Spelling suggestions: "subject:"organische elektronik"" "subject:"organische avelektronik""
11 |
Elektrostatische Aufladung organischer Feldeffekttransistoren zur Verbesserung von gedruckten SchaltungenReuter, Kay 15 November 2012 (has links) (PDF)
Topic of the thesis is the production of unipolar digital circuits by means of mass-printing technologies. For this purpose accumulation-mode and depletion-mode field-effect transistors have been used. To realize depletion-mode field-effect transistors charges are injected and stored in the gate-dielectric.
Consequently, the charge transport on the semiconductor-dielectric interface is influenced and the threshold voltage can be controlled. To inject charges into the dielectric different technologies have been used and will be discussed in terms of their process parameters. Finally, fully-printed digital circuits with enhanced performance are introduced. / Gegenstand der vorliegenden Arbeit ist die drucktechnische Herstellung von unipolaren digitalen Schaltungen durch eine Kombination von organischen Feldeekttransistoren vom Anreicherungs- und Verarmungstyp. Zur Realisierung von Transistoren vom Verarmungstyp werden Überschussladung in den Gate- Isolator eingebracht und gespeichert, wodurch der Ladungstransport im Transistorkanal insbesondere die Schwellspannung beeinflusst wird. Es werden verschiedene Aufladungstechnologien und deren Prozessparameter diskutiert. Abschließend werden vollständig mit Massendruckverfahren prozessierte, digitale Schaltungen mit verbesserter Signalübertragungscharakteristik vorgestellt.
|
12 |
Fabrication of laterally stacked spin devices by semiconductor processingGhosh, Joydeep 04 December 2013 (has links)
This work presents a new approach of fabricating arrays of electrodes, separated by sub-micrometer gaps allowing the systematic investigation of electric properties of organic semiconductors. The laterally stacked devices are fabricated by using a trench isolation technique for separating different electrical potentials, as it is known for micromachining technologies like Single Crystal Reactive Ion Etching and Metallization (SCREAM). The essential part of this process is the patterning of sub-micrometer trenches onto the silicon substrate in a single lithographic step. Afterwards, the trenches are refilled by SiO2 to allow the precise tuning of the electrode separation gap. The metal electrodes are formed via magnetron sputtering. This technological approach allows us to fabricate device structures with a transport channel length in the range of 100-250 nm by conventional photolithography. In this experiment, three different metals like Au, Co, and Ni were used as the electrode materials, while copper phthalocyanine, being deposited by thermal evaporation in high vacuum, was employed as the organic semiconductor under evaluation. The final aim has been study of spin transport through the organic channel in varied geometry.
|
13 |
Organic Thin-Film Transistors: Characterization, Simulation and StabilityHein, Moritz 26 June 2014 (has links)
Organic thin film transistors (OTFT) are a key active devices of future organic electronic circuits. The biggest advantages of organic electronics are the potential for cheep production and the enabling of new applications for light, bendable or transparent devices. These benefits are offered by a wide spectrum of various molecules and polymers that are optimized for different purpose.
In this work, several interesting organic semiconductors are compared as well as transistor geometries and processing steps. In a cooperation with an industrial partner, test series of transistors are produced that are intensively characterized and used as a basis for later device simulation. Therefore, among others 4-point-probe measurements are used for a potential mapping of the transistor channel and via transfer line method the contact resistance is measured in a temperature range between 173 and 353 K.
From later comparison with the simulation models, it appears that the geometrical resistance is actually more important for the transistor performance than the resistance of charge-carrier injection at the electrodes. The charge-carrier mobility is detailed evaluated and discussed. Within the observed temperature range a Arrhenius-like thermal activation of the charge- carrier transport is determined with an activation energy of 170 meV. Furthermore, a dependence of the electric field-strength of a Poole-Frenkel type is found with a Poole-Frenkel factor of about 4.9 × 10E−4 (V/m) −0.5 that is especially important for transistors with small channel length. With these two considerations, already a good agreement between device simulation and measurement data is reached. In a detailed discussion of the dependence on the charge-carrier density and from comparison with established the charge-carrier mobility models, an exponential density of states could be estimated for the organic semiconductor.
