• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 19
  • 3
  • Tagged with
  • 62
  • 62
  • 34
  • 31
  • 14
  • 11
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Détection non-supervisée de contours et localisation de formes à l'aide de modèles statistiques

Destrempes, François January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
22

Allocation stratégique d'actifs et ALM pour les régimes de retraite

Faleh, Alaeddine 13 May 2011 (has links) (PDF)
La présente thèse s'intéresse aux modèles d'allocation stratégiques d'actifs et à leurs applications pour la gestion des réserves financières des régimes de retraite par répartition, en particulier ceux partiellement provisionnés. L'étude de l'utilité des réserves pour un système par répartition et a fortiori de leur gestion reste un sujet peu exploré. Les hypothèses classiques sont parfois jugées trop restrictives pour décrire l'évolution complexe des réserves. De nouveaux modèles et de nouveaux résultats sont développés à trois niveaux : la génération de scénarios économiques (GSE), les techniques d'optimisation numérique et le choix de l'allocation stratégique optimale dans un contexte de gestion actif-passif (ALM). Dans le cadre de la génération de scénarios économiques et financiers, certains indicateurs de mesure de performance du GSE ont été étudiés. Par ailleurs, des améliorations par rapport à ce qui se pratique usuellement lors de la construction du GSE ont été apportées, notamment au niveau du choix de la matrice de corrélation entre les variables modélisées. Concernant le calibrage du GSE, un ensemble d'outils permettant l'estimation de ses différents paramètres a été présenté. Cette thèse a également accordé une attention particulière aux techniques numériques de recherche de l'optimum, qui demeurent des questions essentielles pour la mise en place d'un modèle d'allocation. Une réflexion sur un algorithme d'optimisation globale d'une fonction non convexe et bruitée a été développée. L'algorithme permet de moduler facilement, au moyen de deux paramètres, la réitération de tirages dans un voisinage des points solutions découverts, ou à l'inverse l'exploration de la fonction dans des zones encore peu explorées. Nous présentons ensuite des techniques novatrices d'ALM basées sur la programmation stochastique. Leur application a été développée pour le choix de l'allocation stratégique d'actifs des régimes de retraite par répartition partiellement provisionnés. Une nouvelle méthodologie pour la génération de l'arbre des scénarios a été adoptée à ce niveau. Enfin, une étude comparative du modèle d'ALM développé avec celui basé sur la stratégie Fixed-Mix a été effectuée. Différents tests de sensibilité ont été par ailleurs mis en place pour mesurer l'impact du changement de certaines variables clés d'entrée sur les résultats produits par notre modèle d'ALM.
23

Résolution de grands problèmes en optimisation stochastique dynamique et synthèse de lois de commande / Solving large-scale dynamic stochastic optimization problems

