• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 7
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 17
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

O impacto da administração de cafeína sobre o comportamento e proteínas sinápticas em diferentes fases do desenvolvimento encefálico de ratos

Ardais, Ana Paula January 2015 (has links)
moderadas, ela proporciona efeitos benéficos sobre as funções cognitivas na vida adulta e no decorrer do envelhecimento. No entanto, a ingestão crescente de bebidas contendo cafeína por adolescentes tem causado preocupação, pois os efeitos desta substância sobre as funções cognitivas e a maturação do encéfalo durante a adolescência são pouco conhecidos. A cafeína atravessa a placenta e a barreira hemato-encefálica e o seu consumo tem sido associado ao maior risco de aborto espontâneo e baixo peso ao nascer. Portanto, nos estágios iniciais do desenvolvimento encefálico o consumo de cafeína também carece de maiores eslcarecimentos. Nesta tese, o impacto do consumo de cafeína durante diferentes fases de desenvolvimento do encéfalo foi investigado sobre o comportamento e proteínas sinápticas em ratos. No primeiro capítulo, ratos adolescentes machos consumiram cafeína na água de beber nas doses de 0,1; 0,3 e 1,0 g/L (correspondendo ao consumo baixo, moderado e elevado, respectivamente) somente durante o seu período ativo (das 19 às 7 horas). Nenhuma das doses testadas teve efeito sobre a atividade locomotora, porém todas desencadearam efeitos ansiogênicos. A cafeína (0,3 e 1,0 g/L) melhorou o desempenho na tarefa de reconhecimento ao objeto, enquanto na dose mais elevada (1,0 g/L) os animais não habituaram ao campo aberto, uma forma de avaliar o aprendizado não-associativo. Todas as doses testadas reduziram a densidade de proteína glial fibrilar ácida (GFAP) e proteína associada ao sinaptossoma (SNAP-25) sem causar alterações na imunorreatividade da proteína nuclear específica para neurônios (NeuN) no hipocampo e no córtex cerebral No hipocampo, a cafeína (em todas as doses testadas) aumentou a densidade de receptor de adenosina A1 e reduziu a do factor neurotrófico derivado do encéfalo (BDNF) e sua forma precursora (proBDNF) (1,0 g/L). No córtex cerebral, a cafeína (1,0 g/L) reduziu a densidade do receptor A1 e aumentou a do BDNF e do proBDNF (0,3 e 1,0 g/L). Estes resultados revelam que o consumo de cafeína por ratos adolescentes exacerba a ansiedade, mas provoca diferentes efeitos sobre a memória, melhorando a de reconhecimento e prejudicando o aprendizado não associativo. Parte destes efeitos foi associada às mudanças nos níveis de BDNF, GFAP e SNAP-25, porém sem perda da viabilidade neuronal aparente no hipocampo e no córtex cerebral. No segundo capítulo, o impacto do consumo de cafeína (0,1; 0,3 e 1,0 g/L na água de beber, das 19 às 7 horas) foi investigado sobre o comportamento e proteínas sinápticas na vida adulta dos animais que consumiram cafeína no decorrer do desenvolvimento encefálico. O consumo de três diferentes doses de cafeína iniciou 15 dias antes do acasalamento e permaneceu durante a prenhez e lactação. A partir do desmame os animais foram divididos em dois grupos: os que consumiram cafeína até a vida adulta (ao longo da vida) e os que interromperam o consumo (desenvolvimento). Esses dois grupos também foram subdivididos e analisados de acordo com o sexo. Foram comparados os efeitos destes protocolos sobre o comportamento e a densidade de proteínas sinápticas do hipocampo e córtex de fêmeas e machos adultos. A memória de reconhecimento foi prejudicada nas fêmeas que receberam cafeína (0,3 e 1,0 g/L) durante o desenvolvimento, o que coincidiu com o aumento do proBDNF e níveis inalterados de BDNF no hipocampo Ambos os protocolos de exposição causaram hiperlocomoção nos machos, enquanto que nas fêmeas somente a exposição ao longo da vida aumentou a atividade locomotora de forma significativa. Já no comportamento relacionado à ansiedade, ambos os sexos apresentaram um perfil ansiolítico ao consumir cafeína (1,0 g/L) ao longo da vida. Ambos os regimes de administração diminuíram os níveis de GFAP e SNAP-25 no hipocampo dos ratos machos. A densidade do receptor de TrkB foi reduzida no hipocampo em ambos os sexos e protocolos de exposição. No córtex cerebral BDNF e proBDNF aumentaram com o consumo de cafeína ao longo da vida nos machos. Nas fêmeas houve aumento no BDNF, mas não no proBDNF, em ambos regimes de administração. O receptor TrkB diminuiu no córtex dos ratos machos que receberam cafeína somente durante o desenvolvimento. Ambas proteínas – GFAP e SNAP-25 – aumentaram suas densidades nos machos que receberam ambos regimes de administração. Estes