• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • Tagged with
  • 29
  • 29
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Physiological responses to brain tissue hypoxia and blood flow after acute brain injury

Flynn, Liam Martin Clint January 2018 (has links)
This thesis explores physiological changes occurring after acute brain injury. The first two chapters focus on traumatic brain injury (TBI), a significant cause of disability and death worldwide. I discuss the evidence behind current management of secondary brain injury with emphasis on partial brain oxygen tension (PbtO2) and intracranial pressure (ICP). The second chapter describes a subgroup analysis of the effect of hypothermia on ICP and PbtO2 in 17 patients enrolled to the Eurotherm3235 trial. There was a mean decrease in ICP of 4.1 mmHg (n=9, p < 0.02) and a mean decrease in PbtO2 (7.8 ± 3.1 mmHg (p < 0.05)) in the hypothermia group that was not present in controls. The findings support previous studies in demonstrating a decrease in ICP with hypothermia. Decreased PbtO2 could partially explain worse outcomes seen in the hypothermia group in the Eurotherm3235 trial. Further analysis of PbtO2 and ICP guided treatment is needed. The third chapter focuses on delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH), another form of acute brain injury that causes significant morbidity and mortality. I include a background of alpha-calcitonin gene-related peptide (αCGRP), a potential treatment of DCI, along with results from a systematic review and meta-analysis of nine experimental models investigating αCGRP. The meta-analysis demonstrates a 40.8 ± 8.2% increase in cerebral vessel diameter in those animals treated with αCGRP compared with controls (p < 0.0005, 95% CI 23.7 to 57.9). Neurobehavioural scores were reported in four publications and showed a Physiological responses to brain tissue hypoxia and blood flow after acute brain injury standardised mean difference of 1.31 in favour of αCGRP (CI -0.49 to 3.12). I conclude that αCGRP reduces cerebral vessel narrowing seen after SAH in animal studies but note that there is insufficient evidence to determine its effect on functional outcomes. A review of previous trials of αCGRP administration in humans is included, in addition to an original retrospective analysis of CSF concentrations of αCGRP in humans. Enzyme-linked immunosorbent assay of CSF (n = 22) was unable to detect αCGRP in any sample, which contrasts with previous studies and was likely secondary to study methodology. Finally, I summarise by discussing a protocol I designed for a dose-toxicity study involving the intraventricular administration of αCGRP to patients with aSAH and provide some recommendations for future research. This protocol was based upon the systematic review and was submitted to the Medical Research Council's DPFS funding stream during the PhD.
22

Efeito da Tensão de Oxigênio e da Densidade de Oócitos na Maturação In Vitro de Oócitos Bovinos e a Relação com o Estresse Oxidativo / Effect of Oxygen Tension and Oocyte Density Utilized on In Vitro Maturation of Bovine Oocytes and the Relationship with the Oxidative Stress

