Spelling suggestions: "subject:"exydes dde titane"" "subject:"exydes dee titane""
1 |
Synthèse de nanoparticules d'oxydes de titane par pyrolyse laser - Etude des propriétés optiques et de la structure électroniqueSimon, Pardis 09 November 2011 (has links) (PDF)
La synthèse de nanoparticules d'oxydes de titane par pyrolyse laser est étudiée dans ce mémoire. Cette technique de synthèse en voie gaz originale nous permet de modifier de manière souple les conditions de réaction et d'obtenir en une seule étape de synthèse des nanoparticules de taille, composition chimique et structure cristallographique contrôlées.Lors de cette étude, deux voies ont été envisagée afin de synthétiser des nanoparticules d'oxydes de titane présentant une absorption dans le domaine du visible. D'une part la synthèse de dioxyde de titane (TiO2) dopé azote et d'autre part, la synthèse d'oxydes de titane moins oxydés que le TiO2.Premièrement, la synthèse de nanoparticules de dioxyde de titane est réalisée grâce à l'utilisation du tetraisopropoxyde de titane comme précurseur. La pyrolyse laser nous permet de contrôler la phase de TiO2 obtenue, anatase ou rutile. Puis, en employant l'ammoniac comme dopant, nous avons pu synthétiser du TiO2 anatase dopé azote, présentant une absorption dans le visible.Deuxièmement, en modifiant les paramètres de synthèse, il a été possible de synthétiser des phases de Magnéli sous forme de nanoparticules, présentant également une absorption dans le visible. Il a également été possible d'obtenir à pression atmosphérique la phase TiO2-II, qui est une phase haute pression du TiO2, par oxydation d'une des phases de Magnéli. Troisièmement, en employant l'effet réducteur de l'ammoniac nous avons réussi à synthétiser des nanoparticules d'oxynitrures de titane Ti(O,N). Une étude poussée par diffraction de rayons X, spectroscopie d'absorption des rayons X, spectroscopie de photoélectrons X, spectroscopie de perte d'énergie électronique ainsi qu'une étude en température, nous ont permis de bien caractériser la structure de cette phase peu commune. De plus, les propriétés optiques se sont révélées très intéressante, puisque le matériau subit une transition métal/semi-conducteur selon son oxydation et présente une absorption très importante dans la région du visible.Enfin, les nanoparticules de TiO2 et de TiO2 dopées azote ont été employées pour l'élaboration de cellules solaire tout solide à colorant organique. Les premiers résultats montrent d'une part que la morphologie des ces nanoparticules est adaptée à leur emploi pour ce type de dispositifs, avec des rendements proche de l'état de l'art mondial. Et d'autre part, que le dopage à l'azote permet de collecter une quantité de photons plus importante grâce au domaine d'absorption de ces nanoparticules et de générer une densité de courant plus élevée.
|
2 |
Synthèse de nanoparticules d’oxydes de titane par pyrolyse laser - Etude des propriétés optiques et de la structure électronique / Synthesis of titanium oxides nanoparticles by laser pyrolysis. Study of electronic structure and optical propertiesSimon, Pardis 09 November 2011 (has links)
La synthèse de nanoparticules d’oxydes de titane par pyrolyse laser est étudiée dans ce mémoire. Cette technique de synthèse en voie gaz originale nous permet de modifier de manière souple les conditions de réaction et d’obtenir en une seule étape de synthèse des nanoparticules de taille, composition chimique et structure cristallographique contrôlées.Lors de cette étude, deux voies ont été envisagée afin de synthétiser des nanoparticules d’oxydes de titane présentant une absorption dans le domaine du visible. D’une part la synthèse de dioxyde de titane (TiO2) dopé azote et d’autre part, la synthèse d’oxydes de titane moins oxydés que le TiO2.Premièrement, la synthèse de nanoparticules de dioxyde de titane est réalisée grâce à l’utilisation du tetraisopropoxyde de titane comme précurseur. La pyrolyse laser nous permet de contrôler la phase de TiO2 obtenue, anatase ou rutile. Puis, en employant l’ammoniac comme dopant, nous avons pu synthétiser du TiO2 anatase dopé azote, présentant une absorption dans le visible.Deuxièmement, en modifiant les paramètres de synthèse, il a été possible de synthétiser des phases de Magnéli sous forme de nanoparticules, présentant également une absorption dans le visible. Il a également été possible d’obtenir à pression atmosphérique la phase TiO2-II, qui est une phase haute pression du TiO2, par oxydation d’une des phases de Magnéli. Troisièmement, en employant l’effet réducteur de l’ammoniac nous avons réussi à synthétiser des nanoparticules d’oxynitrures de titane Ti(O,N). Une étude poussée par diffraction de rayons X, spectroscopie d’absorption des rayons X, spectroscopie de photoélectrons X, spectroscopie de perte d’énergie électronique ainsi qu’une étude en température, nous ont permis de bien caractériser la structure de cette phase peu commune. De plus, les propriétés optiques se sont révélées très intéressante, puisque le matériau subit une transition métal/semi-conducteur selon son oxydation et présente une absorption très importante dans la région du visible.Enfin, les nanoparticules de TiO2 et de TiO2 dopées azote ont été employées pour l’élaboration de cellules solaire tout solide à colorant organique. Les premiers résultats