Girardeau, Pierre 17 December 2010 (has links)
Le travail présenté ici s'intéresse à la résolution numérique de problèmes de commande optimale stochastique de grande taille. Nous considérons un système dynamique, sur un horizon de temps discret et fini, pouvant être influencé par des bruits exogènes et par des actions prises par le décideur. L'objectif est de contrôler ce système de sorte à minimiser une certaine fonction objectif, qui dépend de l'évolution du système sur tout l'horizon. Nous supposons qu'à chaque instant des observations sont faites sur le système, et éventuellement gardées en mémoire. Il est généralement profitable, pour le décideur, de prendre en compte ces observations dans le choix des actions futures. Ainsi sommes-nous à la recherche de stratégies, ou encore de lois de commandes, plutôt que de simples décisions. Il s'agit de fonctions qui à tout instant et à toute observation possible du système associent une décision à prendre. Ce manuscrit présente trois contributions. La première concerne la convergence de méthodes numériques basées sur des scénarios. Nous comparons l'utilisation de méthodes basées sur les arbres de scénarios aux méthodes particulaires. Les premières ont été largement étudiées au sein de la communauté "Programmation Stochastique". Des développements récents, tant théoriques que numériques, montrent que cette méthodologie est mal adaptée aux problèmes à plusieurs pas de temps. Nous expliquons ici en détails d'où provient ce défaut et montrons qu'il ne peut être attribué à l'usage de scénarios en tant que tel, mais plutôt à la structure d'arbre. En effet, nous montrons sur des exemples numériques comment les méthodes particulaires, plus récemment développées et utilisant également des scénarios, ont un meilleur comportement même avec un grand nombre de pas de temps. La deuxième contribution part du constat que, même à l'aide des méthodes particulaires, nous faisons toujours face à ce qui est couramment appelé, en commande optimale, la malédiction de la dimension. Lorsque la taille de l'état servant à résumer le système est de trop grande taille, on ne sait pas trouver directement, de manière satisfaisante, des stratégies optimales. Pour une classe de systèmes, dits décomposables, nous adaptons des résultats bien connus dans le cadre déterministe, portant sur la décomposition de grands systèmes, au cas stochastique. L'application n'est pas directe et nécessite notamment l'usage d'outils statistiques sophistiqués afin de pouvoir utiliser la variable duale qui, dans le cas qui nous intéresse, est un processus stochastique. Nous proposons un algorithme original appelé Dual Approximate Dynamic Programming (DADP) et étudions sa convergence. Nous appliquons de plus cet algorithme à un problème réaliste de gestion de production électrique sur un horizon pluri-annuel. La troisième contribution de la thèse s'intéresse à une propriété structurelle des problèmes de commande optimale stochastique : la question de la consistance dynamique d'une suite de problèmes de décision au cours du temps. Notre but est d'établir un lien entre la notion de consistance dynamique, que nous définissons de manière informelle dans le dernier chapitre, et le concept de variable d'état, qui est central dans le contexte de la commande optimale. Le travail présenté est original au sens suivant. Nous montrons que, pour une large classe de modèles d'optimisation stochastique n'étant pas a priori consistants dynamiquement, on peut retrouver la consistance dynamique quitte à étendre la structure d'état du système / This work is intended at providing resolution methods for Stochastic Optimal Control (SOC) problems. We consider a dynamical system on a discrete and finite horizon, which is influenced by exogenous noises and actions of a decision maker. The aim is to minimize a given function of the behaviour of the system over the whole time horizon. We suppose that, at every instant, the decision maker is able to make observations on the system and even to keep some in memory. Since it is generally profitable to take these observations into account in order to draw further actions, we aim at designing decision rules rather than simple decisions. Such rules map to every instant and every possible observation of the system a decision to make. The present manuscript presents three main contributions. The first is concerned with the study of scenario-based solving methods for SOC problems. We compare the use of the so-called scenario trees technique to the particle method. The first one has been widely studied among the Stochastic Programming community and has been somehow popular in applications, until recent developments showed numerically as well as theoretically that this methodology behaved poorly when the number of time steps of the problem grows. We here explain this fact in details and show that this negative feature is not to be attributed to the scenario setting, but rather to the use of a tree structure. Indeed, we show on numerical examples how the particle method, which is a newly developed variational technique also based on scenarios, behaves in a better way even when dealing with a large number of time steps. The second contribution starts from the observation that, even with particle methods, we are still facing some kind of curse of dimensionality. In other words, decision rules intrisically suffer from the dimension of their domain, that is observations (or state in the Dynamic Programming framework). For a certain class of systems, namely decomposable systems, we adapt results concerning the decomposition of large-scale systems which are well known in the deterministic case to the SOC case. The application is not straightforward and requires some statistical analysis for the dual variable, which is in our context a stochastic process. We propose an original algorithm called Dual Approximate Dynamic Programming (DADP) and study its convergence. We also apply DADP to a real-life power management problem. The third contribution is concerned with a rather structural property for SOC problems: the question of dynamic consistency for a sequence of decision making problems over time. Our aim is to establish a link between the notion of time consistency, that we loosely define in the last chapter, and the central concept of state structure within optimal control. This contribution is original in the following sense. Many works in the literature aim at finding optimization models which somehow preserve the "natural" time consistency property for the sequence of decision making problems. On the contrary, we show for a broad class of SOC problems which are not a priori time-consistent that it is possible to regain this property by simply extending the state structure of the model
24

Prévision du Dynamic Line Rating et impact sur la gestion du système électrique / Forecasting of Dynamic Line Rating and assessment of the impacts on power system management

