Spelling suggestions: "subject:"P/3ratio"" "subject:"P/1ratio""
31 |
Smart Beta - index weighting / Smart Beta - index weightingBlomkvist, Oscar January 2015 (has links)
This study is a thesis ending a 120 credit masters program in Mathematics with specialization Financial Mathematics and Mathematical Statistics at the Royal Institute of Technology (KTH). The subject of Smart beta is defined and studied in an index fund context. The portfolio weighting schemes tested are: equally weighting, maximum Sharpe ratio, maximum diversification, and fundamental weighting using P/E-ratios. The outcome of the strategies is measured in performance (accumulated return), risk, and cost of trading, along with measures of the proportions of different assets in the portfolio. The thesis goes through the steps of collecting, ordering, and ”cleaning” the data used in the process. A brief explanation of historical simulation used in estimation of stochastic variables such as expected return and covariance matrices is included, as well as analysis on the data’s distribution. The process of optimization and how rules for being UCITS compliant forms optimization programs with constraints is described. The results indicate that all, but the most diversified, portfolios tested outperform the market cap weighted portfolio. In all cases, the trading volumes and the market impact is increased, in comparison with the cap weighted portfolio. The Sharpe ratio maximizer yields a high level of return, while keeping the risk low. The fundamentally weighted portfolio performs best, but with higher risk. A combination of the two finds the portfolio with highest return and lowest risk. / Denna studie är ett examensarbete som avslutar ett 120 poängs mastersprogram i Matematik med inriktning mot Finansiell Matematik och Matematisk Statistik på Kungliga Tekniska Högskolan (KTH). Ämnet Smart beta studeras i kontexten av en indexfond, där de olika testade principerna för viktning i portföljerna är: likaviktad, maximerad Sharpe-kvot, maximerad diversifiering, och fundamental viktning användandes av P/E-tal. Utfallet i testerna utvärderas i ackumulerad avkastning, portföljrisk, kostnad att handla i portföljen, och ett antal mått på fördelningen av tillgångarna. Studien går stegvis igenom processen för att samla in, ordna, och ”tvätta” data. En kort förklaring av historisk simulering, metoden för att estimera stokastiska variabler såsom kovariansmatriser, är inkluderad, såväl som en analys av distributionen av data. Processen för att optimera portföljerna och hur regler för att vara en UCITS-fond kan omformas till optimeringsvillkor beskrivs. Resultaten indikerar att alla utom den mest diversifierade portföljen har högre ackumulerad avkastning än den marknadsviktade portföljen under testperioden. I alla testade fall ökar handelsvolymen liksom marknadspåverkan när en annan strategi än marknadsviktad används. Portföljen med maximerad Sharpe-kvot ger en hög avkastning med bibehållen låg risk. Den fundamentalt viktade portföljen ger bäst avkastning, men med en litet förhöjd risk. Kombinationen av de båda metoderna ger den portföljen med högst ackumulerad avkastning och samtidigt lägst risk under testperioden.
|
32 |
Models explaining the average return on the Stockholm Stock ExchangeJämtander, Jämtander January 2018 (has links)
Using three different models, we examine the determinants of average stock returns on the Stockholm Stock Exchange during 2012-2016. By using time-series data, we find that a Fama-French three-factor model (directed at capturing size and book-to-market ratio) functions quite well in the Swedish stock market and is able to explain the variation in returns better than the traditional CAPM. Additionally, we investigated if the addition of a Price/Earning variable to the Fama-French model would increase the explanatory power of the expected returns of the different dependent variables portfolios. We conclude that the P/E ratio does not influence the expected returns in the sample we used.
|
33 |
台指選擇權之市場指標實證分析吳建民, Wu,Jian-Min Unknown Date (has links)
本研究有系統地收集了2003年8月12日到2005年9月30日止共495個交易日的台指期貨、選擇權市場裡P/C量、P/C倉、隱含波動率(AIV)、不同天數的歷史波動率等收盤資料,進行這些因素與行情走勢間的關係,以及因素彼此的互動性。結果證實分析台指選擇權指標是需要區分金融重大衝擊前後期間,以及區分漲勢、跌勢、盤整的各期間,各期間的選擇權指標均會有不同意涵。
本論文證實使用結構轉換的Chow-ARMA(2,1)模型可能比較符合模擬指數
實況,且GARCH(1,1) 模型也很適合描述台期指貨波動度預測力。在選擇權指標方面:P/C量與AIV與台指期貨呈現負相關,P/C倉與台指期貨正相關。其中以P/C倉對指數漲跌的影響程度最大、P/C量的影響程度次之、AIV影響程度最小。若把隱含波動率區分成買權與賣權之各個波動率更有效地預測行情走勢,在大跌期間的買賣權隱含波動率更能表現出優越的預測能力,其中前兩期的賣權隱含波動率(PIV)更是效率性指標,
實證結果使用20天的歷史波動率比較能貼近選擇權市場的變化,跟過去教
科書慣用的90天不同。若比較歷史波動率與隱含波動率間的關係,結論是當「大跌期」歷史波動率大於買權隱含波動率(CIV)時,買權是會被低估的,其他的各種假設條件均不成立。理由有二:一是市場效率性決定了是否可使用隱含波動率與歷史波動率之間的高低關係。二是「大跌時期」相對於「大漲時期」的市場資訊被反應的更敏銳,而在「大跌時期」的賣權價格反應比買權價格反應更快速敏銳。
本研究推論的Chow-ARMA(2,1) 台指期貨模型、GARCH(1,1) 波動率模型、P/C量-P/C倉-AIV的多變數模型、FMA20/XIV模型等等在研判指數變化上具有參考價值,進一步均可以做為選擇權操作策略參考依據之一。
|
Page generated in 0.048 seconds