Giotto, Angelo Bertani 02 August 2013 (has links)
Submitted by Sandro Camargo (sandro.camargo@unipampa.edu.br) on 2015-03-08T18:55:13Z No. of bitstreams: 1 117110032.pdf: 700015 bytes, checksum: 794f9c0fa96f18e2200227f043531c61 (MD5) / Made available in DSpace on 2015-03-08T18:55:13Z (GMT). No. of bitstreams: 1 117110032.pdf: 700015 bytes, checksum: 794f9c0fa96f18e2200227f043531c61 (MD5) Previous issue date: 2013-08-02 / A maturação in vitro (MIV) é um dos pontos críticos da produção in vitro de embriões bovinos, sendo que vários fatores podem interferir na MIV, como a tensão de oxigênio e a densidade de oócitos por volume de meio. O objetivo deste estudo foi avaliar o efeito da tensão de oxigênio associada a diferentes densidades de oócitos durante a MIV. Para tanto, três experimentos foram conduzidos com oócitos bovinos obtidos de ovários de abatedouro. O experimento I consistiu na avaliação da maturação citoplasmática e nuclear, o experimento II na avaliação da produção de espécies reativas de oxigênio (ROS) e atividade antioxidante, e o experimento III na avaliação das taxas de fecundação in vitro. Após a seleção, os oócitos foram submetidos a MIV distribuídos aleatoriamente em 4 tratamentos: Tratamento 1:10/5%: 1 oócito em 10μl de meio de MIV em 5% de O 2 ; Tratamento 1:10/20%: 1 oócito em 10μl de meio em 20% de O 2 ; Tratamento 1:20/5%: 1 oócito em 20μl em 5% de O 2 e Tratamento 1:20/20%: 1 oócito em 20μl de meio em 20% de O 2 . A MIV foi conduzida em grupos de 15 oócitos em meio TCM 199 modificado, acrescido de FSH, LH, EGF, soro de égua em estro (SEE) e piruvato por 24h. Decorrido o período de MIV foi conduzida a fecundação in vitro em gotas de 300μl de meio Fert-TALP, sendo realizada pelo co-cultivo de oócitos e espermatozóides (2x10 6 sptz/mL) selecionados por gradientes de mini-Percoll por 18h. No experimento I, as taxas de maturação nuclear (69,66%) e maturação citoplasmática (71,55%) foram similares entre os tratamentos (P>0,05). No experimento II, a produção de ROS foi avaliada nos oócitos e no meio de MIV, assim como a atividade antioxidante foi avaliada após 24 h de MIV. A produção de ROS pelos oócitos foi superior nos tratamentos com baixa tensão de oxigênio (5%; 13,3UF) em relação a alta tensão de oxigênio (20%; 7,0UF) independentemente da densidade de oócitos (P<0,05). Os níveis de ROS detectados no meio de MIV foram superiores nos tratamentos com alta densidade de oócitos (1:10) independentemente da tensão de oxigênio (P<0,05). A atividade da SOD (21,3UI) e os níveis de GSH (6,95 nmol GSH/ml) mensurados nos oócitos foram similares entre os tratamentos (P>0,05). As taxas de fecundação e penetração foram superiores nos tratamentos com 20% de O 2 e com alta densidade de oócitos (1:10; 48,8%) em relação aos tratamentos 1:10/5% (29,5%) e 1:20/20% (29,1%; P<0,05). Adicionalmente a taxa de polispermia foi maior no tratamento com alta tensão de oxigênio e baixa densidade de oócitos. (1:20/20%; 27.8%) em relação ao tratamento 1:10/20% (13,41%; P<0,05). Os resultados deste estudo mostram interação entre a tensão de oxigênio e a densidade de oócitos aumentando a produção de ROS em determinadas associações e influenciando posteriormente as taxas de fecundação in vitro de oócitos bovinos. / The in vitro maturation is one of the critical points on in vitro production of bovine embryos so many factors can do an interference on IVM, like oxygen tension and oocyte density by volume of medium. The aim of this study was evaluate the effects of association of oxygen tension with different oocyte density during IVM Three experiments were performed with bovine oocytes obtained from abattoir ovaries, on experiment I was performed the nuclear and cytoplasmic evaluation, on the experiment III the biochemical assay of ROS production and antioxidant activity and on experiment III was realized the evaluation of in vitro fertilization. After selection, the oocytes were randomly distributed in 4 treatments: Treatment 1:10/5%: 1:10µl in 5% of O2; Treatment 1:10/20%: 1:10µl in 20% of O2; Treatment 1:20/5%: 1:20µl in 5% of O2; Treatment 1:20/20%: 1:20µl in 20% of O2. The IVM was performed in droplets (150µl or 300µl) of TCM 199 plus FSH, LH, EGF, EMS and pyruvate. The IVF were performed in droplets (300µl) of Fert-TALP. Was realized IVF with oocytes and spermatozoa (2x106 sptz/mL) selected by Percoll density gradients for 18h. On experiment I, the nuclear maturation rates (69.66%) and reorganization mitochondrial (71.55%) rates were similar among treatments (P>0.05). In Experiment II, the ROS production in oocytes, IVM medium and antioxidant activity were evaluated after 24 h of IVM. ROS production in oocytes was higher on treatments with low tension (5%; 13.3 UF) than 20% oxygen tension (7.0 UF) independently of oocyte density (P<0.05). ROS levels on IVM medium was higher on treatments with high oocyte density (1:10) independently of oxygen tension (P<0.05). The GSH levels (6.95 nmol GSH/ml) and SOD activity (21.3UI) were similar among treatments (P>0.05). The rates of normal fertilization and normal penetration were higher in treatments with 20% of O2 with high oocyte density (1:10;48.8%) than treatments 1:10/5% (29.5%) and 1:20/20% (29.1%; P<0.05). In addiction the polysperm rates were higher on treatment with high oxygen tension and low oocyte density (1:20/20%; 27.8%) than treatment 1:10/20% (13.4%; P<0.05). The results of this study show an interaction between oxygen tension and oocyte density, that increase ROS production on certain associations and subsequently affects the IVF rates. / The viruses are significant important pathogenic agents of several animal species, including cattle. In Brazil, several viral agents causing infections have been described in cattle and they produce significant economic losses. The identification of animals infected by a virus can be performed in different ways; however, definitive confirmation requires demonstration of the agent or immune response. For this purpose, various methods with the capacity to detect the viral particle, biological activity, genome, viral antigens, or specific immune response have been developed. Immunoassays are widely used in laboratory routine for detection of viral antigens in clinical or research. These assays exhibit good sensitivity, specificity and easy for implantation. The immunoassay methodologies are based on the employment of monoclonal or polyclonal antibodies specific to the viral antigens. Therefore, the aim of this study was to produce polyclonal antibodies for some bovine virus, and evaluate their reactivity in immunofluorescence, immunoperoxidase and slot blot tests. For this purpose, strains and/or isolates of bovine herpesvirus type 1 (BoHV-1), bovine herpesvirus type 2 (BoHV-2), bovine herpesvirus type 5 (BoHV-5), bovine herpesvirus type 5 gE deleted (BoHV-5 gEΔ), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bluetongue virus (BTV), and vaccinia virus (VACV) were amplified in cell culture and the supernatant were used to immunize rabbits. The animals were immunized five times by the subcutaneous route, and five days after the last boost the blood was collected. The serum was obtained by centrifugation. The serum was diluted (1:100 a 1:204.800) and used as primary antibodies in the immunofluorescence, immunoperoxidase and slot blot assays. The working dilution was selected among those produced specific reaction with infected cells and absent or weak background in control cells. The antiserum showed higher reactivity in immunoperoxidase technique than the immunofluorescence and slot blot. The antiserum of the BoHV-1, BoHV-5, BVDV and BRSV presented the reactivity when tested with heterologous isolates in immunofluorescence, immunoperoxidase assays. In summary, that the polyclonal antibodies raised in rabbits have high concentrations of specific antibodies, which were demonstrated by the reactivity in immunofluorescence, immunoperoxidase and slot blot assays. Additionally, these reagents can be considered an important tool for the detection and characterization of various bovine viruses in diagnostic and research routine.
23