resultados revelaram que o consumo de cafeína ao longo da vida pode recuperar o prejuízo na memória de reconhecimento das fêmeas que consumiram a substância durante o desenvolvimento e indicam que a exposição durante um período específico do desenvolvimento do encéfalo promove alterações comportamentais dependentes do sexo, as quais nós relacionamos com modificações na sinalização BDNF. Os resultados desta tese destacam a importância de controlar o consumo de cafeína em períodos críticos para o desenvolvimento encefálico de ratos, e aponta para um efeito dependente do sexo. No entanto, mais estudos são necessários para ampliar nosso conhecimento sobre as possíveis vias de sinalização envolvidas nestes processos. / Caffeine is the most consumed psychostimulant substance worldwide, with benefits for cognitive functioning. Caffeine intake at moderate doses also prevents age-related cognitive decline. However, health experts have raised concerns about the growing intake of caffeine-containing drinks by adolescent population. In fact, the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly understood. In addition, caffeine consumption in the early stages of fetal development has been associated with miscarriage and low birth weight, since it penetrates placenta and blood-brain barrier during pregnancy. Therefore, the impact of caffeine intake was investigated during different stages of brain development. In the first chapter of this thesis, adolescent male rats consumed caffeine in the drinking water (0.1; 0.3 and 1.0 g/L corresponding to low, moderate and high doses, respectively) only during their active period (from 7:00 p.m. to 7:00 a.m.). None of the doses tested had effect on locomotor activity, whereas all triggered anxiogenic effects. Caffeine (0.3 and 1.0 g/L) improved the performance in the object recognition task, but the higher dose of caffeine (1.0 g/L) decreased habituation in open field arena, suggesting a non-associative learning impariment. All tested doses reduced glial fibrillary acidic protein density (GFAP) and synaptosome-associated protein (SNAP-25) without causing any changes in immunoreactivity for neuronspecific nuclear protein (NeuN) in the hippocampus and cerebral cortex. In the hippocampus, caffeine (all doses tested) increased adenosine A1 receptor density and reduced brain-derived neurotrophic factor (BDNF) and proBDNF (1.0 g/L). In the cerebral cortex, caffeine (1.0 g/L) reduced adenosine A1 receptor and increased BDNF and proBDNF density (0.3 and 1.0 g/L) These findings document the effects of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF, GFAP and SNAP-25 levels without apparent neuronal loss in hippocampus and cerebral cortex. In the second chapter, it was tested whether caffeine consumption (0.1; 0.3 and 1.0 g/L in drinking water, from 7:00 p.m. to 7:00 a.m) throughout life may reverse the negative effects caused by the consumption of caffeine in the early stages of development. For this, we used exposure protocols with the end in postnatal days (PND) 21 (development) or 90 (throughout life); both protocols starting 15 days before mating. The effects of these protocols on the behavior and hippocampal synaptic proteins density of adult female and male rats were compared. Recognition memory was impaired in females receiving caffeine (0.3 and 1.0 g/L) during development, which coincided with increased proBDNF levels and unchanged BDNF in the hippocampus. Both exposure protocols caused hyperlocomotion in males, whereas in females only the exposure throughout life significantly increased locomotor activity. Considering the anxiety related behavior, both sexes presented an anxiolytic profile when consuming caffeine (1.0 g/L) throughout life. Both exposure regimens decreased hippocampal GFAP and SNAP-25 of male rats. The hipocampal TrkB receptor was reduced in both sexes and protocols of exposure In the cortex, both proBDNF and BDNF increased in males receiving caffeine throughout life as well as GFAP and SNAP-25 increased in both treatments regimen. The results revealed that caffeine consumption throughout life can recover the impairment in recognition memory of females that consumed caffeine during development and indicate that exposure for a specific period of brain development promotes sex-dependent behavioral changes, which we relate to alterations in BDNF signaling. The results of this thesis emphasize the importance of controlling caffeine intake during critical periods of brain development of rats and points to a sex dependent effect. However, more studies are needed to expand our knowledge about the possible signaling pathways involved in these processes.