Dupin, Romain 03 July 2018 (has links)
Le Dynamic Line Rating est la modification dynamique des contraintes de courant sur une ligne électrique aérienne, en accord avec la météorologie. De telles modifications permettent alors d’avoir des réductions des phénomènes de congestion près de 99% du temps.De manière similaire aux énergies renouvelables, il est possible de générer des prévisions de ces contraintes modifiées, en accord avec des observations historiques, des prévisions météorologiques et des méthodes d’intelligence artificielle.Dans cette thèse, nous proposons le développement de modèles de prévision probabilistes à court terme du DLR. Nous nous concentrons plus particulièrement sur des méthodes fournissant des prévisions ayant de très faibles probabilités d’être surestimées. Cela passe par le développement et la comparaison de plusieurs méthodes de prévision, ainsi que des améliorations comme des modifications de prévisions à très bas quantile à l’aide de remodélisations des queues de distribution.Par la suite, une réflexion est faite sur l’utilisation en pratique de ces prévisions, d’abord par des cas d’étude simplifié, puis à l’aide de simulations de réseaux électrique. Ces approches nous permettent de développer de nouvelles stratégies d’utilisation des prévisions DLR, optimisant le bien-être social tout en maintenant les risques associés aux erreurs de prévision à un niveau faible.Finalement, nous évaluons les modèles de prévisions développés en fonction de leurs performances économiques à l’aide des modèles de réseaux électriques, et nous démontrons la valeur des améliorations des modèles de prévision que nous proposons. / Dynamic Line Rating is the modification of the maximal current capacity of an overhead electrical line, depending on weather characteristics. Such modifications allow important decreases of congestion phenomena, around 99% of the time.Similarly to renewable generation, it is possible to forecast the modified constraints, accordingly to some historic observations, weather predictions and artificial intelligence methods.In this document, the development of short-term probabilistic DLR forecast models. A focus is especially made on methods providing forecasts having a very low probability of being overestimated. This is made through the development and the comparison of several forecast methods, and some improvements such as the remodelling of very low quantile forecasts with tail density modelling.Following that, a reflection is proposed on the use of such forecasts in practice, first with some simplified test cases, then with electrical grid simulations. These approaches allow us developing new strategies for the use of the DLR forecasts, maximizing the social welfare while keeping risks associated with forecasts errors at low levels.Finally, an evaluation of the forecast models function of their economic value is made with the electrical grids models, and the value of the proposed modifications of the forecast models is then demonstrated.
25

Estimation Statistique En Grande Dimension, Parcimonie et Inégalités D'Oracle

Lounici, Karim 24 November 2009 (has links) (PDF)
Dans cette thèse nous traitons deux sujets. Le premier sujet concerne l'apprentissage statistique en grande dimension, i.e. les problèmes où le nombre de paramètres potentiels est beaucoup plus grand que le nombre de données à disposition. Dans ce contexte, l'hypothèse généralement adoptée est que le nombre de paramètres intervenant effectivement dans le modèle est petit par rapport au nombre total de paramètres potentiels et aussi par rapport au nombre de données. Cette hypothèse est appelée ``\emph{sparsity assumption}''. Nous étudions les propriétés statistiques de deux types de procédures : les procédures basées sur la minimisation du risque empirique muni d'une pénalité $l_{1}$ sur l'ensemble des paramètres potentiels et les procédures à poids exponentiels. Le second sujet que nous abordons concerne l'étude de procédures d'agrégation dans un modèle de densité. Nous établissons des inégalités oracles pour la norme $L^{\pi}$, $1\leqslant \pi \leqslant \infty$. Nous proposons ensuite une application à l'estimation minimax et adaptative en la régularité de la densité.
26

Règles de décision pour la gestion du risque : Application à la gestion hebdomadaire de la production électrique.