Disturbed Islet Function and Alterations in Islet Protein Expression

Ortsäter, Henrik January 2005 (has links)
<p>Pancreatic β-cells sense the concentration of glucose in the systemic circulation through metabolism of the sugar molecule. Failure to correlate the blood sugar concentration to an appropriate metabolic signal disrupts the function of the β-cell as a controller of glucose homeostasis and may contribute to the development of type 2 diabetes mellitus. Release of insulin is pulsatile and this thesis presents data that support that metabolism drives such pulsatile release. It is also found that increase in insulin release in response to elevation of the glucose concentration is only seen when the rise in glucose induces a prompt and sustained increase in mitochondrial metabolism. Such activation of mitochondrial metabolism depended on the metabolic state of the β-cell prior to the glucose challenge. In this context, prolonged periods of elevated levels of fatty acids are harmful to the pancreatic β-cell. To study the protein expression changes induced by fatty acids a protocol for islet protein profiling and identification of differently expressed proteins were developed. By using this protocol it was discovered that oleate decreased the cellular level of the chaperone peptidyl-prolyl isomerase B. The protocol was also used to study protein expression in islets obtained from mice fed a high-fat and/or a high-sucrose diet. Excess of glucocorticoids in the systemic circulation also cause a diabetic phenotype. Tissue response to glucocorticoids is regulated by the intracellular concentration of the active form of glucocorticoids, which is formed from the inactive form by the enzyme 11β-hydroxysteroid dehydrogenase type 1. It was found that pancreatic islets produce 11β-HSD1 protein in relation to substrate availability and that the amount of islet 11β-HSD1 protein was negatively correlated with insulin secretion.</p>
24