62

O impacto da administração de cafeína sobre o comportamento e proteínas sinápticas em diferentes fases do desenvolvimento encefálico de ratos

Ardais, Ana Paula January 2015 (has links)
moderadas, ela proporciona efeitos benéficos sobre as funções cognitivas na vida adulta e no decorrer do envelhecimento. No entanto, a ingestão crescente de bebidas contendo cafeína por adolescentes tem causado preocupação, pois os efeitos desta substância sobre as funções cognitivas e a maturação do encéfalo durante a adolescência são pouco conhecidos. A cafeína atravessa a placenta e a barreira hemato-encefálica e o seu consumo tem sido associado ao maior risco de aborto espontâneo e baixo peso ao nascer. Portanto, nos estágios iniciais do desenvolvimento encefálico o consumo de cafeína também carece de maiores eslcarecimentos. Nesta tese, o impacto do consumo de cafeína durante diferentes fases de desenvolvimento do encéfalo foi investigado sobre o comportamento e proteínas sinápticas em ratos. No primeiro capítulo, ratos adolescentes machos consumiram cafeína na água de beber nas doses de 0,1; 0,3 e 1,0 g/L (correspondendo ao consumo baixo, moderado e elevado, respectivamente) somente durante o seu período ativo (das 19 às 7 horas). Nenhuma das doses testadas teve efeito sobre a atividade locomotora, porém todas desencadearam efeitos ansiogênicos. A cafeína (0,3 e 1,0 g/L) melhorou o desempenho na tarefa de reconhecimento ao objeto, enquanto na dose mais elevada (1,0 g/L) os animais não habituaram ao campo aberto, uma forma de avaliar o aprendizado não-associativo. Todas as doses testadas reduziram a densidade de proteína glial fibrilar ácida (GFAP) e proteína associada ao sinaptossoma (SNAP-25) sem causar alterações na imunorreatividade da proteína nuclear específica para neurônios (NeuN) no hipocampo e no córtex cerebral No hipocampo, a cafeína (em todas as doses testadas) aumentou a densidade de receptor de adenosina A1 e reduziu a do factor neurotrófico derivado do encéfalo (BDNF) e sua forma precursora (proBDNF) (1,0 g/L). No córtex cerebral, a cafeína (1,0 g/L) reduziu a densidade do receptor A1 e aumentou a do BDNF e do proBDNF (0,3 e 1,0 g/L). Estes resultados revelam que o consumo de cafeína por ratos adolescentes exacerba a ansiedade, mas provoca diferentes efeitos sobre a memória, melhorando a de reconhecimento e prejudicando o aprendizado não associativo. Parte destes efeitos foi associada às mudanças nos níveis de BDNF, GFAP e SNAP-25, porém sem perda da viabilidade neuronal aparente no hipocampo e no córtex cerebral. No segundo capítulo, o impacto do consumo de cafeína (0,1; 0,3 e 1,0 g/L na água de beber, das 19 às 7 horas) foi investigado sobre o comportamento e proteínas sinápticas na vida adulta dos animais que consumiram cafeína no decorrer do desenvolvimento encefálico. O consumo de três diferentes doses de cafeína iniciou 15 dias antes do acasalamento e permaneceu durante a prenhez e lactação. A partir do desmame os animais foram divididos em dois grupos: os que consumiram cafeína até a vida adulta (ao longo da vida) e os que interromperam o consumo (desenvolvimento). Esses dois grupos também foram subdivididos e analisados de acordo com o sexo. Foram comparados os efeitos destes protocolos sobre o comportamento e a densidade de proteínas sinápticas do hipocampo e córtex de fêmeas e machos adultos. A memória de reconhecimento foi prejudicada nas fêmeas que receberam cafeína (0,3 e 1,0 g/L) durante o desenvolvimento, o que coincidiu com o aumento do proBDNF e níveis inalterados de BDNF no hipocampo Ambos os protocolos de exposição causaram hiperlocomoção nos machos, enquanto que nas fêmeas somente a exposição ao longo da vida aumentou a atividade locomotora de forma significativa. Já no comportamento relacionado à ansiedade, ambos os sexos apresentaram um perfil ansiolítico ao consumir cafeína (1,0 g/L) ao longo da vida. Ambos os regimes de administração diminuíram os níveis de GFAP e SNAP-25 no hipocampo dos ratos machos. A densidade do receptor de TrkB foi reduzida no hipocampo em ambos os sexos e protocolos de exposição. No córtex cerebral BDNF e proBDNF aumentaram com o consumo de cafeína ao longo da vida nos machos. Nas fêmeas houve aumento no BDNF, mas não no proBDNF, em ambos regimes de administração. O receptor TrkB diminuiu no córtex dos ratos machos que receberam cafeína somente durante o desenvolvimento. Ambas proteínas – GFAP e SNAP-25 – aumentaram suas densidades nos machos que receberam ambos regimes de administração. Estes resultados revelaram que o consumo de cafeína ao longo da vida pode recuperar