However, reliability of OTFTs remains one of the most challenging hurdles to be understood and resolved for broad commercial applications. In particular, bias-stress is identified as the key instability under operation for numerous OTFT devices and interfaces. In this work, a novel approach is presented that allows controlling and significantly alleviating the bias-stress effect by using molecular doping at low concentrations. For pentacene as semiconductor and SiO2 as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias-stress is explained in terms of the shift of Fermi level and, thus, exponentially reduced proton generation at the pentacene/oxide interface. For transistors prepared in cooperation with the industrial partner, a second effect is observed that can be explained by a model considering a ferroelectric process in the dielectric and counteracts the bias-stress behavior.:1. Introduction and Motivation 10
2. Organic Semiconductors and Thin-Film Transistors 12
2.1. Fundamentals of Organic Semiconductors 12
2.1.1. Structural and Electronic Properties 12
2.1.2. Polarons and Trap States 15
2.1.3. Doping of Organic Semiconductors 16
2.2. Charge-Carrier Transport in Organic Semiconductors 18
2.2.1. Field-Effect Mobility 18
2.2.2. Gaussian Disorder Model 21
2.2.3. Variable-Range Hopping Models 24
2.2.4. Fishchuk Model 26
2.3. Organic Field-Effect Transistors 27
2.3.1. Transistor Geometry 27
2.3.2. Transistor Equations 29
2.3.3. Evaluation of Mobility 32
2.3.4. Threshold Voltage 34
2.3.5. Contact Resistance 35
2.3.6. Au-SAMs 38
2.3.7. Dielectric 39
2.3.8. Scaling and Short Channel Effects 41
2.3.9. Stability and Bias-Stress 43
2.4. Device Simulation 44
3. Materials and Methods 46
3.1. Materials 46
3.2. Sample Preparation 50
3.2.1. Sample Preparation in cooperation with the industrial partner 51
3.2.2. Sample Preparation at IAPP 52
3.2.3. Staggered Transistors at IAPP 56
3.3. Sample Characterization 57
3.3.1. Electrical Measurement Setup 57
3.3.2. Parameter Extraction 60
3.3.3. Contact Resistance 61
3.3.4. Kelvin-Probe Atomic Force Microscopy 64
3.3.5. UPS Measurement 65
4. Organic Field-Effect Transistors - Experiment and Simulation 67
4.1. Bottom-Gate Transistors 67
4.1.1. Semiconductors 67
4.1.2. Bipolar Transport 72
4.1.3. Electrode Treatments 74
4.1.4. Channel Treatments 77
4.1.5. Polymer Transistors 79
4.2. Polymer Transistors at Room Temperature 85
4.2.1. Parameter Extraction 85
4.2.2. Four-Point-Probe Measurements 90
4.2.3. Transferline Methode 96
4.2.4. UPS Measurements 100
4.3. Cryostat Measurements 102
4.3.1. Transistor Characteristics 102
4.3.2. Contact Resistance 105
4.3.3. Density of States 107
4.4. Transistor Simulation 110
4.4.1. Introduction of Device Simulation with Genius 110
4.4.2. Mesh and Geometry 111
4.4.3. Contact Resistance of Charge-Carrier Injection 112
4.4.4. Temperature Dependent Simulations 114
4.4.5. Implementation of Donor Traps 116
4.4.6. Poole-Frenkel Discussion 118
4.4.7. Contact Resistance of Geometry 122
4.4.8. Simulation with Advanced Mobility Models 123
4.5. Bias-Stress Reliability 128
4.5.1. Bias-Stress Phenomena 128
4.5.2. Doped Transistors 136
4.5.3. Polymer Transistors 145
5. Conclusion and Outlook 150
A. Appendix 154
A.1. Charge-Carrier Mobility measurements for solar cell materials 154
A.2. Simulation pictures 154
B. Bibliography 160
|
14 |
Vertical Organic Field-Effect Transistors: On the understanding of a novel device conceptGünther, Alrun Aline 15 July 2016 (has links)
Diese Arbeit stellt eine eingehende Studie des sogenannten Vertikalen Organischen Feld-Effekt-Transistors (VOFET) dar, einer neuen Transistor-Geometrie, welche dem stetig wachsenden Bereich der organischen Elektronik entspringt. Dieses neuartige Bauteil hat bereits bewiesen, dass es in der Lage ist, eine der fundamentalen Einschränkungen herkömmlicher organischer Feld-Effekt-Transistoren (OFETs) zu überwinden: Die für Schaltfrequenz und An-Strom wichtige Kanallänge des Transistors kann im VOFET stark reduziert werden, ohne dass teure und komplexe Strukturierungsmethoden genutzt werden müssen. Das genaue Funktionsprinzip des VOFET ist bisher jedoch weitgehend unerforscht. Durch den Vergleich von experimentellen Daten mit Simulationsdaten des erwarteten Bauteil-Verhaltens wird hier ein erstes, grundlegendes Verständnis des VOFETs erarbeitet. Die so gewonnenen Erkenntnisse werden im Folgenden genutzt, um bestimmte Parameter des VOFETs kontrolliert zu manipulieren. So wird beispielsweise gezeigt, dass die Morphologie des organischen Halbleiters, und damit seine Abscheidungsparameter, sowohl für die VOFET-Herstellung als auch für den Ladungsträgertransport im fertigen Bauteil eine wichtige Rolle spielen. Weiterhin wird gezeigt, dass der VOFET, genau wie der konventionelle OFET, durch das Einbringen von Kontaktdotierung deutlich verbessert werden kann. Mit Hilfe dieser Ergebnisse kann gezeigt werden, dass das Funktionsprinzip des VOFETs mit dem eines konventionellen OFETs nahezu identisch ist, wenn man von geringen Abweichungen aufgrund der unterschiedlichen Geometrien absieht. Basierend auf dieser Erkenntnis wird schließlich ein VOFET präsentiert, welcher im Inversionsmodus betrieben werden kann und so die Lücke zur konventionellen MOSFET-Technologie schließt. Dieser Inversions-VOFET stellt folglich einen vielversprechenden Ansatz für leistungsfähige organische Transistoren dar, welche als Grundbausteine für komplexe Elektronikanwendungen auf flexiblen Substraten genutzt werden können.:Zusammenfassung 5
Abstract 6
Publications 13
Introduction 17
Basic Principles of Organic Semiconductors and Related Devices 23
1. The Physics of Organic Semiconductors 25
1.1. Electronic and structural properties of organic semiconductors 28
1.2. Charge carrier transport 34
1.3. Doping of organic semiconductors 43
2. Organic field-effect transistors 47
2.1. Operational principle 50
2.2. Functional interfaces in OFETs 55