montrent d’une part que la morphologie des ces nanoparticules est adaptée à leur emploi pour ce type de dispositifs, avec des rendements proche de l’état de l’art mondial. Et d’autre part, que le dopage à l’azote permet de collecter une quantité de photons plus importante grâce au domaine d’absorption de ces nanoparticules et de générer une densité de courant plus élevée. / The synthesis of titanium oxide nanoparticles by laser pyrolysis is studied in this work. This original gas phase technique is a versatile method which allows us to obtain a one-step synthesis of nanoparticles of controlled size, chemical composition and crystalline structure.In this study, two approaches have been proposed to synthesize titanium oxides nanoparticles with absorption in the visible range. In the first place, the synthesis of nitrogen doped titanium dioxide (TiO2) and second, the synthesis of less oxidized titanium oxides than TiO2.First, the synthesis of titanium dioxide nanoparticles is achieved through the use of titanium tetraisopropoxide as a precursor. The laser pyrolysis allows us to control the obtained TiO2 phase, anatase or rutile. Then, using ammonia as a dopant, we were able to synthesize nitrogen doped TiO2 anatase, with an absorption in the visible.Second, by changing the synthesis parameters, it was possible to synthesize nanoparticles of Magnéli phases, also having absorption in the visible. It was also possible to obtain under atmospheric pressure the TiO2-II phase, a high-pressure phase of TiO2 by oxidation of one of the Magnéli phases.Third, using the reducing effect of ammonia we were able to synthesize titanium oxynitrides, Ti(O,N). A detailed study by X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy and a study in temperature, allowed us to characterize the structure of this unusual phase. In addition, the optical properties were very interesting, since the material undergoes a transition metal/semiconductor depending on its oxidation and has a very high absorption in the visible region.Finally, the TiO2 nanoparticles and nitrogen doped TiO2 were used for the development of solid state, dye-sensitized solar cells. Initial results show that the morphology of these nanoparticles is suitable for their use for such devices, with yields close to the world state of the art. Secondly, it shows that the nitrogen doping allows to collect a larger amount of photons, through the area of absorption of these nanoparticles and to generate a higher current density.
|
3 |
Développement de la transduction microonde appliquée à la détection d'ammoniac : du nanomatériau au capteur large bande, compréhension des mécanismes et influence des traces d'eau / Development of the microwave transduction applied to ammonia detection : from nanomaterials to broadband sensor, understanding of the mechanisms and water traces influenceBailly, Guillaume 07 December 2017 (has links)
L’objectif principal de cette thèse est de proposer une analyse des spécificités de la transduction microonde dans le cadre d’une application capteur d’ammoniac. Les deux spécificités principales sont la caractérisation large bande (1 et 8 GHz) et les matériaux sensibles (diélectriques). Cette méthode de transduction repose sur l’interaction entre un gaz polluant et un matériau sensible déposé à la surface d’une structure propagative spécifique aux microondes. La réponse du capteur n’est pas directement induite par les propriétés diélectriques de la molécule gazeuse, mais plutôt par celles de l’espèce cible adsorbée à la surface du matériau sensible. Cette adsorption provoque une modification des paramètres du capteur mesurés par un analyseur de réseau vectoriel. Contrairement à des transductions conventionnelles comme la conductimétrie, ce principe fonctionne à température ambiante avec tout type de matériau, y compris les isolants électriques.Les premiers travaux réalisés durant cette thèse ont conduit au développement d’un nouveau banc expérimental. Il est spécifiquement adapté à l’étude de capteurs microondes par mesures des coefficients de réflexion et de transmission. Ce développement comprend la conception de deux nouvelles générations de capteurs, recouverts d’oxydes métalliques (fer ou titane) commerciaux ou synthétisés dans le cadre de l’étude. Le premier capteur comporte des circuits interdigités tandis que le second est un résonateur trapézoïdal. Ce dernier est caractérisé par une série de fréquences d’intérêt distribuées régulièrement entre 1 et 8 GHz. L’association d’un spectromètre de masse au banc de mesure a permis de suivre les adsorptions/désorptions de l’espèce cible qui est l’ammoniac (10-100 ppm), mais également le comportement du gaz vecteur utilisé, l’argon, et de l’eau adsorbée initialement sur le matériau sensible ou volontairement ajoutée en cours de l’expérience. L’objectif est d’étudier le rôle de l’eau comme interférent vis-à-vis de la détection de l’ammoniac. Une troisième molécule d’intérêt, l’éthanol, a été également été utilisée durant les expériences afin d’estimer de potentielles différences de comportement entre les molécules détectées. Les résultats expérimentaux ont été exploités au moyen de protocoles de traitement de données spécifiquement établis durant cette thèse. Des traitements temporels ont été conduits afin d’étudier le comportement cinétique