Disturbed Islet Function and Alterations in Islet Protein Expression

Ortsäter, Henrik January 2005 (has links)
Pancreatic β-cells sense the concentration of glucose in the systemic circulation through metabolism of the sugar molecule. Failure to correlate the blood sugar concentration to an appropriate metabolic signal disrupts the function of the β-cell as a controller of glucose homeostasis and may contribute to the development of type 2 diabetes mellitus. Release of insulin is pulsatile and this thesis presents data that support that metabolism drives such pulsatile release. It is also found that increase in insulin release in response to elevation of the glucose concentration is only seen when the rise in glucose induces a prompt and sustained increase in mitochondrial metabolism. Such activation of mitochondrial metabolism depended on the metabolic state of the β-cell prior to the glucose challenge. In this context, prolonged periods of elevated levels of fatty acids are harmful to the pancreatic β-cell. To study the protein expression changes induced by fatty acids a protocol for islet protein profiling and identification of differently expressed proteins were developed. By using this protocol it was discovered that oleate decreased the cellular level of the chaperone peptidyl-prolyl isomerase B. The protocol was also used to study protein expression in islets obtained from mice fed a high-fat and/or a high-sucrose diet. Excess of glucocorticoids in the systemic circulation also cause a diabetic phenotype. Tissue response to glucocorticoids is regulated by the intracellular concentration of the active form of glucocorticoids, which is formed from the inactive form by the enzyme 11β-hydroxysteroid dehydrogenase type 1. It was found that pancreatic islets produce 11β-HSD1 protein in relation to substrate availability and that the amount of islet 11β-HSD1 protein was negatively correlated with insulin secretion.
25

Using patient-derived cell models to investigate the role of misfolded SOD1 in ALS / Patient-deriverade stamceller som modellsystem för att studera felveckat SOD1 i ALS

