• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • Tagged with
  • 32
  • 32
  • 16
  • 12
  • 12
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Optimisation de forme par gradient en dynamique rapide

Genest, Laurent 19 July 2016 (has links)
Afin de faire face aux nouveaux challenges de l’industrie automobile, les ingénieurs souhaitent appliquer des méthodes d’optimisation à chaque étape du processus de conception. En élargissant l’espace de conception aux paramètres de forme, en augmentant leur nombre et en étendant les plages de variation, de nouveaux verrous sont apparus. C’est le cas de la résistance aux chocs. Avec les temps de calcul long, la non-linéarité, l’instabilité et la dispersion numérique de ce problème de dynamique rapide, la méthode usuellement employée, l’optimisation par plan d’expériences et surfaces de réponse, devient trop coûteuse pour être utilisée industriellement. Se pose alors la problématique suivante : Comment faire de l’optimisation de forme en dynamique rapide avec un nombre élevé de paramètres ?. Pour y répondre, les méthodes d’optimisation par gradient s’avèrent être les plus judicieuses. Le nombre de paramètres a une influence réduite sur le coût de l’optimisation. Elles permettent donc l’optimisation de problèmes ayant de nombreux paramètres. Cependant, les méthodes classiques de calcul du gradient sont peu pertinentes en dynamique rapide : le coût en nombre de simulations et le bruit empêchent l’utilisation des différences finies et le calcul du gradient en dérivant les équations de dynamique rapide n’est pas encore disponible et serait très intrusif vis-à-vis des logiciels. Au lieu de déterminer le gradient, au sens classique du terme, des problèmes de crash, nous avons cherché à l’estimer. L’Equivalent Static Loads Method est une méthode permettant l’optimisation à moindre coût basée sur la construction d’un problème statique linéaire équivalent au problème de dynamique rapide. En utilisant la dérivée du problème équivalent comme estimation du gradient, il nous a été possible d’optimiser des problèmes de dynamique rapide ayant des épaisseurs comme variables d’optimisation. De plus, si l’on construit les équations du problème équivalent avec la matrice de rigidité sécante, l’approximation du gradient n’en est que meilleure. De cette manière, il est aussi possible d’estimer le gradient par rapport à la position des nœuds du modèle de calcul. Comme il est plus courant de travailler avec des paramètres CAO, il faut déterminer la dérivée de la position des nœuds par rapport à ces paramètres. Nous pouvons le faire de manière analytique si nous utilisons une surface paramétrique pour définir la forme et ses points de contrôle comme variables d’optimisation. Grâce à l’estimation du gradient et à ce lien entre nœuds et paramètres de forme, l’optimisation de forme avec un nombre important de paramètres est désormais possible à moindre coût. La méthode a été développée pour deux familles de critères issues du crash automobile. La première est liée au déplacement d’un nœud, objectif important lorsqu’il faut préserver l’intégrité de l’habitacle du véhicule. La seconde est liée à l’énergie de déformation. Elle permet d’assurer un bon comportement de la structure lors du choc. / In order to face their new industrial challenges, automotive constructors wish to apply optimization methods in every step of the design process. By including shape parameters in the design space, increasing their number and their variation range, new problematics appeared. It is the case of crashworthiness. With the high computational time, the nonlinearity, the instability and the numerical dispersion of this rapid dynamics problem, metamodeling techniques become to heavy for the standardization of those optimization methods. We face this problematic: ”How can we carry out shape optimization in rapid dynamics with a high number of parameters ?”. Gradient methods are the most likely to solve this problematic. Because the number of parameters has a reduced effect on the optimization cost, they allow optimization with a high number of parameters. However, conventional methods used to calculate gradients are ineffective: the computation cost and the numerical noise prevent the use of finite differences and the calculation of a gradient by deriving the rapid dynamics equations is not currently available and would be really intrusive towards the software. Instead of determining the real gradient, we decided to estimate it. The Equivalent Static Loads Method is an optimization method based on the construction of a linear static problem equivalent to the rapid dynamic problem. By using the sensitivity of the equivalent problem as the estimated gradient, we have optimized rapid dynamic problems with thickness parameters. It is also possible to approximate the derivative with respect to the position of the nodes of the CAE model. But it is more common to use CAD parameters in shape optimization studies. So it is needed to have the sensitivity of the nodes position with these CAD parameters. It is possible to obtain it analytically by using parametric surface for the shape and its poles as parameters. With this link between nodes and CAD parameters, we can do shape optimization studies with a large number of parameters and this with a low optimization cost. The method has been developed for two kinds of crashworthiness objective functions. The first family of criterions is linked to a nodal displacement. This category contains objectives like the minimization of the intrusion inside the passenger compartment. The second one is linked to the absorbed energy. It is used to ensure a good behavior of the structure during the crash.
22

