• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 12
  • 11
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Études structurales et fonctionnelles des récepteurs TonB-dépendants de bactéries à Gram-négatif

Meksem, Ahmed 07 July 2010 (has links) (PDF)
Le fer est un élément important de plusieurs métabolismes et fonctions physiologiques. Il possède la propriété de gagner ou de perdre facilement un électron, passant ainsi de la forme ferreuse (FeII) à la forme ferrique (FeIII), et inversement. C'est cette propriété qui lui confère un rôle primordial dans les phénomènes d'oxydations et de réductions biologiques. Bien qu'il soit très abondant dans la croûte terrestre, le fer est très peu soluble en milieu aérobie et à pH physiologique et est de ce fait est très peu biodisponible. La concentration de FeIII libre dans l'environnement est d'environ 10-18 M, bien trop basse pour les bactéries pathogènes qui exigent une concentration de l'ordre de 10-5 à 10–7 M pour établir et maintenir une infection. Pour contourner le problème de la faible disponibilité de fer, les bactéries ont développé différents mécanismes d'acquisition de ce métal. Le mécanisme le plus répandu implique la synthèse et la sécrétion des sidérophores, ayant une très forte affinité pour leFeIII. Après leur sécrétion, les sidérophores chélatent le Fe3+ dans le milieu extracellulaire et le transportent au travers de la membrane externe via les récepteurs TonB-dépendants (RTBDs). Les RTBDs sont également impliqués dans le transport d'autres molécules comme l'hème. Durant cette thèse nous nous sommes intéressés à l'étude structurale des RTBDs de différentes bactéries à Gram-négatif et aussi au devenir, au niveau du périplasme, de la ferri-pyoverdine, après son transport à travers la membrane externe via le RTBD FpvA chez P. aeruginosa. Pour les études structurales, nous nous sommes intéressés à 4 RTBDs (ShuA, SuxA, FauA et FetA). Nous avons défini et optimisé un protocole de surexpression, de purification et de cristallisation pour les RTBDs. Le protocole mis en place est rapide, efficace et reproductible. Il nous a permis de purifier, de cristalliser rapidement et de collecter des données de diffraction pour 4 RTBDs. La structure de ShuA a ensuite été résolue à 2,6 Å, celle de FauA à 2,3 Å de résolution par le Dr D. Cobessi. Celle de FetA est actuellement en cours d'affinement à 3,2 Å. Pour les études fonctionnelles, nous nous sommes intéressés à l'implication des gènes du cluster fpvCDEFGHJK dans l'acquisition du fer par la voie Pvd chez P. aeruginosa. Ce cluster est conservé chez toutes les espèces de Pseudomonas produisant la Pvd, il est organisé en 2 opérons, fpvCDEF et fpvGHJK, séparés par 32 paires de bases. Les résultats obtenus pendant cette thèse, suggèrent l'implication des protéines FpvCDEF dans la dissociation périplasmique de la ferri-pyoverdine par réduction du FeIII en FeII. En effet, la mutation de ces gènes abolie complètement le transport du fer par la Pvd. Le phénotype sauvage a été restauré par l'addition du DTT, suggérant l'implication de ses protéines dans la dissociation périplasmique de la ferri-pyoverdine par réduction du FeIII en FeII. Nous avons également montré que la protéine FpvG est une protéine périplasmique dont l'expression est régulée par les niveaux de fer. Les études de spectrométrie de masse et de dosage des métaux ont montré que cette protéine était également capable de lier directement le fer. Enfin, l'étude des interactions protéine-protéine a montré une interaction entre les protéines FpvG et FpvA, confirmant l'implication de la protéine FpvG dans le transport du fer par la Pvd. FpvG serait probablement impliquée dans la prise en charge du fer dans le périplasme après sa dissociation de la Pvd et assurant ensuite son transport vers le cytoplasme via le transporteur ABC FpvHJ. L'ensemble de ces résultats a permis également de montrer que le transport du fer via la Pvd implique des mécanismes très différents de ceux qui sont décrits précédemment pour les sidérophores utilisés par E. coli.
32

Greywater treatment for reuse by slow sand filtration : study of pathogenic microorganisms and phage survival