2.3. Contact resistance and short-channel effects in OFETs 60
2.4. Applications of OFETs and related devices 65
3. Vertical organic transistors 77
3.1. Organic permeable-base transistors (OPBTs) and organic static induction
transistors (OSITs) 81
3.2. Organic Schottky barrier transistors (OSBTs) 85
3.3. Vertical organic field-effect transistors (VOFETs) 90
Study of the Vertical Organic Field-Effect Transistor 97
4. Methods and Materials 99
4.1. Materials 101
4.2. Sample preparation 104
4.3. Sample characterisation 110
5. Material Optimisation for VOFETs 121
5.1. Variation of the source insulator 123
5.2. Effects of the pentacene morphology 133
5.3. Summary 137
6. Charge Transport in the VOFET 139
6.1. Simulating current flow in the VOFET 141
6.2. The vertical channel 154
6.3. Charge transport in pentacene 161
6.4. Effects of mobility and layer thickness in pentacene VOFETs 167
6.5. Summary 175
7. Doping Concepts for VOFETs 177
7.1. Doping of the bulk regions 179
7.2. Selective contact doping 183
7.3.Impact on the understanding of VOFET operation 194
7.4. Summary 198
8. Vertical Organic Inversion Transistors 201
8.1. Discussion of suitable material systems 204
8.2. Realising inversion VOFETs 207
8.3. Summary 212
9. Conclusion and Outlook 215
9.1. Conclusion 217
9.2. Outlook 219
Appendix 221
A. XRD spectra of pentacene films 223
B. Additional simulation data 227
Bibliography 229
Addresses 257
Important Symbols, Constants and Abbreviations 263
List of Figures 271
Acknowledgements 283 / This work represents a comprehensive study of the so-called vertical organic field-effect transistor (VOFET), a novel transistor geometry originating from the fast-growing field of organic electronics. This device has already demonstrated its potential to overcome one of the fundamental limitations met in conventional organic transistor architectures (OFETs): In the VOFET, it is possible to reduce the channel length and thus increase On-state current and switching frequency without using expensive and complex structuring methods. Yet the VOFET's operational principles are presently not understood in full detail. By simulating the expected device behaviour and correlating it with experimental findings, a basic understanding of the charge transport in VOFETs is established and this knowledge is subsequently applied in order to manipulate certain parameters and materials in the VOFET. In particular, it is found that the morphology, and thus the deposition parameters, of the organic semiconductor play an important role, both for a successful VOFET fabrication and for the charge transport in the finished device. Furthermore, it is shown that VOFETs, just like their conventional counterparts, are greatly improved by the application of contact doping. This result, in turn, is used to demonstrate that the VOFET essentially works in almost exactly the same way as a conventional OFET, with only minor changes due to the altered contact arrangement. Working from this realisation, a vertical organic transistor is developed which operates in the inversion regime, thus closing the gap to conventional MOSFET technology and providing a truly promising candidate for high-performance organic transistors as the building blocks for advanced, flexible electronics applications.:Zusammenfassung 5
Abstract 6
Publications 13
Introduction 17
Basic Principles of Organic Semiconductors and Related Devices 23
1. The Physics of Organic Semiconductors 25
1.1. Electronic and structural properties of organic semiconductors 28
1.2. Charge carrier transport 34
1.3. Doping of organic semiconductors 43
2. Organic field-effect transistors 47
2.1. Operational principle 50
2.2. Functional interfaces in OFETs 55
2.3. Contact resistance and short-channel effects in OFETs 60
2.4. Applications of OFETs and related devices 65
3. Vertical organic transistors 77
3.1. Organic permeable-base transistors (OPBTs) and organic static induction
transistors (OSITs) 81
3.2. Organic Schottky barrier transistors (OSBTs) 85
3.3. Vertical organic field-effect transistors (VOFETs) 90
Study of the Vertical Organic Field-Effect Transistor 97
4. Methods and Materials 99
4.1. Materials 101
4.2. Sample preparation 104
4.3. Sample characterisation 110
5. Material Optimisation for VOFETs 121
5.1. Variation of the source insulator 123
5.2. Effects of the pentacene morphology 133
5.3. Summary 137
6. Charge Transport in the VOFET 139
6.1. Simulating current flow in the VOFET 141
6.2. The vertical channel 154
6.3. Charge transport in pentacene 161
6.4. Effects of mobility and layer thickness in pentacene VOFETs 167
6.5. Summary 175
7. Doping Concepts for VOFETs 177
7.1. Doping of the bulk regions 179
7.2. Selective contact doping 183
7.3.Impact on the understanding of VOFET operation 194
7.4. Summary 198
8. Vertical Organic Inversion Transistors 201
8.1. Discussion of suitable material systems 204
8.2. Realising inversion VOFETs 207
8.3. Summary 212
9. Conclusion and Outlook 215
9.1. Conclusion 217
9.2. Outlook 219
Appendix 221
A. XRD spectra of pentacene films 223
B. Additional simulation data 227
Bibliography 229
Addresses 257
Important Symbols, Constants and Abbreviations 263
List of Figures 271
Acknowledgements 283
|
15 |
Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen ElektronikBerndt, Andreas 07 October 2016 (has links)
Der Einsatz von organischen Materialien, insbesondere von Polymeren, hat zahlreiche Vorteile gegenüber dem Einsatz klassischer Materialien in der Mikroelektronik. Zu diesen zählen Flexibilität, geringes Gewicht, Verarbeitbarkeit durch Verfahren aus Lösung bei Raumtemperatur ohne Notwendigkeit vakuumbasierter Prozesse zur Abscheidung und vieles mehr. Dies ermöglicht eine energie- und kosteneffiziente Herstellung elektronischer Bauteile wie organische Feldeffekttransistoren (OFETs) oder Leuchtdioden (OLEDs), welche durch Prozesse wie dem Rolle-zu-Rolle-Druckverfahren nicht länger auf kleine Flächen begrenzt sind.