Forsgren, Elin January 2017 (has links)
Protein misfolding and aggregation underlie several neurodegenerative proteinopathies including amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) was the first gene found to be associated with familial ALS. Overexpression of human mutant or wild type SOD1 in transgenic mouse models induces motor neuron (MN) degeneration and an ALS-like phenotype. SOD1 mutations, leading to the destabilization of the SOD1 protein is associated with ALS pathogenesis. However, how misfolded SOD1 toxicity specifically affects human MNs is not clear. The aim of this thesis was to develop patient-derived, cellular models of ALS to help understand the pathogenic mechanisms underlying SOD1. To understand which cellular pathways impact on the level of misfolded SOD1 in human cells, we established a model using patient-derived fibroblasts and quantified misfolded SOD1 in relation to disturbances in several ALS-related cellular pathways. Misfolded SOD1 levels did not change following reduction in autophagy, inhibition of the mitochondrial respiratory chain, or induction of endoplasmic reticulum (ER)-stress. However, inhibition of the ubiquitin-proteasome system (UPS) lead to a dramatic increase in misfolded SOD1 levels. Hence, an age-related decline in proteasome activity might underlie the late-life onset that is typically seen in SOD1 ALS. To address whether or not SOD1 misfolding is enhanced in human MNs, we used mixed MN/astrocyte cultures (MNCs) generated in vitro from patient-specific induced pluripotent stem cells (iPSCs). Levels of soluble misfolded SOD1 were increased in MNCs as well as in pure iPSC-derived astrocytes compared to other cell types, including sensory neuron cultures. Interestingly, this was the case for both mutant and wild type human SOD1, although the increase was enhanced in SOD1 FALS MNCs. Misfolded SOD1 was also found to exist in the same form as in mouse SOD1 overexpression models and was identified as a substrate for 20S proteasome degradation. Hence, the vulnerability of motor areas to ALS could be explained by increased SOD1 misfolding, specifically in MNs and astrocytes. To investigate factors that might promote SOD1 misfolding, we focussed on the stability of SOD1 mediated by a crucial, stabilizing C57-C146 disulphide bond and its redox status. Formation of disulphide bond is dependent on oxidation by O2 and catalysed by CCS. To investigate whether low O2 tension affects the stability of SOD1 in vitro we cultured fibroblasts and iPSC-derived MNCs under different oxygen tensions. Low oxygen tension promoted disulphide-reduction, SOD1 misfolding and aggregation. This response was much greater in MNCs compared to fibroblasts, suggesting that MNs may be especially sensitive to low oxygen tension and areas with low oxygen supply could serve as foci for ALS initiation. SOD1 truncation mutations often lack C146, and cannot adopt a native fold and are rapidly degraded. We characterized soluble misfolded and aggregated SOD1 in patient-derived cells carrying a novel SOD1 D96Mfs*8 mutation as well as in cells fom an unaffected mutation carrier. The truncated protein has a C-terminal fusion of seven non-native amino acids and was found to be extremely prone to aggregation in vitro. Since not all mutation carriers develop ALS, our results suggested this novel mutation is associated with reduced penetrance. In summary, patient derived cells are useful models to study factors affecting SOD1 misfolded and aggregation. We show for the first time that misfolding of a disordered and disease associated protein is enhanced in disease-related cell types. Showing that misfolded SOD1 exists in human cells in the same form as in transgenic mouse models strengthens the translatability of results obtained in the two species. Our results demonstrate disulphide-reduction and misfolding/aggregation of SOD1 and suggest that 20S proteasome could be an important therapeutic target for early stages of disease. This model provides a great opportunity to study pathogenic mechanisms of both familial and sporadic ALS in patient-derived models of ALS. / Varje år insjuknar omkring 5300 personer i världen i motorneuronsjukdomen Amyotrofisk lateralskleros (ALS). Sjukdomen kännetecknas av degeneration av motorneuron i hjärnan och ryggmärgen, de nervceller som styr kroppens muskler, vilket leder till musklerförtvining och gradvis förlamning. ALS-patienter avlider oftast till följd av andningssvikt när sjukdomen når andningsmuskulaturen. I de allra flesta fall uppkommer ALS sporadiskt (SALS), det vill säga utan känd genetisk orsak, medan ärftliga fall (FALS) drabbar omkring 10 % och beror på mutationer i ett antal kända gener. Upp till 6 % av alla ALS fall kan härledas till mutationer i genen superoxid dismutas 1 (SOD1). SOD1 är ett enzym som ansvarar för att omvandla och oskadliggöra fria syreradikaler som bildas vid normal ämnesomsättning. 206 olika SOD1 mutationer har identifierats, alla orsakar inte ALS men många leder till att den tredimensionella proteinstrukturen förändras, vilket ökar proteinets benägenhet att felveckas. Initialt trodde man att SOD1 mutationer förhindrade proteinets normalfunktion och följaktligen orsakade ALS. Studier har emellertid visat att den enzymatiska funktionen ofta bevaras, även hos muterade proteiner. Däremot kan små mängder felveckat SOD1 störa andra viktiga cellulära funktioner. Felveckat SOD1 har en benägenhet att klumpa ihop sig och bilda aggregat i det centrala nervsystemet (CNS). Dessa aggregat återfinns hos patienter med såväl FALS som SALS vilket tyder på att även vildtyps-SOD1 kan felveckas och vara involverat i sjukdomsutvecklingen. De flesta studier är baserade på transgena musmodeller som uttrycker extremt stora mängder av muterat humant SOD1. Det är dock oklart hur väl studier i möss överensstämmer med sjukdomsutvecklingen hos ALS-patienter, där mängden SOD1 är betydligt lägre. En central fråga som fortfarande står obesvarad är varför just motorneuron degenererar i ALS, trots att SOD1 uttrycks i alla kroppens celler. Det övergripande syftet med den här avhandlingen har varit att karakterisera felveckat SOD1 i patientceller för att studera dess roll i ALSrelaterade sjukdomsmekanismer med fysiologiskt relevanta nivåer av SOD1. Samtliga studier är gjorda in vitro med celler från friska donatorer med vildtyps-SOD1, celler från patienter med SOD1-FALS, FALS som bär andra ALS-associerade gener, samt SALS. I de allra flesta fallen har vi analyserat både lösligt felveckat SOD1 samt aggregerade former av SOD1 proteinet.
26