Khalaphallah, Rafat 14 September 2012 (has links) (PDF)
In recent decades, most countries of the world have experienced a shortage of water and increase its rate of consumption. Today, every country in the world are interested in this problem by trying to find alternatives to address this shortage. One solution is reuse greywater (GW) for irrigation after treatment. GW is all water generated from Household except toilet water. The risks associated with the reuse of these waters are the presence of pathogens that can infect humans, animals and plants. In this thesis focused on studying treatment by slow sand filtration and the survival of representatives of pathogens, such as E. Coli, P. aeruginosa , E. Faecalis and Bacteriophage MS2 which could be found in the greywater. The study factors was a physico-chemicals factors such as; temperature (6±2,23±2,42±2°c), salinity (1.75 and 3.5% Nacl), oxygen (aerobic and anaerobic condition), nutrient ( rich media , 50%: 50% salt and poor media ), light with photocatalysis ( UV and Visible lights) and slow sand filter (Egyptian desert sand and swimming pool sand). A combination of high temperature, sunlight and photocatlysis are mainly responsible for the rapid decline of bacteria and MS2 coliphage. Slow sand filter have clearly less influence on the survival of bacteria in the greywater, but it effective to decline turbidity and COD for short times.
33

Predictors of Carbapenem Resistant Gram-negative Bacteria in a Consortium of Academic Medical Center Hospitals

Ababneh, Mera 01 January 2012 (has links)
Background: Gram-negative resistance is a growing problem worldwide. It is generally believed that rates of resistant bacteria within a hospital are a function of antibiotic use, resistant organisms brought into the hospital, infection control efforts, and underlying severity of patient illness. The relative contribution of each to a particular resistance phenotype is unclear. P. aeruginosa is responsible for many hospital acquired infections and it may become resistant to carbapenems. In addition, newer threats to the future utility of the carbapenems are carbapenemase-producing K. pneumoniae Purpose: To determine if there is an association between the volume and composition of antibiotic use, geography, severity of illness and rates of carbapenem-resistant P. aeruginosa and K. pneumoniae. Methods: This is a retrospective ecological longitudinal investigation within the University HealthSystem Consortium affiliated academic medical centers. Antibiotic use data between January 1, 2006 and December 31, 2009 were obtained from billing records and reported as days of therapy per 1000 patient days (DOT/1000 PD), in addition to hospital characteristics (e.g. geographical location, bed size, case mix index). “Whole house” antibiograms were obtained to determine rates and proportions of carbapenem-resistant P. aeruginosa (CR-PA) and carbapenem resistant K. pneumoniae (CR-KP). Also, CR-KP isolation was generated as a binary outcome. Generalized estimating equations (GEE) were used to model CR-KP and CR-PA. Results: CR-KP rates (1000PDs) increased from 0.07 in 2006 to 0.15 in 2009 (P= 0.0118) and CR-KP proportions increased from 1.3% in 2006 to 3.1% in 2009 (0.0003) within 40 hospitals over 2006-2009. However, CR-PA rates and proportions were stable over the same period. Geographical location, carbapenems use, and antipseudomonal penicillins use were significantly associated with CR-KP isolation. Thus, for every ten DOT/1000 PDs increase in carbapenem use, the odds of CR-KP isolation increased by 42% (P=0.0149). In contrast, for every ten DOT/1000 PDs increase in antipseudomonal penicillin use, the odds of CR-KP isolation decreased by 14%. However, there was no significant model to explain CR-PA rates and proportions. Conclusion: Carbapenems, antipseudomonal penicillins, and geographical location were identified as risk factors associated with CR-KP isolation. These findings emphasize the challenges associated with the treatment of multidrug- gram-negative bacteria.
34

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
35

Interactome des antigènes protecteurs V de Pseudomonas aeruginosa et de Yersinia pestis : Mécanisme d'assemblage et interaction avec l'aiguille de sécrétion de type III