Optimisation de forme dans la classe des corps de largeur constante et des rotors.

Bayen, Térence 01 June 2007 (has links) (PDF)
Dans cette thèse, nous avons considéré des problèmes de minimisation de fonctionnelles relatives à des objets géométriques en dimension 2 et 3 sous contraintes de bord. Nous considérons d'abord le cas des corps de largeur constante en dimension 2 et nous redémontrons le théorème de Blaschke-Lebesgue par la théorie du contrôle optimal en utilisant le principe de Pontryagin. Nous étudions aussi le problème de la minimisation du volume dans la classe des corps de largeur constante en dimension 3 et à symétrie de révolution. Par le principe de Pontryagin, nous obtenons des conditions nécessaires sur un minimiseur. Nous étudions également le problème de minimisation de l'aire dans la classe des rotors d'un polygone à n côtés, ce qui constitue une généralisation du problème précédent. Par le principe de Pontryagin, nous démontrons qu'un minimiseur est une réunion finie d'arcs de cercles de rayon r_i où les r_i prennent des valeurs quantifiées. Nous étudions plus spécifiquement certaines propriétés des rotors réguliers en s'intéressant à leur optimalité locale pour la fonctionnelle d'aire, et pour un certain type de déformations admissibles. Par le théorème de Kuhn-Tucker, nous généralisons au cas des rotors un résultat de Firey en montrant que les rotors réguliers du triangle équilatéral sont des maxima locaux de l'aire, et que les rotors réguliers des polygones réguliers à n>4 côtés, sont des points selles de l'aire. Enfin, nous étudions le problème de minimisation du volume en dimension 3 dans la classe des corps de largeur constante. Nous introduisons d'abord un espace fonctionnel prenant en compte la contrainte de convexité et celle de largeur. Puis nous en déduisons des conditions d'optimalité faibles, vérifiées par le solide de Meissner, dont on conjecture depuis 1934 qu'il minimise le volume dans cette classe.
23

Optimisation du spectre du Laplacien avec conditions de Dirichlet et Neumann dans R² et R³ / Optimization of the Laplacian spectrum with Dirichlet and Neumann boundary conditions in R^2 and R^3

Berger, Amandine 21 May 2015 (has links)
Le problème de l'optimisation des valeurs propres du Laplacien est ancien puisqu'à la fin du XIXème siècle Lord Rayleigh conjecturait que la première valeur propre avec condition de Dirichlet était minimisée par le disque. Depuis le problème a été beaucoup étudié. Et les possibilités de recherches sont multiples : diverses conditions, ajout de contraintes, existence, description des optima ... Dans ce document on se limite aux conditions de Dirichlet et de Neumann, dans R^2 et dans R^3. On procède dans un premier temps à un état de l'art. On se focalise ensuite sur les disques et les boules. En effet, ils font partie des rares formes pour lesquelles il est possible de calculer explicitement et relativement facilement les valeurs propres. On verra malheureusement que ces formes ne sont la plupart du temps pas des minimiseurs. Enfin on s'intéresse aux simulations numériques possibles. En effet, puisque peu de calculs théoriques peuvent être faits il est intéressant d'obtenir numériquement des candidats. Cela permet ensuite d'avoir des hypothèses de travail théorique. `{A} cet effet nous donnerons des éléments de compréhension sur une méthode de simulation numérique ainsi que des résultats obtenus. / The optimization of Laplacian eigenvalues is a classical problem. In fact, at the end of the nineteenth century, Lord Rayleigh conjectured that the first eigenvalue with Dirichlet boundary condition is minimized by a disk. This problem received a lot of attention since this first study and research possibilities are numerous: various conditions, geometrical constraints added, existence, description of optimal shapes... In this document we restrict us to Dirichlet and Neumann boundary conditions in R^2 and R^3. We begin with a state of the art. Then we focus our study on disks and balls. Indeed, these are some of the only shapes for which it is possible to explicitly and relatively easily compute the eigenvalues. But we show in one of the main result of this document that they are not minimizers for most eigenvalues. Finally we take an interest in the possible numerical experiments. Since we can do very few theoretical computations, it is interesting to get numerical candidates. Then we can deduce some theoretical working assumptions. With this in mind we give some keys to understand our numerical method and we also give some results obtained.
24