du capteur, tandis que des traitements spectraux ont permis d’appréhender l’aspect large bande de la réponse du capteur en présence de polluants.Le premier résultat majeur est l’augmentation significative de la sensibilité à l’ammoniac, qui a permis d’abaisser le seuil de détection à des concentrations d’ammoniac de l’ordre de 10 ppm. Le dioxyde de titane a été identifié comme un bon candidat pour la détection d’ammoniac, avec des variations de coefficient de réflexion allant jusqu’à 6 dB pour 300 ppm d’ammoniac. Le rôle de l’eau initialement adsorbée sur le matériau sensible a été élucidé, montrant que son influence n’est significative que lors des premières minutes des expérimentations. Ainsi, il est possible de détecter l’ammoniac en présence d’humidité. Les processus liés aux expositions aux flux gazeux et particulièrement au gaz vecteur ont été identifiés et ont confirmé que la réponse du capteur était uniquement due à son interaction avec les molécules cibles. Un autre résultat majeur est la définition des conditions opératoires nécessaires à l’établissement de la sélectivité. Notre analyse théorique a clairement démontré l’intérêt des mesures large bande en termes de discrimination de molécules cibles. Cette analyse a été testée dans le cadre d’expériences multicibles utilisant l’ammoniac, l’eau et l’éthanol. Ces observations ont permis d’établir un cahier des charges d’une nouvelle génération de capteurs microondes, garantissant une discrimination systématique entre ces trois molécules. / The main objective of this thesis is to propose an analysis of the microwave transduction specificities in the framework of ammonia sensing applications. The two main features of this transduction are its broadband characterization (1 to 8 GHz) as well as its sensitive materials (dielectrics). This transduction method is based on the interaction between a polluting gas and a sensitive material deposited on the surface of a microwave-specific propagating structure. The response of the sensor is not directly induced by the dielectric properties of the gaseous target molecule, but rather by those of the target species adsorbed on the surface of the sensitive material. This adsorption causes a modification of the sensor parameters measured by a vector network analyzer. Unlike more conventional transducers such as conductimetry, this principle works at room temperature with any type of material, including electrical insulators.The first work carried out during this thesis led to the development of a new experimental bench adapted specifically for the study of microwave gas sensors by measuring the S-parameters in reflection and transmission modes. This development includes the design of two new generations of sensors, coated with metal oxides (iron or titanium oxides) commercially available or synthesized during the study. The first sensor comprises interdigital circuits while the second sensor is a trapezoidal resonator. The latter is characterized by a series of frequencies of interest regularly distributed between 1 and 8 GHz. The association of a mass spectrometer with the measurement bench allowed to follow the adsorption and desorption behavior of the target species which is ammonia (10-100 ppm), but also the behavior of the vector gas conventionally used, argon, and water initially adsorbed on the sensitive material or intentionally added during the experiment. The objective is to study the role of water as interfering with the detection of ammonia, the main target species. A third molecule of interest, ethanol, was also used during the experiments in order to estimate the possible differences in the detected molecules behaviors. The experimental results were exploited using specific data processing protocols established during this thesis. Temporal treatments were carried out to study the kinetic behavior of the sensor, while spectral treatments allowed to apprehend the broadband aspect of the sensor response in the presence of pollutants.The first major result is the significant increase in sensitivity to ammonia, which significantly lowered the detection threshold to ammonia concentrations in the 10 ppm range. Titanium dioxide has been identified as a good candidate for ammonia detection, with reflection coefficient variations up to 6 dB for 300 ppm. The role of the water initially adsorbed on the sensitive material has been elucidated, showing that its influence is significant only during the first few minutes of the experiments. Thus, it is possible to detect ammonia in the presence of residual moisture. The processes induced by the gaseous exposures and particularly by the carrier gas were identified, and confirmed that the sensor response was solely due to its interaction with the target molecules. Another major result is the definition of the operating conditions that are necessary for the establishment of the selectivity. Our theoretical analysis clearly demonstrated the interest of broadband measurements in terms of discrimination of target molecules. This analysis has been tested in multitarget experiments using ammonia, water and ethanol. These observations allowed to establish the specifications of a new generation of microwave sensors, guaranteeing systematic discrimination between these three molecules.
|
Page generated in 0.0829 seconds