Gebus, Caroline, Attree, Ina 17 October 2008 (has links) (PDF)
Pseudomonas aeruginosa et Yersinia pestis sont responsables d'infections graves chez les individus immunodéprimés et de la peste, respectivement. Leur pathogénicité repose sur de nombreux facteurs de virulence dont le système de sécrétion de type III (SST3) qui a une action prépondérante lors d'infections aiguës. Le SST3 est composé d'une base ancrée dans la double membrane bactérienne, d'une aiguille creuse érigée à la surface et d'un pore de translocation inséré dans la membrane de la cellule hôte permettant à la bactérie d'y injecter des toxines. L'objet de cette thèse est l'étude de l'interactome de l'antigène protecteur V, PcrV chez P. aeruginosa et LcrV chez Y. pestis. Celui-ci est situé au sommet de l'aiguille et est nécessaire au processus de translocation des toxines. L'étude des propriétés biochimiques de la protéine in vitro nous a permis de mettre en évidence sa capacité à former des oligomères présentant une structure en forme d'anneaux. Les multimères ont été observés par chromatographie d'exclusion de taille, gel natif, spectrométrie de masse native et MET. Leur formation est dépendante de la présence de l'hélice α12 C terminale de PcrV et de l'intégrité de ses résidus hydrophobes. Le processus d'assemblage de la protéine est nécessaire à sa fonction in vivo : des mutants qui sont incapables d'oligomériser perdent leur cytotoxicité envers les cellules eucaryotes. <br />Puis, l'interaction directe entre PcrV et la sous unité formant l'aiguille, PscF, a été mise en évidence in vitro par co-purification. De plus, deux mutants ponctuels de PscF dont le phénotype présente un défaut de translocation se sont montrés défectueux pour la liaison avec PcrV. Enfin, l'hélice C terminale de PscF est échangeable avec l'hélice α12 C terminale de PcrV comme l'atteste la capacité de polymérisation d'un hybride créé entre ces deux protéines, suggérant un rôle de celle-ci dans la formation du complexe F-V. L'ensemble de ces études montre que l'assemblage multimérique des antigènes V ainsi que leur position au sommet de l'aiguille sont des éléments essentiels à leur fonction, avec un rôle prépondérant de l'hélice α12 C terminale de PcrV. Ces conclusions pourraient permettre de mieux cibler les développements futurs de nouveaux vaccins ou agents antimicrobiens.
36

Utilisation des bactériophages comme thérapie lors d'une infection à Pseudomonas aeruginosa dans le cadre de la mucoviscidose : efficacité et innocuité

Saussereau, Emilie 18 October 2012 (has links) (PDF)
Face au phénomène de multi-résistance aux antibiotiques des souches de Pseudomonas aeruginosa chez les patients atteints de mucoviscidose, de nouvelles approches doivent être envisagées. L'utilisation des bactériophages pour cibler les bactéries semble être l'une des plus prometteuses. L'efficacité de la phagothérapie semble démontrée par son utilisation en Europe de l'Est depuis des décennies et par les récents résultats obtenus sur des modèles expérimentaux. Cependant, la possibilité de son utilisation chez des patients atteints de mucoviscidose n'a pas encore fait l'objet d'études approfondies. Nous avons démontré l'efficacité des bactériophages in vivo, lors d'une infection pulmonaire létale provoquée par une souche clinique de P. aeruginosa, mais aussi in vitro, pour réduire un biofilm formé par P. aeruginosa. Nous avons aussi étudié la réponse inflammatoire induite par les bactériophages, dans différents modèles in vitro et in vivo, qui s'est révélée quasiment négligeable. Nous avons également mis au point la technique de mesure de différence de potentiel nasale chez la souris pour étudier le transport ionique transépithélial, paramètre fondamental de la mucoviscidose. Les mesures obtenues en présence de bactériophages ne diffèrent pas significativement par rapport aux normes préalablement définies. Enfin, nous avons mis au point une méthode permettant d'évaluer la capacité des bactériophages à infecter des bactéries au sein d'expectorations de patients atteints de mucoviscidose. Nous apportons ainsi des résultats scientifiques concrets qui permettront de mieux appréhender les conditions nécessaires au développement de futurs essais cliniques chez ces patients.
37

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
38

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
39

Contribution à la recherche de nouveaux agents antibactériens actifs sur les biofilms de P. aeruginosa