Intestinal effects of lung recruitment maneuvers

Claesson, Jonas January 2007 (has links)
Background and aims: Lung recruitment maneuvers (brief episodes of high airway pressure) are a modern treatment alternative to achieve open lung conditions under mechanical ventilation of patients with acute lung injury. It is well known that positive pressure ventilation with high airway pressures cause negative circulatory effects, and that the effects on regional vascular beds can be even more pronounced than the systemic effects. Hypoperfusion of the mesenteric vascular bed can lead to tissue ischemia and local inflammation. This intestinal inflammation has been associated with subsequent development of multiple organ dysfunction syndrome, a syndrome that still carries a high mortality and is a leading cause of death for intensive care patients. The aim of this thesis was therefore to investigate whether lung recruitment maneuvers would cause negative effects on mesenteric circulation, oxygenation or metabolism. Methods and results: In an initial study on ten patients with acute lung injury, we could demonstrate a trend towards a decreased gastric mucosal perfusion during three repeated lung recruitment maneuvers. To more closely examine this finding, we set up an oleic acid lung injury model in pigs, and in our second study we established that this model was devoid of inherent intestinal effects and was adequate for subsequent studies of intestinal effects of lung recrutiment maneuvers. In the acute lung injury model, we also tested the effect of an infusion of a vasodilating agent concurrent with the recruitment maneuvers, the hypothesis being that a vasodilating agent would prevent intestinal vasoconstriction and hypoperfusion. We could show that three repeated lung recruitment maneuvers induced short term negative effects on mesenteric oxygenation and metabolism, but that these findings were transient and short lasting. Further, the effects of prostacyclin were minor and opposing. These findings of relative little impact on the intestines of lung recruitment maneuvers, lead us to investigate the hypothesis that repeated recruitment maneuvers maybe could elicite a protective intestinal preconditioning response, a phenomenon previously described both in the rat and in the dog. However, in our fourth study, using both classical ischemic preconditioning with brief periods of intestinal ischemia or repeated lung recrutiment maneuvers, we could not demonstrate the phenomenon of intestinal preconditioning in the pig. Conclusions: We conclude, that from a mesenteric point of view, lung recruitment maneuvers are safe, and only induce transient and short lasting negative effects. We also conclude that the cause of the minor effects of lung recruitment maneuvers is not dependent on intestinal preconditioning.
27

Optimizing embryo culture conditions and spent culture media analysis as predictors of embryo quality and pregnancy