Optimisation de formes et problèmes spectraux / Shape optimization and spectral problems

Bogosel, Beniamin 08 December 2015 (has links)
Nous étudions dans cette thèse des problèmes d'optimisation de formes associés à des fonctionnelles spectrales et géométriques. L’étude porte à la fois sur des points de vue théoriques et numériques. L’idée générale est ici de proposer des résultats de Gamma-convergence qui permettent de construire des approximations numériques pour des quantités que l'on cherche à optimiser. En particulier, ces méthodes numériques sont appliquées à l’étude des minimiseurs des valeurs propres de l’opérateur Laplacien-Diriclet sous contrainte de périmètre en dimension deux et trois. Une autre classe de problèmes traités concerne les problèmes multiphasiques et les partitions optimales dans le plan et sur des surfaces tri-dimensionnelles.On présente aussi une analyse du spectre de l’opérateur Steklov en rapport avec différentes classes géométriques de domaines. Une partie de cette analyse concerne le problème de l'existence de domaines extrémaux et la stabilité spectrale sous perturbations géométriques. Une deuxième partie de l’étude est liée au développement des méthodes basées sur des solutions fondamentales qui permettent d’évaluer numériquement le spectre d'un opérateur. Une analyse détaillée de la méthode numérique montre qu'on obtient une précision de calcul importante et une économie en temps d’exécution significative par rapport aux méthodes utilisant des maillages. Cette approche est étendue au calcul du spectre des opérateurs de Wentzell et de Laplace-Beltrami. / We study some shape optimization problems associated to spectral and geometric functionals from both theoretical and numerical points of view. One of the main ideas is to provide Gamma-convergence frameworks allowing the construction of numerical approximation methods for the quantities we wish to optimize. In particular, these numerical methods are applied to the study of the Dirichlet-Laplace eigenvalues under perimeter constraint in two and three dimensions and to optimization problems concerning multiphase configurations and partitions in the plane and on three dimensional surfaces.As well, we focus on the analysis of the Steklov spectrum in different geometric classes of domains. Together with the study of existence of extremal domains and the spectral stability under geometric perturbations, we develop methods based on fundamental solutions in order to compute numerically the spectrum. A detailed analysis of the numerical method shows that we get an important precision, while the computation time is significantly decreased compared to mesh-based methods. This approach is extended to the computation of Wentzell and Laplace-Beltrami eigenvalues.
25

Analyse d'images par des méthodes variationnelles et géométriques / Geometric and variational methods for image analysis