Nagant, Carole 19 June 2013 (has links)
Les voies respiratoires des patients atteints de mucoviscidose sont colonisées par de nombreux pathogènes, parmi lesquels la bactérie P. aeruginosa est prédominante. Après des épisodes répétés d’infections du tractus respiratoire principalement liées à P. aeruginosa, les patients développent une insuffisance pulmonaire associée à un déclin du statut clinique et à une aggravation du pronostic puisqu’elle est souvent responsable du décès de ces patients. Les infections chroniques à P. aeruginosa affectent 80 à 90 % des patients atteints de mucoviscidose et, une fois ces infections installées, les associations actuelles d’antibiotiques sont incapables d’éradiquer la bactérie des voies aériennes de ces patients. La chronicité des infections est liée au développement de la bactérie sous un mode de vie particulier, le biofilm. Les bactéries s’assemblent en communautés complexes et organisées, entourées par la sécrétion d’une matrice extracellulaire polymérique. Ce mode de vie procure aux bactéries présentes dans le biofilm un environnement dense et protecteur, augmentant la résistance du pathogène au système immunitaire de l’hôte et aux antibiotiques conventionnels. <p><p>Dans la première partie de notre travail, nous avons caractérisé différentes souches de P. aeruginosa, comprenant des souches de référence et des souches cliniques isolées des expectorations de patients atteints de mucoviscidose. Les propriétés d’adhésion, de développement des biofilms, de mobilité, de production de rhamnolipides, l’activité protéolytique et la production d’acylhomosérine lactones se sont avérées très différentes au sein des souches. De plus, les caractéristiques phénotypiques des souches ne constituaient pas une valeur prédictive de la sensibilité des bactéries à un antibiotique, soulignant la nécessité d’étudier un panel large de souches pour caractériser l’effet d’un agent antimicrobien.<p><p>Dans la lutte pour combattre les infections et l’apparition de souches multirésistantes, de nouvelles stratégies thérapeutiques sont développées. Les céragenines sont une famille de molécules synthétisées dans le but de mimer la structure amphipatique des peptides antimicrobiens responsable de leur activité bactéricide importante. Contrairement à ces derniers, les céragenines maintiennent leur activité dans des conditions physiologiques. <p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p>Dans la deuxième partie de ce travail, nous avons étudié l’effet d’un composé antimicrobien appartenant à la famille des céragenines, le CSA-13, sur les différentes souches de P. aeruginosa. Nous avons confirmé le potentiel bactéricide du CSA-13 sur des cultures planctoniques de P. aeruginosa. Nous avons démontré qu’une concentration très faible et non cytotoxique de CSA-13 (10 fois inférieure à la CMI), inhibait la formation d’un biofilm de 3 souches de P. aeruginosa sur les 8 testées. L’étude du potentiel zêta des souches nous a permis de proposer un mécanisme basé sur des interactions électrostatiques pour expliquer l’action préventive du CSA-13 sur le développement du biofilm. Une concentration plus importante de CSA-13 a éradiqué l’entièreté d’un biofilm âgé de 24 h pour 7 des 8 souches étudiées. Six souches ont été évaluées dans un biofilm mature et toutes ont répondu au composé avec des concentrations croissantes ou un temps d’exposition du composé au biofilm plus important. Aucune résistance au CSA-13 n’est apparue durant le traitement. L’usage de la microscopie confocale à balayage laser a confirmé la rapidité et l’efficacité d’action du CSA-13 sur un biofilm robuste et complexe de P. aeruginosa par visualisation dans le temps et dans l’espace de l’effet du CSA-13 sur le biofilm. L’ensemble des observations de ce travail nous a permis de conclure que 7 sur les 8 souches de P. aeruginosa étaient sensibles au CSA-13, soit à un stade initial de la formation du biofilm, soit après maturation du biofilm. Ces résultats soulignent le potentiel thérapeutique important, envers tous les stades de formation et de développement du biofilm, de composés à structure amphiphile comme le CSA-13, avec une face cationique favorisant les interactions avec les membranes bactériennes chargées négativement et une face hydrophobe contribuant à la perturbation de ces membranes. <p><p>Le traitement de référence actuel envers les infections à P. aeruginosa, chez les patients souffrant de mucoviscidose, consiste en l’administration par inhalation de tobramycine commercialisée sous le médicament TOBI®. Nous avons investigué l’intérêt d’une administration combinée de l’aminoglycoside avec le CSA-13. Un bénéfice évident de la combinaison de CSA-13 et de tobramycine est apparu dans cette étude aussi bien sur biofilm jeune que mature. Dans certaines conditions, le CSA-13 semblait même prévenir la résistance à la tobramycine. Il sera cependant indispensable de concevoir des expériences in vivo pour confirmer l’intérêt du CSA-13 ou d’une co-administration de CSA-13 et de la tobramycine dans le traitement d’infections chroniques à P. aeruginosa chez des patients atteints de mucoviscidose.<p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p>Nos études in vitro sur cellules eucaryotes humaines ont mis en évidence une toxicité membranaire et mitochondriale provoquée par le CSA-13 lors de l’administration de concentrations importantes. L’association du CSA-13 avec l’acide pluronique F-127 a permis de réduire significativement la toxicité du composé sur les membranes. Cependant, l’association n’a pas diminué les effets délétères exercés par le CSA-13 sur l’activité mitochondriale. Les études devront donc se poursuivre afin d’affiner la compréhension du mécanisme d’action des céragenines et de pouvoir déceler des dérivés moins toxiques. L’évaluation de l’activité in vivo du composé devrait nous éclairer quant à la fenêtre thérapeutique utilisable en clinique.<p><p>\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
40

Towards Personalized Medicine in Antibiotic Treatment: Development of a Real-Time Cell Analysis System for Biofilm Studies

