicated the amount of electrostatic forces needed to achieve a specific degree of rotation. Results indicate that the micro-hinge achieved a repeatable amount of rotation when forces were applied to it. The micro-hinge would endure deformation when too much force would be applied and yield a maximum amount of force allowed.
134

Enhanced Light Extraction Efficiency from GaN Light Emitting Diodes Using Photonic Crystal Grating Structures

Trieu, Simeon S 01 June 2010 (has links) (PDF)
Gallium nitride (GaN) light emitting diodes (LED) embody a large field of research that aims to replace inefficient, conventional light sources with LEDs that have lower power, higher luminosity, and longer lifetime. This thesis presents an international collaboration effort between the State Key Laboratory for Mesoscopic Physics in Peking University (PKU) of Beijing, China and the Electrical Engineering Department of California Polytechnic State University, San Luis Obispo. Over the course of 2 years, Cal Poly’s side has simulated GaN LEDs within the pure blue wavelength spectrum (460nm), focusing specifically on the effects of reflection gratings, transmission gratings, top and bottom gratings, error gratings, 3-fold symmetric photonic crystal, and 2-fold symmetric nano-imprinted gratings. PKU used our simulation results to fabricate GaN high brightness LEDs from the results of our simulation models. We employed the use of the finite difference time domain (FDTD) method, a computational electromagnetic solution to Maxwell’s equations, to measure light extraction efficiency improvements of the various grating structures. Since the FDTD method was based on the differential form of Maxwell’s equations, it arbitrarily simulated complex grating structures of varying shapes and sizes, as well as the reflection, diffraction, and dispersion of propagating light throughout the device. We presented the optimized case, as well as the optimization trend for each of the single grating structures within a range of simulation parameters on the micron scale and find that single grating structures, on average, doubled the light extraction efficiency of GaN LEDs. Photonic crystal grating research in the micron scale suggested that transmission gratings benefit most when grating cells tightly pack together, while reflection gratings benefit when grating cells space further apart. The total number of grating cells fabricated on a reflection grating layer still affects light extraction efficiency. For the top and bottom grating structures, we performed a partial optimization of the grating sets formed from the optimized single grating cases and found that the direct pairing of optimized single grating structures decreases overall light extraction efficiency. However, through a partial optimization procedure, top and bottom grating designs could improve light extraction efficiency by 118% for that particular case, outperforming either of the single top or bottom grating cases alone. Our research then explored the effects of periodic, positional perturbation in grating designs and found that at a 10-15% randomization factor, light extraction efficiency could improve up to 230% from the original top and bottom grating case. Next, in an experiment with PKU, we mounted a 2-fold symmetric photonic crystal onto a PDMS hemi-cylinder by nano-imprinting to measure the transmission of light at angles from near tangential to normal. Overall transmission of light compared with the non-grating design increases overall light extraction efficiency when integrated over the range of angles. Finally, our research focused on the 3-fold symmetric photonic crystal grating structure and employed the use of 3-D FDTD methods and incoherent light sources to better study the effects of higher-ordered symmetry in grating design. Grating cells were discovered as the source of escaping light from the GaN LED model. The model revealed that light extraction efficiency and the far-field diffraction pattern could be estimated by the position of grating cells in the grating design.
135

Characterization and Modeling of an O-band 1310 nm Sampled-Grating Distributed Bragg Reflector (SG-DBR) Laser for Optical Coherence Tomography (OCT) Applications

Talkington, Desmond Charles 01 June 2013 (has links) (PDF)
In this project, the performance aspects of a new early generation 1310 nm Sampled-Grating Distributed Bragg Reflector (SG-DBR) semiconductor laser are investigated. SG-DBR lasers are ideal for Source Swept Optical Coherence Tomography (SS-OCT), a Fourier-Domain based approach for OCT, necessitating a tunable wavelength source. Three internal sections control the frequency output for tuning, along with two amplifiers for amplitude control. These O-band SG-DBR devices are now being produced in research quantities. SG-DBR lasers have been produced at 1550 and 1600 nm for some times. Fundamental questions regarding the performance of the 1310 nm devices must be quantified. Standard metrics including the laser linewidth, amplitude modulation and frequency modulation responses are characterized. The intrinsic electrical parasitics of the laser diode segments and packaging are also investigated. In addition, testing fixture including a Thermal Electric Cooler (TEC) controller is for the characterization task. Measurements of these key metrics are essential to the enhancement of future devices, aiding in the optimization of more mature products.
136