o prejuízo na memória de reconhecimento das fêmeas que consumiram a substância durante o desenvolvimento e indicam que a exposição durante um período específico do desenvolvimento do encéfalo promove alterações comportamentais dependentes do sexo, as quais nós relacionamos com modificações na sinalização BDNF. Os resultados desta tese destacam a importância de controlar o consumo de cafeína em períodos críticos para o desenvolvimento encefálico de ratos, e aponta para um efeito dependente do sexo. No entanto, mais estudos são necessários para ampliar nosso conhecimento sobre as possíveis vias de sinalização envolvidas nestes processos. / Caffeine is the most consumed psychostimulant substance worldwide, with benefits for cognitive functioning. Caffeine intake at moderate doses also prevents age-related cognitive decline. However, health experts have raised concerns about the growing intake of caffeine-containing drinks by adolescent population. In fact, the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly understood. In addition, caffeine consumption in the early stages of fetal development has been associated with miscarriage and low birth weight, since it penetrates placenta and blood-brain barrier during pregnancy. Therefore, the impact of caffeine intake was investigated during different stages of brain development. In the first chapter of this thesis, adolescent male rats consumed caffeine in the drinking water (0.1; 0.3 and 1.0 g/L corresponding to low, moderate and high doses, respectively) only during their active period (from 7:00 p.m. to 7:00 a.m.). None of the doses tested had effect on locomotor activity, whereas all triggered anxiogenic effects. Caffeine (0.3 and 1.0 g/L) improved the performance in the object recognition task, but the higher dose of caffeine (1.0 g/L) decreased habituation in open field arena, suggesting a non-associative learning impariment. All tested doses reduced glial fibrillary acidic protein density (GFAP) and synaptosome-associated protein (SNAP-25) without causing any changes in immunoreactivity for neuronspecific nuclear protein (NeuN) in the hippocampus and cerebral cortex. In the hippocampus, caffeine (all doses tested) increased adenosine A1 receptor density and reduced brain-derived neurotrophic factor (BDNF) and proBDNF (1.0 g/L). In the cerebral cortex, caffeine (1.0 g/L) reduced adenosine A1 receptor and increased BDNF and proBDNF density (0.3 and 1.0 g/L) These findings document the effects of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF, GFAP and SNAP-25 levels without apparent neuronal loss in hippocampus and cerebral cortex. In the second chapter, it was tested whether caffeine consumption (0.1; 0.3 and 1.0 g/L in drinking water, from 7:00 p.m. to 7:00 a.m) throughout life may reverse the negative effects caused by the consumption of caffeine in the early stages of development. For this, we used exposure protocols with the end in postnatal days (PND) 21 (development) or 90 (throughout life); both protocols starting 15 days before mating. The effects of these protocols on the behavior and hippocampal synaptic proteins density of adult female and male rats were compared. Recognition memory was impaired in females receiving caffeine (0.3 and 1.0 g/L) during development, which coincided with increased proBDNF levels and unchanged BDNF in the hippocampus. Both exposure protocols caused hyperlocomotion in males, whereas in females only the exposure throughout life significantly increased locomotor activity. Considering the anxiety related behavior, both sexes presented an anxiolytic profile when consuming caffeine (1.0 g/L) throughout life. Both exposure regimens decreased hippocampal GFAP and SNAP-25 of male rats. The hipocampal TrkB receptor was reduced in both sexes and protocols of exposure In the cortex, both proBDNF and BDNF increased in males receiving caffeine throughout life as well as GFAP and SNAP-25 increased in both treatments regimen. The results revealed that caffeine consumption throughout life can recover the impairment in recognition memory of females that consumed caffeine during development and indicate that exposure for a specific period of brain development promotes sex-dependent behavioral changes, which we relate to alterations in BDNF signaling. The results of this thesis emphasize the importance of controlling caffeine intake during critical periods of brain development of rats and points to a sex dependent effect. However, more studies are needed to expand our knowledge about the possible signaling pathways involved in these processes.