Apparigliato, Romain 25 June 2008 (has links) (PDF)
Nous étudions dans cette thèse le problème de gestion du risque physique en production électrique à l'horizon hebdomadaire. Dans un premier temps, nous nous intéressons à l'intégration de l'aléa d'apport hydraulique dans la gestion locale d'une vallée hydraulique. Cette approche est menée à l'aide de l'optimisation robuste et de règles de décision linéaires. Les résultats de multiples modes de simulation montrent que ces approches permettent de réduire notoirement les déversés en comparaison des modèles déterministes appliqués en exploitation, moyennant une faible augmentation du coût. La deuxième problématique traitée est la gestion active de la marge de production, définie comme l'écart entre l'offre totale et la demande totale, compte tenu des aléas affectant le système électrique. Il s'agit de déterminer quelles décisions optimales prendre, selon un certain critère économique, pour se couvrir contre un risque trop élevé de non-satisfaction de la demande dans au moins 99% des situations. Pour cela, une formulation inédite en boucle ouverte, basée sur le processus stochastique de marge de production et des contraintes en probabilité est proposée. Pour les besoins de cette formulation, nous générons des scénarios à l'aide de techniques plus réalistes qu'en exploitation. Enfin, une résolution moins anticipative est étudiée en appliquant l'heuristique «Programmation Stochastique avec Règles de Décision Constantes par Morceaux» introduite par Thénié et Vial. Les premiers résultats sont très encourageants en comparaison avec les modèles en boucle ouverte.
27

Identification des paramètres des modèles mécaniques non-linéaires en utilisant des méthodes basées sur intelligence artificielle

Kucerova, Anna 27 November 2007 (has links) (PDF)
Le problème d'identification des paramètres apparaît dans beaucoup de problèmes en génie civil sous formes différentes et il peut être résolu par beaucoup de méthodes distinctes. Cette thèse présente deux philosophies principales d'identification avec orientation vers les méthodes basées sur intelligence artificielle. Les aspects pratiques sont montrés sur plusieurs problèmes d'identification, où les paramètres des modèles mécaniques non linéaires sont à déterminer.
28

Analyse et optimisation des surfaces des chemises de moteurs thermiques

Caciu, Costin 01 June 2006 (has links) (PDF)
Dans le secteur automobile, la réduction de l'émission des gaz à effet de serre (CO2) passe par l'amélioration du rendement des véhicules ; pour cela, la réduction des pertes par frottement est actuellement privilégiée. Nous nous intéressons dans cette thèse à l'étude de la topographie des surfaces des chemises de moteurs afin de réduire le frottement entre la chemise et les segments du piston, sans détériorer la consommation d'huile. Nous avons axé notre travail sur le développement de quatre outils numériques que nous présentons dans ce qui suit. Lors des travaux antérieurs sur le même sujet, des outils d'analyse, de décomposition et de simulation de surface ont été développés par Decencière et Jeulin, grâce aux apports de la morphologie mathématique. Nous les utilisons dans le cadre de notre travail aux fins d'opérations d'analyse, filtrage, décomposition ou correction d'images. Un outil de simulation de textures est développé afin de générer de nouvelles surfaces, meilleures en termes de frottement et de consommation d'huile, tout en respectant certaines contraintes fonctionnelles par rapport aux paramètres d'une surface de référence. Un modèle de prédiction du frottement hydrodynamique entre segment et chemise est développé. Cet outil permet, notamment, de remplacer des expériences souvent coûteuses ou difficiles à mener. En partant de la résolution des équations de Navier-Stokes ou de Reynolds, l'écoulement 3D entre la chemise et les segments (animés d'une vitesse donnée par la cinématique du système) est simulé. Après la validation du modèle en le confrontant avec des écoulements analytiques simples ou des mesures expérimentales, il est utilisé pour remonter à de nombreuses mesures globales ou locales permettant d'évaluer les performances des surfaces en termes de frottement, charge, transport de lubrifiant, etc. Des travaux d'optimisation de texture sont menés, ayant comme critère de classification les mesures fournies par l'outil de prédiction, afin d'obtenir des enseignements importants sur les valeurs optimales de certains paramètres des textures. Un outil d'optimisation stochastique de formes est également développé, dans le but de mener une optimisation plus exhaustive des motifs élémentaires des textures de surface périodiques. Enfin, à partir des résultats obtenus à la suite de ces travaux d'optimisation, des nouveaux dessins de surface, générés à l'aide de l'outil de simulation, sont soumis aux tests. Ces nouvelles textures présentent des performances a priori intéressantes, qui mériteraient d'être vérifiées expérimentalement.
29

Prise en compte des incertitudes de prédiction dans la gestion des flux d'énergie dans l'habitat