Foare, Marion 26 June 2017 (has links)
Dans cette thèse, nous nous intéressons à la fois aux aspects théoriques et à la résolution numérique du problème de Mumford-Shah avec anisotropie pour la restauration et la segmentation d'image. Cette fonctionnelle possède en effet la particularité de reconstruire une image dégradée tout en extrayant l'ensemble des contours des régions d'intérêt au sein de l'image. Numériquement, on utilise l'approximation d'Ambrosio-Tortorelli pour approcher un minimiseur de la fonctionnelle de Mumford-Shah. Elle Gamma-converge vers cette dernière et permet elle aussi d'extraire les contours. Les implémentations avec des schémas aux différences finies ou aux éléments finis sont toutefois peu adaptées pour l'optimisation de la fonctionnelle d'Ambrosio-Tortorelli. On présente ainsi deux nouvelles formulations discrètes de la fonctionnelle d'Ambrosio-Tortorelli à l'aide des opérateurs et du formalisme du calcul discret. Ces approches sont utilisées pour la restauration d'images ainsi que pour le lissage du champ de normales et la détection de saillances des surfaces digitales de l'espace. Nous étudions aussi un second problème d'optimisation de forme similaire avec conditions aux bords de Robin. Nous démontrons dans un premier temps l'existence et la régularité partielle des solutions, et dans un second temps deux approximations par Gamma-convergence pour la résolution numérique du problème. L'analyse numérique montre une nouvelle fois les difficultés rencontrées pour la minimisation d'approximations par Gamma-convergence. / In this work, we study both theoretical and numerical aspects of an anisotropic Mumford-Shah problem for image restoration and segmentation. The Mumford-Shah functional allows to both reconstruct a degraded image and extract the contours of the region of interest. Numerically, we use the Amborsio-Tortorelli approximation to approach a minimizer of the Mumford-Shah functional. It Gamma-converges to the Mumford-Shah functional and allows also to extract the contours. However, the minimization of the Ambrosio-Tortorelli functional using standard discretization schemes such as finite differences or finite elements leads to difficulties. We thus present two new discrete formulations of the Ambrosio-Tortorelli functional using the framework of discrete calculus. We use these approaches for image restoration and for the reconstruction of normal vector field and feature extraction on digital data. We finally study another similar shape optimization problem with Robin boundary conditions. We first prove existence and partial regularity of solutions and then construct and demonstrate the Gamma-convergence of two approximations. Numerical analysis shows once again the difficulties dealing with Gamma-convergent approximations.
26

Déformations libres de contours pour l’optimisation de formes et application en électromagnétisme / Freeform method for shape optimization problems and application to electromagnetism

Bonnelie, Pierre 13 February 2017 (has links)
Dans cette thèse nous développons une technique de déformation pour l'optimisation de formes. Les formes sont représentées par leur frontière, paramétrée par des courbes de Bézier par morceaux. En tant que courbes polynomiales, elles sont définies par leurs coefficients que l'on appelle plutôt points de contrôle. Bouger les points de contrôle revient à modifier la courbe et donc déplacer la frontière des formes. Dans un contexte d'optimisation de formes, ce sont alors les points de contrôle qui sont les variables du problème et l'on a transformé ce dernier en un problème d'optimisation paramétrique. Notre méthode de déformation consiste en un premier temps à paramétrer les frontières par des courbes de Bézier comme indiqué plus haut et dans un second temps à calculer une déformation des points de contrôle à partir d'une direction de descente de la fonction objectif. Notre méthode est de nature géométrique mais l'on propose un moyen de changer la topologie des formes en mesurant la distance entre les points de contrôle : on peut scinder une forme en deux ou inversement en réunir deux en une. Nous avons testé la méthode sur trois problèmes qui sont la conception d'un filtre micro-ondes, la détection d'inclusions et les trajectoires optimales. / We develop a deformation technique for shape optimization problems. The shapes are described only by their boundary, parameterized by piecewise Bézier curves. They are polynomial curves hence entirely defined by their coefficients which are called control points. By moving these control points the curves change and so is the boundary of the shape. Used in a shape optimization problem, the control points become the optimization variables meaning that the problem is a parametric optimization problem. Our method consists in first parameterizing the boundary of a shape by Bézier curves as stated above and then compute a deformation of the control points from a descent direction for the objective function. The method is almost purely geometric but we add a way to include topological changes by diving a shape into two or conversly merging two shapes into one. We tested our method on three particular shape optimization problems which are microwave filter design, inclusions detection and optimal trajectories.
27