Elucidating self-assembly of semiconducting polymers in the presence of a low molecular weight gelator

Lakdusinghe, Madhubhashini 08 August 2023 (has links) (PDF)
Semiconducting polymers with a conjugated backbone are important for energy storage, conversion, and biomedical field applications. The self-assembly process of these polymers in solutions depends on the polymer concentration and quality of the solvent. The electrical properties of thin films obtained from the solution phase depend on the self-assembled process. Thin films of conjugated polymer gels with percolating networks of self-assembled structures display improved electrical conductivities. In this dissertation, we studied the impact of the secondary gel matrix formed by a low molecular weight gelator, on the self-assembly of conjugated polymers, the preservation of assembled structures in dried gel films and their electrical properties. The study utilized di-Fmoc-l-Lysine gelator, to form a hybrid gel with poly(3-hexylthiophene) in chloroform. The aggregation of P3HT with the progression of gelation was captured using spectroscopic analysis. The aggregates remain in the interstitial spaces of the fibrillar microstructure of gelator. With restricted mobility and due to higher local concentration, the aggregates formed nanofibriliar structures. Microstructural data indicated the nanostructures formed a percolating network in the dried films with good bulk conductivity, despite conductive polymer content of only 20%. Conjugated polymers require a high boiling point and toxic halogenated solvents to develop gels limiting their applications. By utilizing the amphiphilic nature of the gelator, a thermoreversible gel was obtained in 1-propanol, by combining it with an isoindigo-based DA polymer, engineered with galactose side chains to improve its solubility in eco-friendly solvents. Uniform distribution of aggregated polymer increased the shear moduli of the gels. The electrical conductivity of the dried gels confirmed the existence of percolated aggregates. Additional solvent systems were explored, such as 1-propanol mixed with chloroform. Although P3HT is insoluble in 1-propanol, by adjusting chloroform and 1-propanol ratio, a stable gel was obtained. The poor solvent, 1-propanol, assists the self-assembly of P3HT, improving the electrical performance of dried hybrid gels. The findings from this study contribute to a better understanding of the self-assembly of conjugated polymers utilizing molecular gels as templates. It provides a framework for obtaining semiconducting gels for applications in the biomedical field, and for large-scale fabrication of optoelectronic devices. Semiconducting polymers with a conjugated backbone are important for energy storage, conversion, and biomedical field applications. The self-assembly process of these polymers in solutions depends on the polymer concentration and quality of the solvent. The electrical properties of thin films obtained from the solution phase depend on the self-assembled process. Thin films of conjugated polymer gels with percolating networks of self-assembled structures display improved electrical conductivities. In this dissertation, we studied the impact of the secondary gel matrix formed by a low molecular weight gelator, on the self-assembly of conjugated polymers, the preservation of assembled structures in dried gel films and their electrical properties. The study utilized di-Fmoc-l-Lysine gelator, to form a hybrid gel with poly(3-hexylthiophene) in chloroform. The aggregation of P3HT with the progression of gelation was captured using spectroscopic analysis. The aggregates remain in the interstitial spaces of the fibrillar microstructure of gelator. With restricted mobility and due to higher local concentration, the aggregates formed nanofibriliar structures. Microstructural data indicated the nanostructures formed a percolating network in the dried films with good bulk conductivity, despite conductive polymer content of only 20%. Conjugated polymers require a high boiling point and toxic halogenated solvents to develop gels limiting their applications. By utilizing the amphiphilic nature of the gelator, a thermoreversible gel was obtained in 1-propanol, by combining it with an isoindigo-based DA polymer, engineered with galactose side chains to improve its solubility in eco-friendly solvents. Uniform distribution of aggregated polymer increased the shear moduli of the gels. The electrical conductivity of the dried gels confirmed the existence of percolated aggregates. Additional solvent systems were explored, such as 1-propanol mixed with chloroform. Although P3HT is insoluble in 1-propanol, by adjusting chloroform and 1-propanol ratio, a stable gel was obtained. The poor solvent, 1-propanol, assists the self-assembly of P3HT, improving the electrical performance of dried hybrid gels. The findings from this study contribute to a better understanding of the self-assembly of conjugated polymers utilizing molecular gels as templates. It provides a framework for obtaining semiconducting gels for applications in the biomedical field, and for large-scale fabrication of optoelectronic devices.
137