Zur Herstellung polymerbasierter OFETs mit optimiertem Eigenschaftsprofil sind neben innovativen Halbleitern vor allem auch neue Dielektrika mit verbesserten elektrischen Eigenschaften erforderlich, zu deren Entwicklung die vorliegende Arbeit beitragen sollte. Das häufig verwendete Polymethylmethacrylat ist für den Einsatz als Gate-Dielektrikum für die organische und gedruckte Elektronik nur bedingt geeignet. Es zeigt einige Nachteile wie eine mangelnde Stabilität gegenüber bestimmten organischen Lösungsmitteln, was zu Quellung oder Anlösen des Dielektrikums während des Aufbringens weiterer Schichten führen kann. Durch Copolymerisation von Methylmethacrylat mit funktionalisierten Comonomeren sollten die Probleme gelöst und optimierte Methacrylat-Copolymere entwickelt werden.
Die Copolymere wurden über freie radikalische sowie RAFT-Polymerisation synthetisiert. Allen gemeinsam sind vernetzbare Comonomere, um die Lösungsmittelstabilität zu verbessern und somit die Durchbruchfeldstärke des Dielektrikums zu erhöhen. Als Vernetzer wurden 4-Benzoylphenylmethacrylat (BPMA) oder Propargylmethacrylat (PgMA) gewählt. BPMA ist UV-vernetzbar, Copolymere mit PgMA können in Gegenwart von mehrfunktionalen Aziden wie 1,3,5-Tris(azidomethyl)benzen (TAMB) durch Click-Reaktion thermisch vernetzt werden. Ein weiterer Aspekt ist die Erhöhung der relativen Permittivität des Dielektrikums zur Steigerung der Kapazität der dielektrischen Schicht, wodurch unter anderem die Betriebsspannung des Transistors reduziert werden kann. Dieses Ziel sollte durch Komposite mit BaTiO3-Nanopartikeln erreicht werden.
Zusätzlich zur Steigerung der Permittivität kann dies durch Verringerung der Filmdicke realisiert werden, was jedoch vermehrt zu Leckströmen führen könnte. Neben den dielektrischen Materialeigenschaften spielt vor allem auch die Grenzfläche zwischen Dielektrikum und Halbleiter eine wesentliche Rolle. Um die Interaktionen an dieser zu verbessern, wurden Comonomere mit selbstorganisierenden Seitenketten in die Polymerstruktur eingebracht. Die Kombination dieser Dielektrika mit chemisch angepassten Halbleitern mit vergleichbaren Seitenkettenfunktionalitäten soll dazu führen, dass die beiden Komponenten durch die Seitenketten verstärkt miteinander wechselwirken.
Monomersynthesen sowie anschließende Copolymerisationen waren in hohen Ausbeuten und ausreichenden Molmassen bezüglich der Copolymere erfolgreich. Die strahleninduzierte Vernetzung konnte durch systematische Untersuchungen optimiert und die thermische Vernetzung bei moderaten Temperaturen nachgewiesen werden. Die Vernetzbarkeit von Copolymeren mit selbstorganisierenden Seitenketten erwies sich als gehindert. Hierfür wurde ein Vorschlag zur Erhöhung der Flexibilität der Vernetzerseitenkette unterbreitet. Für die Copolymere P(MMA/BPMA) und P(MMA/PgMA) konnten die Durchbruchfeldstärken in Folge der Vernetzung von < 0.3 MV/cm für PMMA auf bis zu mehr als 5 MV/cm gesteigert werden. BaTiO3-Nanopartikel konnten durch geeignete Methoden erfolgreich synthetisiert werden.
Durch Variation der Reaktionsbedingungen war eine gezielte Steuerung der Primärpartikelgröße möglich. So wurden Partikel der Größe < 10 nm, 26 nm und 55 nm realisiert. Die Dispersion der Partikel in organischen Lösungsmitteln sowie in der Polymermatrix war stark abhängig von der Größe der Primärartikel, der Oberflächenmodifikation sowie der Neigung zur Agglomeration. Modifizierte Partikel mit einem Durchmesser < 10 nm konnten sehr gut in Lösungsmitteln wie auch in der Polymermatrix dispergiert werden (Abbildung 2). Eine Steigerung der relativen Permittivität der Nanokomposite blieb jedoch aufgrund der zu geringen Größe der Primärpartikel aus. Darüber hinaus wurden deutlich schlechtere Durchbruchfeldstärken beobachtet.