Modélisation des problèmes bi-fluides par la méthode des lignes de niveau et l'adaptation du maillage : Application à l'optimisation des formes / Modeling the problem two-fluid flows by the level set method and mesh adaptation : Application to the shape optimization

Tran, Thi Thanh Mai 07 January 2015 (has links)
La première préoccupation de cette thèse est le problème de deux fluides ou un fluide à deux phases, c’est-à-dire que nous nous sommes intéressés à la simulation d’écoulements impliquant deux ou plusieurs fluides visqueux incompressibles immiscibles de propriétés mécaniques et rhéologiques différentes. Dans ce contexte, nous avons considéré que l’interface mobile entre les deux fluides est représentée par la ligne de niveau zéro d’une fonction ligne de niveau et régie par l’équation d’advection, où le champ advectant est la solution des équations de Navier-Stokes. La plupart des méthodes de capture d’interface utilisent une grille cartésienne fixe au cours de la simulation. Contrairement à ces approches, la nôtre est fortement basée sur l’adaptation de maillage, notamment au voisinage de l’interface. Cette adaptation de maillage permet une représentation précise de l’interface, à l’aide de ses propriétés géométriques, avec un nombre de degrés de liberté minimal.La résolution d'un problème à deux fluides est résumée par les étapes suivantes:- Résoudre les équations de Navier-Stokes par la méthode de Lagrange-Galerkin d’ordre 1;- Traitement géométrique la tension de surface se basant sur la discrétisation explicite de l'interface dans le domaine de calcul;- Résoudre l'équation d’advection par la méthode des caractéristiques;- Les techniques de l'adaptation de maillage.On propose ici un schéma entre l’advection de l’interface, la résolution des équations de Navier-Stokes et l’adaptation de maillage. Certains résultats des exemples classiques pour les deux problèmes de monofluide et bifluide comme la cavité entrainée, la rémontée d’une bulle, la coalescence de deux bulles et les instabilités Rayleigh-Taylor sont étudiés en deux et trois dimensions.La deuxième partie de cette thèse est liée à l'optimisation des formes en mécanique des fluides. Nous construisons un schéma numérique en utilisant la méthode des lignes de niveau et l’adaptation de maillage dans le contexte des systèmes de Stokes. Le calcul de la sensibilité de la fonction objective est liée à la méthode de variation des limites d’Hadamard et les dérivées des formes sont calculées par la méthode de Céa. Un exemple numérique avec la fonction objective de la dissipation d'énergie est présenté pour évaluer l'efficacité et la fiabilité du schéma proposé. / The first concern of this thesis is the problem of two fluids flow or two-phase flow, i.e weare interested in the simulation of the evolution of an interface (or a free surface) between twoimmiscible viscous fluids or two phases of a fluid. We propose a general scheme for solving two fluids flow or two-phase flow which takes advantage of the flexibility of the level set method for capturing evolution of the interfaces, including topological changes. Unlike similar approaches that solve the flow problem and the transport equation related to the evolution of the interface on Cartesian grids, our approach relies on an adaptive unstructured mesh to carry out these computations and enjoys an exact and accurate description of the interface. The explicit representation of the manifold separating the two fluids will be extracted to compute approximately the surface tension as well as some algebraic quantities like the normal vector and the curvature at the interface.In a nutshell, the resolution of a two-fluid problem is summarized by the steps involves thefollowing ingredients:– solving incompressible Navier-Stokes equations by the first order Lagrange-Galerkin method;– geometrical treatment to evaluate the surface tension basing on the explicit discretisation of the interface;– solving the level set advection by method of characteristics; – the techniques of mesh adaptation.It is obvious that no numerical method is completely exact in solving the PDE problemat hand, hence, we need a discretized computational domain. However, the accuracy of numericalsolutions or the mass loss/gain can generally be improved with mesh refinement. The question thatarises is related to where and how to refine the mesh. At each time, our mesh adaptation producesthe adapted mesh based on the geometric properties of the interface and the physical properties ofthe fluid, simply speaking, only one adapted mesh at each time step to assume both the resolutionof Navier-Stokes and the advection equations. It answers to the need for an accurate representationof the interface and an accurate approximation of the velocity of fluids with a minimal number ofelements, then decreasing the amount of computational time. Some results of the classical examples for both problems of monofluid and bifluid flows as : lid-driven cavity, rising bubble, coalescence of two bubbles, and Rayleigh-Taylor instability are investigated in two and three dimensions.The second part of this thesis is related to shape optimization in fluid mechanics. We construct a numerical scheme using level set method and mesh adaptation in the context of Stokes systems. The computation of the sensitivity of objective function is related to the Hadamard’s boundary variation method and the shape derivatives is computed by Céa’s formal method. A numerical example with theobjective function of energy dissipation is presented to assess the efficiency and the reliability of theproposed scheme.
28