LATERAL DIFFUSION LPE GROWTH OF SINGLE CRYSTALLINE SILICON FOR PHOTOVOLTAIC APPLICATIONS

Li, Bo 10 1900 (has links)
<p>A modified liquid phase epitaxy (LPE) technique, called lateral diffusion LPE (LDLPE), is invented for low cost and high efficiency solar cell applications. Potentially, LDLPE is able to produce single crystalline silicon wafers directly from the raw material, rather than cutting wafers from single crystalline silicon ingots, therefore reducing the cost by avoiding the cutting and polishing processes.</p> <p>By using a traditional LPE method, the silicon is epitaxially grown on the silicon substrate by cooling down the saturated silicon/indium alloy solution from a high temperature. The silicon precipitates on the substrate since its solubility in the indium solvent decreases during the cooling process. A SiO<sub>2</sub> mask is formed on the (111) substrate with 100µm wide opening windows as seedlines. Silicon is epitaxially grown on the seedline and forms thick epitaxial lateral overgrowth (ELO) layers on the oxide mask. The ELO layers are silicon strips with an aspect ratio of 1:1 (width: thickness), approximately. The strip grows both laterally in width and vertically in thickness.</p> <p>The concept of LDLPE is to intentionally block the silicon diffusion path from the top of the seedline, but leave the lateral diffusion path from the bulk indium melt to the seedline. Theoretically, by using the LDLPE method, the silicon strip should have a larger aspect ratio, because the laterally growth in width is allowed but the vertical growth in thickness is limited. In addition, single crystalline silicon wafers can be achieved if the strip grows continuously.</p> <p>A graphite slide boat is designed to place a plate over the seedline to block the diffusion path of silicon atoms from the top of the seedline. After one growth cycle, silicon strips grown by LDLPE are wider than LPE strips but have similar thicknesses. The aspect ratios are increased from 1:1 to a number larger than 2:1. A Monte-Carlo random walk model is used to simulate the change of LDLPE strip aspect ratio caused by placing a plate over the seedline.</p> <p>Wetting seedline by indium melt is very critical for a successful growth. Due to the small space between the plate and seedline and the surface tension of the indium melt, the indium melt cannot flow into the small space. A pre-wetting technique is used to fill the space prior to loading the graphite boat into the tube furnace and solve the wetting problem successfully.</p> <p>The structure of a LDLPE silicon strip is characterized by X-ray diffraction. The electrical properties are characterized by Hall Effect measurement and photoconductive decay measurement. LDLPE silicon strips are (111) orientated single crystal and are the same orientation as the substrate. For the growth temperature of 950°C, the LDLPE strip has an estimated effective minority carrier lifetime of 30.9µs. The experimental results demonstrate that LDLPE is feasible for photovoltaic application if continuous growth and scaling up can be achieved.</p> / Doctor of Philosophy (PhD)
138

Different Approaches to Improve Metamorphic Buffer Layers Grown on a GaAs Substrate

SAHA, SUDIP K. 10 1900 (has links)
<p>Metamorphic buffer (MB) layers were studied as a means to grow epilayers on top of a GaAs substrate which have different lattice constant than the GaAs. Growths were done by molecular beam epitaxy on a GaAs (001) substrate. The growths of step-graded InGaAs and InGaAsP MBs have been investigated using both linear and logarithmic grading profiles. The logarithmic grading profile shows slight improvement in the crystal quality over the linear grading profiles. This is an indication that instead of increasing the strain with the same grading rate, it may be helpful to have higher grading rate at the beginning and lower grading rate at the end of the buffer. InGaAsP graded buffers were grown where group III ratio was kept fixed. However due to the existence of phase separation and lower relaxation the quaternary growths exhibited no performance improvement as might have been expected from growths with only group V grading. Also, the effects of using an InGaP layer grown at low temperature before the MB were determined. Quantum wells (QW), which were grown on top of the MBs, were used to probe the optical emission properties. No significant difference was observed in photoluminescence between the samples with a low temperature layer and without a low temperature layer. Annealing enhanced the PL intensity but the crystal quality degraded due to the appearance of surface defects. Surface undulations, known as “cross-hatch” (CH), were observed in the top MB layers. Atomic force microscopy (AFM) was used to analyze the surface morphology and degree of polarization (DOP) measurement was used to analyze the strain features in the final MB layer. Similar patterns of both surface morphology and strain field indicate a correlation between these two. From analysis of the periodicity of strain field and the CH, evidence was found in the support of one of the existing models of CH evolution which implies that the CH appears before the formation of MDs and subsequently MDs form at some troughs in the undulation.</p> / Master of Applied Science (MASc)
139