Ziemyte, Migle 24 July 2023 (has links)
[ES] Las biopelículas bacterianas y fúngicas contribuyen enormemente a la persistencia de muchas infecciones graves y potencialmente mortales, las cuales anualmente provocan millones de defunciones. Además, estas bacterias y hongos que crecen adheridas formando biopelículas son hasta 1.000 veces más resistentes a los tratamientos antimicrobianos convencionales, generando una carga económica significativa y dificultando su diagnóstico y tratamiento. Por tanto, es necesario buscar nuevas herramientas fiables para estudiar la dinámica de formación de biopelículas con el fin de mejorar las estrategias de tratamiento.El objetivo general de la tesis doctoral es la puesta a punto de un sistema basado en medidas de impedancia eléctrica para el estudio de la formación y dinámica de crecimiento de las biopelículas bacterianas (gram-positivas y gram-negativas) y fúngicas, así como de biopelículas complejas multi-especie como las de la placa dental subgingival de muestras periodontales humanas. Tras la puesta a punto del sistema, los objetivos específicos de la tesis doctoral son su aplicación como herramienta en la identificación de tratamientos efectivos contra biopelículas persistentes, la búsqueda de nuevos compuestos antimicrobianos con actividad anti-biofilm, así como la evaluación de novedosas nanopartículas autopropulsadas para la erradicación de biofilms multirresistentes. Finalmente, se ha evaluado su aplicación clínica directa en la selección de la terapia antibiótica para el tratamiento personalizado de pacientes con enfermedad periodontal. / [CA] Les biopelícules bacterianes i fúngiques contribueixen en gran manera a la persistència de moltes infecciones greus i potencialment mortals les quals provoquen anualment milions de morts. A més, estes bactèries i fongs que creixen adherides en forma de biopelícules son fins a 1000 vegades més resistents als tractaments antimicrobians convencionals, generant una càrrega econòmica significativa i dificultant el diagnòstic i tractament. Per això, es necessari trobar noves eines fiables per a estudiar la dinàmica de formació de biopelícules amb l'objectiu de millorar les estratègies de tractament. El objectiu general de la tesis doctoral es la posta a punt de un sistema basat en mesures d'impedància elèctrica per al estudi de la formació i dinàmica de creixement de les biopelícules bacterianes (gram-positives i gram-negatives) i fúngiques, així com de biopelícules complexes mutiespècie com les de la placa dental subgingival de mostres periodontals humanes. Una vegada posat a punt el sistema, els objectius específics de la tesis doctoral son la aplicació com a eina de la identificació de tractaments efectius contra biopelícules persistents, la recerca de nous compostos antimicrobians amb activitat antibiopelícula, així com la avaluació de noves nanopartícules autopropulsades per a l'eliminació de biofilms multiresistents. Finalment, s'ha avaluat l'aplicació clínica directa en la selecció de la teràpia antibiòtica per al tractament personalitzat de pacients amb periodontitis. / [EN] Bacterial and fungal biofilms contribute enormously to the persistence of many life-threatening infections, causing millions of deaths annually. In addition, bacteria and fungi growing as biofilms are up to 1.000 times more resistant to conventional antimicrobial treatments, resulting in a significant economic burden and challenging diagnosis and treatment. Therefore, there is a need to search for new reliable tools to study biofilm formation dynamics to improve treatment strategies. This doctoral thesis aims to set up an impedance-based system to study biofilm formation and dynamics of bacterial (gram-positive and gram-negative) and fungal species, as well as complex multi-species biofilms such as subgingival plaque collected from patients with chronic periodontitis. After the impedance system is set up, the specific objectives of the doctoral thesis are its application as a tool in the identification of effective treatment against persistent biofilms, testing new antimicrobial and anti-biofilm compounds, and the evaluation of novel self-propelled nanoparticles on the eradication of multi-resistant S. aureus biofilms. Finally, a clinical application of the impedance system is proposed, aiming at determining the best individual antibiotic therapy in dental clinics (personalized use of antibiotics). / Work performed at Genomics & Health Department at FISABIO Foundation and described in this doctoral thesis was supported by the Spanish Ministry of Science, Innovation and Universities scholarship FPU17/01302 to Miglė Žiemytė and a grant RTI2018-102032-B-I00 to Alex Mira Obrador. / Ziemyte, M. (2023). Towards Personalized Medicine in Antibiotic Treatment: Development of a Real-Time Cell Analysis System for Biofilm Studies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195434

Page generated in 0.0345 seconds