Le, Minh Hoang 06 October 2011 (has links) (PDF)
Le travail présenté dans ce mémoire de thèse concerne la gestion de la consommation et de la production d'énergie électrique dans les bâtiments. Le problème de gestion d'énergie est modélisé sous forme de programme linéaire mixte. Le travail présenté dans ce mémoire propose des outils qui permettent de prendre en compte les incertitudes dans l'optimisation des flux d'énergie dans l'habitat. Dans un premier temps les incertitudes à prendre en compte sont étudiées. Nous distinguons 2 types d'incertitudes : les incertitudes paramétriques qui concernent le caractère imprécis des coefficients du modèle (prévisions météorologiques, paramètres des modèles, demande prévisionnelle d'énergie...) et les incertitudes d'occurrence qui sont liées aux actions directes de l'usager sur sa consommation d'énergie. Une approche d'optimisation robuste s'appuyant sur une formulation présentée par Bertsimas et Sim pour la programmation linéaire robuste est proposée pour prendre en compte les incertitudes paramétriques. Une procédure d'optimisation en deux étapes, basée sur la programmation stochastique, est proposée pour anticiper les possibilités de démarrage des services pilotés par l'usager. Cette procédure apporte une réponse aux incertitudes d'occurrence en permettant de prendre en compte les consommations d'énergie qui ne sont pas pilotées par le système d'optimisation. Différents exemples d'appartements sont utilisés pour illustrer la validité des méthodes proposées. Différents scénarios de tarification de l'énergie sont également étudiés.
30

Supply chain design and distribution planning under supply uncertainty : Application to bulk liquid gas distribution / Optimisation de chaine logistique et planning de distribution sous incertitude d’approvisionnement

Dubedout, Hugues 03 June 2013 (has links)
La distribution de liquide cryogénique en « vrac », ou par camions citernes, est un cas particulier des problèmes d’optimisation logistique. Ces problèmes d’optimisation de chaines logistiques et/ou de transport sont habituellement traités sous l’hypothèse que les données sont connues à l’avance et certaines. Or, la majorité des problèmes d’optimisation industriels se placent dans un contexte incertain. Mes travaux de recherche s’intéressent aussi bien aux méthodes d’optimisation robuste que stochastiques.Mes travaux portent sur deux problèmes distincts. Le premier est un problème de tournées de véhicules avec gestion des stocks. Je propose une méthodologie basée sur les méthodes d’optimisation robuste, représentant les pannes par des scénarios. Je montre qu’il est possible de trouver des solutions qui réduisent de manière significative l’impact des pannes d’usine sur la distribution. Je montre aussi comment la méthode proposée peut aussi être appliquée à la version déterministe du problème en utilisant la méthode GRASP, et ainsi améliorer significativement les résultats obtenu par l’algorithme en place. Le deuxième problème étudié concerne la planification de la production et d’affectation les clients. Je modélise ce problème à l’aide de la technique d’optimisation stochastique avec recours. Le problème maître prend les décisions avant qu’une panne ce produise, tandis que les problèmes esclaves optimisent le retour à la normale après la panne. Le but est de minimiser le coût de la chaîne logistique. Les résultats présentés contiennent non seulement la solution optimale au problème stochastique, mais aussi des indicateurs clés de performance. Je montre qu’il est possible de trouver des solutions ou les pannes n’ont qu’un impact mineur. / The distribution of liquid gazes (or cryogenic liquids) using bulks and tractors is a particular aspect of a fret distribution supply chain. Traditionally, these optimisation problems are treated under certainty assumptions. However, a large part of real world optimisation problems are subject to significant uncertainties due to noisy, approximated or unknown objective functions, data and/or environment parameters. In this research we investigate both robust and stochastic solutions. We study both an inventory routing problem (IRP) and a production planning and customer allocation problem. Thus, we present a robust methodology with an advanced scenario generation methodology. We show that with minimal cost increase, we can significantly reduce the impact of the outage on the supply chain. We also show how the solution generation used in this method can also be applied to the deterministic version of the problem to create an efficient GRASP and significantly improve the results of the existing algorithm. The production planning and customer allocation problem aims at making tactical decisions over a longer time horizon. We propose a single-period, two-stage stochastic model, where the first stage decisions represent the initial decisions taken for the entire period, and the second stage representing the recovery decision taken after an outage. We aim at making a tool that can be used both for decision making and supply chain analysis. Therefore, we not only present the optimized solution, but also key performance indicators. We show on multiple real-life test cases that it isoften possible to find solutions where a plant outage has only a minimal impact.

Page generated in 0.1087 seconds