Kaskar, Khalied January 2021 (has links)
Philosophiae Doctor - PhD / The aim of this thesis is first, to evaluate various culture conditions to improve embryo development, and secondly, to analyze spent culture media for any biomarkers that may be predictive of embryo health. Single-step and sequential culture media were compared in both Planer and EmbryoScope™ incubators. Single-step media resulted in better blastocyst development compared to sequential media and the EmbryoScope™ incubation system showed slight improvements in embryo development than the Planer system. The benefits of supplementing the culture medium with either insulin or insulin-like growth factor 1 (IGF-1) or culturing in a 2% O2 environment, using two different strains of mice (hybrid and C57), as well as the suitability of these strains for quality control were compared. In insulin, hybrid embryos were slower to blastulate and had a lower blastocyst rate, whereas C57 embryos were slower to the morula and faster to blastocyst stages, and lower blastocyst rate than the controls. IGF-1 showed no difference in time-lapse morphokinetics (TLM) or blastocyst rates compared to controls in both hybrid and C57 embryos. Under 2% O2, hybrid embryos showed no significant difference in TLM up to the 8-cell stage, but slowed down afterwards, resulting in blastocysts with significantly lower cell counts than the 6% O2 group. The C57 embryos were slower to reach morula and expanded blastocyst, and had lower blastocyst rates in 2%O2 vs 6%O2. The C57 strain had significant slower overall embryo development for all time points than hybrid embryos in insulin, IGF-1 and ultra-low O2, as well as lower blastocyst rates. Measurement of growth differentiation factor 9 (GDF-9) and oxidation-reduction potential (ORP) in spent media as markers for embryo health were evaluated. Day 5 human blastocysts yielded higher pregnancy rates and GDF-9 levels in spent media compared to Day 6 blastocysts, but TLM parameters showed no impact on pregnancy outcome. In Day 6 blastocysts, the non-pregnant group showed significantly faster embryo development compared to the clinically pregnant group up to the 8-cell stage and start of blastulation. GDF-9 did not show any significant differences between non-pregnant and pregnant groups of Day 5 or Day 6 embryo transfers. ORP in spent media from good quality Day 3 embryos that developed into blastocysts were significantly higher than from those that did not, with no difference in control medium ORP. Spent media from arrested embryos showed lower ORP than their corresponding controls. Arrested embryos had slower development at syngamy, morula, blastulation and blastocyst stages. The single step medium in the EmbryoScope™ is the preferred choice for embryo culture. Insulin or IGF-1 media supplementation or 2% O2 culture did not provide any benefit to embryo development. The C57 mouse strain is more sensitive and may be better to detect changes in culture conditions, and therefore better model for quality control assays. GDF-9 values decrease from Day 5 to Day 6 which gives new insight to understanding the role of GDF-9 during embryogenesis. ORP in spent media indicate that embryos that developed into blastocysts did not contribute to ROS, but maintained ORP balance.
28

Influence of seasonally variable hypoxia on epibenthic communities in a coastal ecosystem, British Columbia, Canada

Chu, Jackson Wing Four 25 April 2016 (has links)
Natural cycles of environmental variability and long-term deoxygenation in the ocean impose oxygen deficiency (hypoxia) on marine communities. My research exploits a naturally occurring hypoxia cycle in Saanich Inlet, British Columbia, Canada where I combined spatial surveys with remotely operated vehicles, ecological time-series from the subsea cabled observatory VENUS, and lab-based respirometry experiments to examine the influence of seasonally variable oxygen conditions on epibenthic communities. In situ oxygen thresholds established for dozens of fish and invertebrate species in this system show they naturally occur in lower oxygen levels than what general lethal and sublethal thresholds would predict. Expansion of hypoxic waters induced a loss of community structure which was previously characterized by disjunct distributions among species. Communities in variable hypoxia also have scale-dependent structure across a range of time scales but are primarily synchronized to a seasonal oscillation between two phases. Time-series revealed timing of diurnal movement in the slender sole Lyopsetta exilis and reproductive behavior of squat lobster Munida quadrispina in the hypoxia cycle. Hypoxia-induced mortality of sessile species slowed the rate of community recovery after deoxygenation. The 10-year oxygen time-series from VENUS, revealed a significant increase in the annual low-oxygen period in Saanich Inlet and that deoxygenation has occurred in this system since 2006. Differences in the critical oxygen thresholds (O2crit) and standard metabolic rates of key species (spot prawn Pandalus platyceros, slender sole, and squat lobster) determined the lowest in situ oxygen at which populations occurred and explained disproportionate shifts in distributions and community respiration. Finally, a meta-analysis on global O2crit reported for crustaceans showed that hypoxia tolerance differs among major ocean basins. Long-term trends of deoxygenation suggest a future regime shift may occur when the duration at which a system remains below critical oxygen levels exceeds the time needed for communities to recover. Species-specific traits will determine the critical threshold and the nature of the community response in systems influenced by variable states of oxygen deficiency. However, oceanographic and evolutionary history provides context when determining the regional response of benthic communities influenced by rapidly changing environments. / Graduate / 0329 / 0416 / 0433 / jwfchu@gmail.com
29