Copolymere mit der Fähigkeit zur Selbstorganisation sollten durch zwei Konzepte realisiert werden. Im ersten System führte die Polymerisation von x-[4-(4´-Cyanophenyl)phenoxy]alkylmethacrylaten mit Spacerlängen von x = 6 und x = 8 nur in Homopolymeren zu ausgeprägter Selbstorganisation. Copolymere mit 50 mol% waren weitgehend isotrop und wiesen zudem ungenügende dielektrische Eigenschaften auf. Das zweite System basiert auf semifluorierten Methacrylat-Copolymeren mit H10F10-Seitenketten (10 CH2- und 10 CF2-Gruppen). Diese zeigten schon ab einem Gehalt von circa 35 mol% gute Selbstorganisation und bildeten ein geordnetes alternierendes Schichtsystem aus Haupt- und Seitenketten im Bulk und in dünnen Filmen. Die dielektrischen Eigenschaften können mit denen bekannter fluorierter Polymerdielektrika wie CYTOP konkurrieren. Damit stehen die semifluorierten Copolymere zukunftsorientiert zur Kombination mit Halbleitern, welche die gleichen Seitenkettenfunktionalitäten tragen, bereit, um so durch starke Interaktionen zwischen Dielektrikum und Halbleiter die Grenzfläche zu optimieren.
Mit thermisch vernetztem P(MMA/PgMA) konnten OFETs mit den Halbleitern Pentacen bzw. C60 erfolgreich hergestellt und vermessen werden. Beide Transistoren liefern gute und mit Literaturwerten vergleichbare Kenngrößen. Die Ladungsträgermobilitäten und Ion/Ioff-Verhältnisse betragen 0.3 cm²/Vs und 6.0x10^5 im Pentacen-basierten Transistor beziehungsweise 1.3 cm²/Vs und 4.4x10^5 im OFET mit dem Halbleiter C60.
Damit konnte in dieser Arbeit die Steigerung der Durchbruchfeldstärke durch geeignete Vernetzung der Copolymere realisiert werden. Die thermische Vernetzung fand bei deutlich geringeren Temperaturen als zahlreiche in der Literatur beschriebene Reaktionen statt. Die Synthese und Modifizierung von BaTiO3-Nanopartikeln und auch die Bildung entsprechender PMMA-BaTiO3-Nanokomposite war erfolgreich, führte jedoch nicht wie erwartet zu einer Steigerung der relativen Permittivität der Dielektrika-Schichten.
Vernetzbare und selbstorganisierende semifluorierte Methacrylat-Copolymere konnten polymerisiert und charakterisiert werden und stehen als innovative dielektrische Materialien für Untersuchungen in OFETs zur Verfügung. Das Copolymer P(MMA/PgMA) wurde zielführend in organischen Feldeffekttransistoren eingesetzt und führte zu guten elektrischen Eigenschaften der Bauteile.
|
16 |
Charge-carrier dynamics in organic LEDsKirch, Anton 27 February 2023 (has links)
Anyone who decides to buy a new mobile phone today is likely to buy a screen made from organic light-emitting diodes (OLEDs). OLEDs are a relatively new display technology and will probably account for the largest market share in the upcoming years. This is due to their brilliant colors, high achievable display resolution, and comparably simple processing. Since they are not based on the rigid crystal structure of classical semiconductors and can be produced as planar thin-film modules, they also enable the fabrication of large-area lamps on flexible substrates – an attractive scenario for future lighting systems. Despite these promising properties, the breakthrough of OLED lighting technology is still pending and requires further research.
The charge-carrier dynamics in an OLED determine its device functionality and, therefore, enable the understanding of fundamental physical concepts and phenomena.
From the description of charge-carrier dynamics, this work derives experimental methods and device concepts to optimize the efficiency and stability of OLEDs. OLEDs feature an electric current of charge carriers (electrons and holes) that are intended to recombine under the emission of light. This process is preceded by charge-carrier injection and their transport to the emission layer. These three aspects are discussed together in this work. First, a method is presented that quantifies injection resistances using a simple experiment. It provides a valuable opportunity to better understand and optimize injection layers. Subsequently, the charge carrier transport at high electrical currents, as required for OLEDs as bright lighting elements, will be investigated. Here, electro-thermal effects are presented that form physical limits for the design and function of OLED modules and explain their sudden failure. Finally, the dynamics and recombination of electro-statically bound charge carrier pairs, so-called excitons, are examined. Various options are presented for manipulating exciton dynamics in such a way that the emission behavior of the OLED can be adjusted according to specific requirements.:List of publications . . . . . . . . . . . . . . . . . v
List of abbreviations . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . 1
2 Fundamentals . . . . . . . . . . . . . . . . . 5
2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5
2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10
2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15
2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24
2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38
2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44
2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47
2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49
2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52
2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54
2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55
3 Materials and methods . . . . . . . . . . . . . . . . . 57
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66
3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68
3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73
3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74
4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77
4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85
4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92
4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95
4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99
5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101
5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104
5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108
5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108
5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110
5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112
5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114
5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116
5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118
5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120
5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121
5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127
5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131
5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133
5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133
5.6.2 Bistability and tristability in organic semiconductors . . . . 134
5.6.3 Experimental indications for attempted branch hopping . . . 138
5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144
5.6.5 Taking another view onto the camera pictures . . . . . . . . 145
6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147
6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149
6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155
6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161
6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163
6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172
6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177
6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177
6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180
6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183
6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184
6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192
6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195
6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198
7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207
7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207
7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208
7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209
7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210
7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211
7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Bibliography. . . . . . . . . . . . . . . . . 215
Acknowledgements . . . . . . . . . . . . . . . . . 249 / Wer sich heute für ein neues Mobiltelefon entscheidet, kauft damit wahrscheinlich einen Bildschirm aus organischen Leuchtdioden (OLEDs). Durch ihre brillanten Farben, die hohe erreichbare Auflösung und eine vergleichsweise einfache Prozessierung werden OLEDs als relativ neue Bildschirmtechnologie in den nächsten Jahren wohl den größten Marktanteil ausmachen. Da sie nicht auf der starren Kristallstruktur klassischer Halbleiter beruhen und als planare Dünnschichtmodule produziert werden können, ermöglichen sie außerdem die Fertigung großer Flächenstrahler auf flexiblen Substraten – ein sehr attraktives Szenario für zukünftige Beleuchtungssysteme. Trotz dieser vielversprechenden Eigenschaften steht der Durchbruch der OLED-Technologie als Leuchtmittel noch aus und erfordert weitere Forschung. Die Dynamik der Ladungsträger (Elektronen und Löcher) in einer OLED charakterisiert wichtige Teile der Bauteilfunktion und ermöglicht daher das Verständnis grundlegender physikalischer Konzepte und Phänomene. Diese Arbeit leitet anhand dieser Beschreibung experimentelle Methoden und Bauteilkonzepte ab, um die Effizienz und Stabilität von OLEDs zu optimieren.