Complex Rare-earth Antimonide Suboxides for Thermoelectric Applications

Wang, Li Peng 04 1900 (has links)
<p>Thermoelectric (TE) materials are able to convert heat directly into electricity and vice versa. This special property makes them valuable for a variety of applications involving power generation and refrigeration. In the search for potential high-performance TE materials, a number of rare-earth (<em>RE</em>) antimonide suboxide phases have been investigated.This presentation will focus on two classes of rare-earth antimonide suboxides: the <em>RE</em><sub>3</sub>Sb<sub>3</sub>O<sub>3</sub> and <em>RE</em><sub>8</sub>Sb<sub>3-</sub><em><sub>d</sub></em>O<sub>8</sub> phases (<em>C</em>2/<em>m</em> space group) based on the <em>RE</em>–O frameworks and the <em>anti</em>-ThCr<sub>2</sub>Si<sub>2</sub> type <em>RE</em><sub>2</sub>SbO<sub>2</sub> compounds (<em>I</em>4/<em>mmm</em> space group). The physical property measurements on the high-purity bulk samples revealed unexpected semiconducting properties in the non-charge-balanced systems, i.e.<em> RE</em><sub>8</sub>Sb<sub>3-</sub><em><sub>d</sub></em>O<sub>8</sub> and <em>RE</em><sub>2</sub>SbO<sub>2</sub>. Since the electronic structure calculations suggest that the anionic Sb states dominate the valence band at the vicinity of the Fermi level, the local structure of the Sb atomic site is believed to dictate the observed physical properties. The charge transport properties are explained within the framework of Anderson/Mott-type localizations. Ultimately, systematic investigation of the <em>RE</em><sub>2</sub>SbO<sub>2</sub> and Ho<sub>2</sub>Sb<sub>1-<em>x</em></sub>Bi<em><sub>x</sub></em>O<sub>2</sub> series reveal the large variability of the electrical properties caused by the local structural perturbations.</p> / Doctor of Philosophy (PhD)
140

Unveiling Transient Behaviors in Heterostructure Nanowires

Boulanger, Jonathan P. 10 1900 (has links)
<p>GaAs/GaP heterostructure nanowires (NWs) were grown on GaAs(111)B and Si(111) substrates by gold (Au) assisted vapor-liquid-solid (VLS) growth in a molecular beam epitaxy (MBE) system. NW morphology and crystal structure were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Early results indicated substantial differences in the length and crystal structure of the GaAs/GaP heterostructures. Efforts to remove these inhomogeneities required an improved Au VLS seed deposition method as well as a better understanding of VLS growth across GaAs/GaP hetero-interfaces.</p> <p>Experiments with GaAs/GaP heterostructures yielded the observation of changes in crystal phase in GaP, including the first reported occurrence of the 4H polytype. These observations revealed the presence of transient growth behavior during the formation of the GaAs to GaP hetero-interface that was unique to the VLS technique. Further characterization required the need to move from VLS seeds formed by annealing thin Au films to Au particles formed precisely by electron beam lithography (EBL). NW growth using EBL patterned Au seeds was discovered to be inhibited by the formation of a thin silicon oxide layer, formed at low temperatures by Au-enhanced silicon oxidation. Elimination of this layer immediately prior to growth resulted in successful patterned VLS growth.</p> <p>A systematic study of the transient GaP growth behavior was then conducted using patterned arrays to grow GaAs/GaP heterostructure NWs with frequent, periodic oscillations in the group V composition. These oscillations were measured by high angle annular dark field (HAADF) to determine the instantaneous growth rate of many NWs. A phenomenological model was fit to the data and transient growth rate behavior following a GaAs to GaP hetero-interface was understood on the basis of transient droplet compositions, which arise due to the large difference in As or P alloy concentrations required to reach the critical supersaturation.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0889 seconds