Géométrie nodale et valeurs propres de l’opérateur de Laplace et du p-laplacien

Poliquin, Guillaume 09 1900 (has links)
La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse. / The main topic of the present thesis is spectral geometry. This area of mathematics is concerned with establishing links between the geometry of a Riemannian manifold and its spectrum. The spectrum of a closed Riemannian manifold M equipped with a Riemannian metric g associated with the Laplace-Beltrami operator is a sequence of non-negative numbers tending to infinity. The square root of any number of this sequence represents a frequency of vibration of the manifold. This thesis consists of four articles all related to various aspects of spectral geometry. The first paper, “Superlevel sets and nodal extrema of Laplace eigenfunction”, is presented in Chapter 1. Nodal geometry of various elliptic operators, such as the Laplace-Beltrami operator, is studied. The goal of this paper is to generalize a result due to L. Polterovich and M. Sodin that gives a bound on the distribution of nodal extrema on a Riemann surface for a large class of functions, including eigenfunctions of the Laplace-Beltrami operator. The proof given by L. Polterovich and M. Sodin is only valid for Riemann surfaces. Therefore, I present a different approach to the problem that works for eigenfunctions of the Laplace-Beltrami operator on Riemannian manifolds of arbitrary dimension. The second and the third papers of this thesis are focused on a different elliptic operator, namely the p-Laplacian. This operator has the particularity of being non-linear. The article “Principal frequency of the p-Laplacian and the inradius of Euclidean domains” is presented in Chapter 2. It discusses lower bounds on the first eigenvalue of the Dirichlet eigenvalue problem for the p-Laplace operator in terms of the inner radius of the domain. In particular, I show that if p is greater than the dimension, then it is possible to prove such lower bound without any hypothesis on the topology of the domain. Such bounds have previously been studied by well-known mathematicians, such as W. K. Haymann, E. Lieb, R. Banuelos, and T. Carroll. Their papers are mostly oriented toward the case of the usual Laplace operator. The generalization of such lower bounds for the p-Laplacian is done in my third paper, “Bounds on the Principal Frequency of the p-Laplacian”. It is presented in Chapter 3. My fourth paper, “Wolf-Keller theorem of Neumann Eigenvalues”, is a joint work with Guillaume Roy-Fortin. This paper is concerned with the shape optimization problem in the case of the Laplace operator with Neumann boundary conditions. The main result of our paper is that eigenvalues of the Neumann boundary problem are not always maximized by disks among planar domains of given area. This joint work is presented in Chapter 4.
29

Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages

Dapogny, Charles 04 December 2013 (has links) (PDF)
L'objectif principal de cette thèse est de concevoir une méthode d'optimisation de structures qui jouit d'une description exacte (i.e. au moyen d'un maillage) de la forme à chaque itération du processus, tout en bénéficiant des avantages de la méthode des lignes de niveaux lorsqu'il s'agit de suivre leur évolution. Indépendamment, on étudie également deux problèmes de modélisation en optimisation structurale. Dans une première partie bibliographique, on présente quelques notions classiques, ainsi qu'un état de l'art sommaire autour des trois thématiques principales de la thèse - méthode des lignes de niveaux (Chapitre 1), optimisation de formes (Chapitre 2) et maillage (Chapitre 3). La seconde partie de ce manuscrit traite de deux questions en optimisation de formes, celle de la répartition optimale de plusieurs matériaux au sein d'une structure donnée (Chapitre 4), et celle de l'optimisation robuste de fonctions dépendant du domaine lorsque des perturbations s'exercent sur le modèle (Chapitre 5). Dans une troisième partie, on étudie la conception de schémas numériques en lien avec la méthode des lignes de niveaux lorsque le maillage de calcul est simplicial (et potentiellement adapté). Le calcul de la distance signée à un domaine est étudié dans le chapitre 6, et la résolution de l'équation de transport d'une fonction 'level set' est détaillée dans le chapitre 7. La quatrième partie (Chapitre 8) traite des aspects de la thèse liés à la modification locale de maillages surfaciques et volumiques. Enfin, la dernière partie (Chapitre 9) détaille la stratégie conçue pour l'évolution de maillage en optimisation de formes, à partir des ingrédients des chapitres 6, 7 et 8.
30

Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segment.

Bonnafé, Alain 16 July 2013 (has links) (PDF)
Les développements asymptotiques topologiques n'ont pas encore été étudiés pour les équations elliptiques quasilinéaires. Cette question apparaît dans la perspective d'appliquer les méthodes d'asymptotique topologique en optimisation de forme aux équations non linéaires de l'élasticité comme en imagerie pour la détection d'ensembles de codimension $\geq 2$ (points en 2D ou courbes en 3D). Dans la Partie I, notre principal résultat réside dans l'obtention du développement asymptotique topologique pour une classe d'équations elliptiques quasilinéaires, perturbées dans des sous-domaines non vides. Le gradient topologique peut être décomposé en un terme linéaire classique et en un terme nouveau, qui rend compte de la non linéarité. L'étude des difficultés spécifiques qui apparaissent avec l'équation de p-Laplace, par comparaison avec l'équation de Laplace, montre qu'un point central réside dans la possibilité de définir la variation de l'état direct à l'échelle 1 dans R^N. Nous étudions en conséquence des espaces de Sobolev à poids et quotientés, dont la semi-norme est la somme des normes L^p et L^2 du gradient dans R^N. Puis nous construisons une classe d'équations elliptiques quasilinéaires, telle que le problème définissant l'état direct à l'échelle 1 vérifie une double propriété de p- et 2- ellipticité. La méthode se poursuit par l'étude du comportement asymptotique de la solution du problème d'interface non linéaire dans R^N et par une mise en dualité appropriée des états directs et adjoints aux différentes étapes d'approximation pour les variations de l'état direct. La Partie II traite d'estimations et de développements asymptotiques de p-capacités de condensateurs, dont l'obstacle est d'intérieur vide et de codimension $\geq 2$. Après quelques résultats préliminaires, nous introduisons les condensateurs équidistants pour étudier le cas des segments. L'effet anisotrope engendré par un segment dans l'équation de p-Laplace est tel que l'inégalité de réarrangement de Pólya-Szegö pour les intégrales de type Dirichlet fournit un minorant trivial. De plus, quand p > N, on ne peut construire par extension une solution admissible pour le segment, aussi petite sa longueur soit-elle, à partir du cas du point. Nous établissons une minoration de la p-capacité N-dimensionnelle d'un segment, qui fait intervenir les p-capacités d'un point, respectivement en dimensions N et (N−1). Les cas de positivité de la p-capacité s'en déduisent. Notre méthode peut être étendue à des obstacles de dimensions supérieures et de codimension $\geq 2$. Introduisant les condensateurs elliptiques, nous montrons que le gradient topologique de la 2-capacité n'est pas un outil approprié pour distinguer les courbes et les obstacles d'intérieur non vide en 2D. Une solution pourrait être de choisir différentes valeurs de p ou bien de considérer le développement asymptotique à l'ordre 2, i.e. la hessienne topologique.

Page generated in 0.527 seconds