OLEDs zeichnen sich dadurch aus, dass ein elektrischer Strom aus Ladungsträgern (Elektronen und Löchern) möglichst effizient unter Aussendung von Licht rekombiniert. Diesem Prozess geht eine Ladungsträgerinjektion und deren Transport zur Emissionsschicht voraus. Diese drei Aspekte werden in dieser Arbeit zusammenhängend diskutiert. Als erstes wird eine Methode vorgestellt, die Injektionswiderstände anhand eines einfachen Experimentes quantifiziert. Sie bildet eine wertvolle Möglichkeit, Injektionsschichten besser zu verstehen und zu optimieren. Anschließend wird der Ladungsträgertransport bei hohen elektrischen Strömen untersucht, wie sie für OLEDs als helle Beleuchtungselemente nötig sind. Hier werden elektro-thermische Effekte vorgestellt, die physikalische Grenzen für das Design und die Funktion von OLED Modulen bilden und deren plötzliches Versagen erklären. Abschließend wird die Dynamik der stark elektrostatisch gebundenen Ladungsträgerpaare, sogenannter Exzitonen, kurz vor deren Rekombination untersucht. Es werden verschiedene Möglichkeiten vorgestellt sie so zu manipulieren, dass sich das Abstrahlverhalten der OLED anhand bestimmter Anforderungen einstellen lässt.:List of publications . . . . . . . . . . . . . . . . . v
List of abbreviations . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . 1
2 Fundamentals . . . . . . . . . . . . . . . . . 5
2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5
2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10
2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15
2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24
2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38
2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44
2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47
2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49
2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52
2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54
2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55
3 Materials and methods . . . . . . . . . . . . . . . . . 57
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66
3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68
3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73
3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74
4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77
4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85
4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92
4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95
4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99
5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101
5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104
5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108
5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108
5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110
5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112
5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114
5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116
5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118
5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120
5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121
5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127
5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131
5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133
5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133
5.6.2 Bistability and tristability in organic semiconductors . . . . 134
5.6.3 Experimental indications for attempted branch hopping . . . 138
5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144
5.6.5 Taking another view onto the camera pictures . . . . . . . . 145
6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147
6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149
6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155
6.2 Dual-state Förster transfer . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161
6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163
6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172
6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177
6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177
6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180
6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183
6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184
6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192
6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195
6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198
7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207
7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207
7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208
7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209
7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210
7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211
7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Bibliography. . . . . . . . . . . . . . . . . 215
Acknowledgements . . . . . . . . . . . . . . . . . 249
|
17 |
Untersuchung von Multilagenbarrieren für die Verkapselung organischer BauelementeDollinger, Felix 11 December 2015 (has links) (PDF)
Elektronische Bauteile aus organischen Halbleitern stellen höchste Anforderungen an die Qualität der Verkapselung, die sie vor eindringenden Wasser- und Luftmolekülen schützt. Gleichzeitig soll diese preiswert und mechanisch flexibel sein. Diese Arbeit realisiert Aluminium-Mehrschichtsysteme als wirkungsvolle, biegsame und einfache Verkapselung. Es werden verschiedene Herstellungsmethoden und Zwischenschichtmaterialien untersucht, wobei die Barrierelamination als überlegenes Verfahren etabliert wird. Verkapselungssysteme werden mittels optischer Untersuchung und mit dem elektrischen Calciumtest auf ihre Güte geprüft, bevor sie in Solarzellenalterungsexperimenten unter realitätsnahen Bedingungen zur Anwendung kommen. Laminationsbarrieren aus Aluminiumdünnschichten zeigen reproduzierbar Wasserdampfdurchtrittsraten im unteren 10^(-4) g(H2O)/m^2/Tag-Bereich unter beschleunigten Permeationsbedingungen. Sie verlängern die T(50)-Lebensdauer von Solarzellen um einen Faktor 50 gegenüber unverkapselten Zellen auf Werte, die mit starrer Glas- oder zeitaufwendiger ALD-Verkapselung vergleichbar sind. / Organic electronic devices require excellent encapsulation to protect them from intruding water- and air-molecules. At the same time, the encapsulation has to be inexpensive and flexible. This work presents aluminum multilayer barriers as highly effective, flexible and low-cost encapsulation. Various production methods and interlayer materials are investigated and barrier-lamination is established as superior process. Encapsulation systems are evaluated optically and by means of the electrical calcium-test, before they are employed in realistic solar cell aging experiments. Lamination-barriers of thin aluminum films show reproducible water-vapor transmission rates in the low 10^(-4) g(H2O)/m^2/day-range under accelerated permeation conditions. They improve the T(50)-lifetime of solar cells by a factor of 50 compared to unencapsulated cells, reaching values on par with rigid glass encapsulation or time-consuming atomic layer deposition.