Intermittent hypoxia elicits a unique physiological coping strategy in Fundulus killifish

Borowiec, Brittney G. January 2019 (has links)
Fish encounter daily cycles of hypoxia in the wild, but the physiological strategies for coping with repeated cycles of normoxia and hypoxia (intermittent hypoxia) are poorly understood. Contrastingly, the physiological strategies for coping with continuous (constant) exposure to hypoxia have been studied extensively in fish. The main objective of this thesis was to understand how Fundulus killifish cope with a diurnal cycle of intermittent hypoxia, an ecologically relevant pattern of aquatic hypoxia in the natural environment. To do this, I characterized the effects of intermittent hypoxia on hypoxia tolerance, oxygen transport, metabolism, and the oxidative stress defense system of killifish, and compared these effects to fish exposed to normoxia, a single cycle of hypoxia-normoxia, and constant hypoxia. Specifically, I studied the following topics: (i) how acclimation to intermittent hypoxia modifies hypoxia tolerance, and the hypoxia acclimation response of Fundulus heteroclitus (Chapter 2), (ii) metabolic adjustments occurring during a hypoxia-reoxygenation cycle (Chapter 3), (iii) how acclimation to intermittent hypoxia alters O2 transport capacity and maximal aerobic metabolic rate (Chapter 4), (iv) the effects of hypoxia and reoxygenation on reactive oxygen species and oxidative stress (Chapter 5), and (v) variation in hypoxia tolerance and in the hypoxia acclimation responses across Fundulus fishes (Chapter 6). Killifish rely on a unique and effective physiological strategy to cope with intermittent hypoxia, and that this strategy is distinct from both the response to a single bout of acute hypoxia-reoxygenation (12 h hypoxia followed by 6 h reoxygenation) and to chronic exposure to constant hypoxia (24 h hypoxia per day for 28 d). Key features of the acclimation response to intermittent hypoxia include (i) maintenance of resting O2 consumption rate in hypoxia followed by a substantial increase in O2 consumption rate during recovery in normoxia, (ii) reversible increases in blood O2 carrying capacity during hypoxia bouts, (iii) minimal recruitment of anaerobic metabolism during hypoxia bouts, and (iv) protection of tissues from oxidative damage despite alterations in the homeostasis of reactive oxygen species and cellular redox status. Of these features, (i) is unique to intermittent hypoxia, (ii) also occurs in fish exposed to acute hypoxia-reoxygenation, and (iii) and (iv) are observed in both fish acclimated to intermittent hypoxia as well as those acclimated to constant hypoxia. This is the most extensive investigation to date on how fish cope with the energetic and oxidative stress challenges of intermittent hypoxia, and how these responses differ from constant hypoxia. This thesis adds substantial insight into the general mechanisms by which animals can respond to an ecologically important but poorly understood feature of the aquatic environment. / Dissertation / Doctor of Philosophy (PhD) / Oxygen levels in the aquatic environment are dynamic. Many fishes routinely encounter changes in oxygen content in their environment. However, we have very little understanding of how cycles between periods of low oxygen (hypoxia) and periods of high oxygen (normoxia) affect the physiology of fish. This thesis investigated how Fundulus killifish cope with daily cycles between hypoxia and normoxia (intermittent hypoxia) by modifying oxygen transport, metabolism, and oxidative stress defense systems. I found that killifish rely on a unique and effective physiological strategy to cope with intermittent hypoxia, and that this strategy is distinct from how they respond to a single bout of hypoxia (followed by normoxia) and to a constant pattern of only hypoxia. This is the most extensive investigation to date on how fish respond to the challenges of intermittent hypoxia, an understudied but ecologically important type of aquatic hypoxia.

Page generated in 0.0773 seconds