|
18 |
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysisSowade, Enrico, Ramon, Eloi, Mitra, Kalyan Yoti, Martínez-Domingo, Carme, Pedró, Marta, Pallarès, Jofre, Loffredo, Fausta, Villani, Fulvia, Gomes, Henrique L., Terés, Lluís, Baumann, Reinhard R. 10 October 2016 (has links) (PDF)
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.
|
19 |
Optical and structural properties of systems of conjugated molecules and graphenesLange, Philipp 07 April 2014 (has links)
Systeme aus konjugierten Molekülen und Graphenen bergen hohes Potential für Anwendungen. Die Untersuchung ihrer Wechselwirkungsmechanismen ist wichtig für die Entwicklung neuer Anwendungen und Fokus dieser Arbeit: Optische Mikroskopie, Spektroskopie und Rasterkraftmikroskopie werden komplementär verwendet, um die optischen und strukturellen Eigenschaften solcher Systeme zu erforschen. Insbesondere werden (i) die Permeationsbarriere-Eigenschaften von Graphen in-situ auf einem halbleitenden Polymerfilm quantifiziert. Weiterhin werden (ii) die Fluoreszenz- und (iii) Raman-Emission von konjugierten Molekülen in der Nähe von Graphen untersucht und die entsprechenden Kopplungsmechanismen diskutiert. (i) Graphene zeigen sich als effizienter Schutz des empfindlichen Polymers [Poly(3-hexylthiophen)] vor Degeneration durch Sauerstoff und Wasser aus der Umgebungsluft. Dies legt nahe, dass Graphene nicht nur als transparente Elektrode, sondern gleichzeitig als Barriereschicht in künftigen optoelektronischen Bauelementen dienen können. (ii) Es wird gezeigt, dass die bekannten optischen Eigenschaften von Graphen die Existenz stark lokalisierter Graphen-Plasmonen im Sichtbaren implizieren. Durch Verwendung von nanoskaligen Emittern [Rhodamin 6G (R6G)], welche die für effiziente Anregung von Graphen-Plasmonen im optischen Frequenzbereich notwendigen großen Wellenvektor bereitstellen, wird Graphen-Plasmonen-induzierte (GPI) Fluoreszenz-Anregungsverstärkung von nahezu 3 Größenordnungen nachgewiesen. Demnach ist Graphen für plasmonische Bauelemente im Sichtbaren interessant. (iii) Außerdem wird GPI Verstärkung des Raman-Querschnittes von R6G um 1 Größenordnung nachgewiesen. Zukünftige Entwicklung von Antennen für zusätzliche direkte Anregung von Graphen-Plasmonen aus dem Fernfeld macht Graphen vielversprechend für leistungsfähige oberflächenverstärkte Raman-Spektroskopie. Zusammenfassend wurden neue und anwendungsrelevante Einblicke in die analysierten Systeme gewonnen. / Systems of conjugated molecules and graphenes bear high application potential. The investigation of their interaction mechanisms is important for design of new applications and the focus of this thesis: Optical microscopy, spectroscopy and scanning force microscopy are complementarily used to explore the optical and structural properties of such systems. In particular (i) the permeation barrier properties of graphene are quantified in-situ on a semiconducting polymer film. Furthermore (ii) the fluorescence and (iii) Raman emission of conjugated molecules in proximity to graphene are investigated and the respective coupling mechanisms are discussed. (i) Graphenes are found to efficiently protect the sensitive polymer [poly(3-hexylthiophene)] from degradation by oxygen and water from the ambient atmosphere. This suggests that graphenes can not only serve as transparent electrode, but simultaneously as a barrier layer in future optoelectronic devices. (ii) It is shown that the known optical properties of graphene imply the existence of strongly localized graphene plasmons in the visible. Using nanoscale emitters [rhodamine 6G (R6G)] that provide the high wave vectors necessary to efficiently excite graphene plasmons at optical frequencies, graphene plasmon induced (GPI) fluorescence excitation enhancement by nearly 3 orders of magnitude is demonstrated. Graphene is thus interesting for plasmonic devices in the visible. (iii) In addition GPI enhancement of the Raman cross section of R6G by 1 order of magnitude is demonstrated. The future design of antennas for additional direct farfield excitation of graphene plasmons makes graphene promising for powerful surface enhanced Raman spectroscopy. In summary new and application relevant insights were gained into the studied systems.
|
20 |
Raman-Spektroskopie an metallische/organische/anorganische Heterostrukturen und Pentacen-basierten OFETsPaez Sierra, Beynor Antonio 06 August 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden die Wechselwirkung von Indium (In) und Magnesium (Mg) als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10-
Perylentetracarbonsäure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2x1-Substraten hergestellt und unter Ultrahochvakuum (UHV)-Bedingungens aufgedampft. Als
Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt, die eine nicht-destruktive Methode ist,und auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die experimentell Ergebnisse haben gezeigt,
dass alle aufgedampft Metallen auf die organische Schichten von PTCDA und DiMe-PTCDI eine Verstärkung des
aktive Raman Signals von interne Schwingungsmoden fördern, begleitet durch die Aktivierung von normalerweise
Infrarotaktivemoden. Diesem Phänomen als Oberflächenverstärkte Raman-Spektroskopie (SERS) genannt ist.
Das Mg Wachstum auf beiden Molekularstrukturen wurde durch die viel niedrigere Diffusion des Metalls
in die organischen Molekülen im Vergleich zum Indium, es war durch die Bewahrung des von externe molekulare
Schwingungsmoden nach das Metallswachstum, und in ersten Mal in einem Ramanexperiment beobachtet. Die
PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehört zu einer neuen
molekularen Struktur für eine Mg Schicht dünner als 2.8 nm, wo das PTCDA Molekühl des Sauerstoff-Atoms von die
dianhydride Gruppe verliert. Die zweite gehört zu das SERS Spektrum von die vorherige Struktur. Im Fall von
Mg/DiMe-PTCDI Heterostrukturen, den Molekühl wird gut bewahrt, wo die Raman Verschiebung an der diimide
Gruppe wird nicht modifiziert. Auch von dieser Struktur eine interessante Eigenschaft wurde durch die Kopplung
zwischen diskret Moleküleigenschwingungen am 221 cm^-1, 1291 cm^-1 und 1606 cm^-1 des organischen Materials
und den elektronischen Kontinuum-Zuständen des Mg-Metallkontakts. Ihre entsprechenden Energieliniengestalten
werden gut durch die Breit-Wigner-Fano-Funktion beschrieben.
Die Untersuchungen auf dem vorherigen Heterostrukturen half, die Kanalbildung von Pentacen-basierten organische
Feldeffekt-Transistoren (OFETs) experimentell zu analysieren, und in ersten Mal in einem Ramanexperiment
durchgeführt. Der organische Kanal war gebildet durch die organische Molekularstrahldeposition (OMBD) unter
UHV-Bedingungens der Pentacen Moleküle, und es war mit eine Evaporationsrate von ca. 0.65 Å/min aufgedampft.
Nach jede Aufdampfung von ca. 0.1 nm des organische Moleküle, den Strom und den Ramansignal in den Kanal
wurden in situ gemessen. Die minimale nominelle Dicke des organischen Materials erforderlich für den effizienten
Ladungstransport durch den OFET Kanal wurde um ungefähr 1.5 nm nomineller Einschluss oder 1.1 Monolagen (ML)
zu sein. Eigenschaften der ersten Monolagen werden gut im Vergleich mit dickeren Schichten definiert, wo die 1.1 ML
eine gestrecktes Natur wegen seines direkten Kontakts mit dem Gate-Isolator präsentieren. Es wurde gefunden, dass
der leitende organische Kanal bzw. -organische erhöhende Schicht (OBL)- eine Druckdeformierung hat. Dieses
Phänomen durch die rote Verschiebung der Ramanbanden beobachtet war. Das Ausgangskennlinienfeld des OFETs
wurden nach die letzte aufgedampft organische Schicht gemessen. Es wurde gefunden, dass der Drain-Strom einem
Relaxationsprozesse mit zwei Zeitkonstanten hat, wo eine in der Ordnung von 10¹ min ist und die zweite unter 10²
min. Ein ähnliches Experiment mit der Beleuchtung des Kanals mit einer 676.4 nm Laserquelle, es erhöht der Drain-
Strom und lässt ummodifiziert die Zeitkonstanten. In der Ergänzung, die OFET-Strukturen waren ex situ durch
Landungstransientspektroskopie (QTS) unstersucht. Die QTS Spektren zeigten positive und negative Banden zum
Gesamtsignal der relaxierte Ladung in Bezug auf die einzigartige Biaspulsepolarität. Wir haben dieses Phänomen als
,,anomales Verhalten des QTS-Signals“ genannt, und in ersten Mal in einem QTS-Experiment beobachtet. Bei
Wiederholung der QTS-Messung innerhalb ca. 100 min, die QTS-Spektre eine langsame Relaxationsprozesse von
Störstellen am 5 μs in bereich ca. 63 min < 10^2 min hat. Die Einfangsquerschnitten sind Zeitabhängig, es bedeutet,
dass die Störstellendichte nicht Konstant im Lauf der Betriebs des OFET bleibt. Dafür des Drain-Strom verändert sich
und die Beweglichkeit unabhängige des elektrisches Feld ist. Experimentell Untersuchungen auf dem OFETs mit der
Kombination der Ramanspektroskopie und elektrischen Felder zeigten eine Erhöhung des Ramanseinfangsquerschnitt
in endliche Bereich als die chemische SERS-Verstärkung von In bzw. Mg auf die Perylen-Derivativen PTCDA und
DiMe-PTCDI. Nach den Ausschaltung des elektrisches Felds den Ramansignal des Pentacen-basierten OFET eine
Relaxationsprozesse mit Zeitkonstant von ca. 94 min hat. Deshalb ist die Summe von Störstellensdichte wegen dieser
am organische/anorganische Grenze plus dieser dass die elektrisches Felds am die organische Halbleiter induziert.
|
Page generated in 0.0561 seconds