63

Hydrothermal synthesis and optimisation of zeolite Na-P1 from South African coal fly ash

Musyoka, Nicholas Mulei January 2009 (has links)
>Magister Scientiae - MSc / Millions of tonnes of fly ash are generated worldwide every year to satisfy the large demand for energy. Management of this fly ash has been a concern and various approaches for its beneficial use have been investigated. Over the last two decades, there has been intensive research internationally that has focused on the use of different sources of fly ash for zeolite synthesis.However, most of the studies have concentrated on class C fly ash and very few have reported the use of South African class F fly ash as feedstock for zeolite synthesis.Class F fly ash from South Africa has been confirmed to be a good substrate for zeolite synthesis due to its compositional dominance of aluminosilicate and silicate phases. However, because differences in quartz-mullite/glass proportions of fly ash from different sources produces impure phases or different zeolite mineral phases under the same activation conditions, the present study focused on optimization of synthesis conditions to obtain pure phase zeolite Na-P1 from class F South African coal fly ash. Synthesis variables evaluated in this study were; hydrothermal treatment time (12 - 48 hours), temperature (100 – 160 oC) and addition of varying molar quantities of water during the hydrothermal treatment step (H2O:SiO2 molar ratio ranged between 0 - 0.49).Once the most suitable conditions for the synthesis of pure phase zeolite Na-P1 from fly ash were identified, a statistical approach was adopted to refine the experiments, that was designed to evaluate the interactive effects of some of the most important synthesis variables. In this case, the four synthesis variables; NaOH concentration (NaOH: SiO2 molar ratio ranged between 0.35– 0.71), ageing temperature (35 oC – 55 oC), hydrothermal treatment time (36 - 60 hours) and temperature (130 oC – 150 oC) were studied. The response was determined by evaluating the improvement in the cation exchange capacity of the product zeolite.The starting materials (fly ashes from Arnot, Hendrina and Duvha power stations) and the synthesized zeolite product were characterized chemically, mineralogically and morphologically by X-Ray fluorescence spectrometry, X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. Other characterization technique used in the study were Fourier transform infrared spectroscopy to provide structural information and also monitor evolution of crystallinity during synthesis, as well as cation exchange capacity to determine the amount of exchangeable positively charged ions. Nitrogen adsorption was used to determine the surface area and porosity, and inductively coupled mass spectrometry for multi-elemental analysis of the post-synthesis supernatants.The results from the X-ray diffraction spectroscopy showed that the most pure zeolite Na-P1 phase was achieved when the molar regime was 1 SiO2 : 0.36 Al2O3 : 0.59 NaOH : 0.49 H2O and at synthesis conditions such that ageing was done at 47 oC for 48 hours while the hydrothermal treatment time and temperature was held at 48 hours and 140 oC, respectively. Results from statistically designed experiments show that there was a distinct variation of phase purity with synthesis conditions. From the analysis of linear and non linear interactions, it was found that the main effects were ageing temperature and hydrothermal treatment time and temperature, which also showed some interactions. This experimental approach enabled a clearer understanding of the relationship between the synthesis conditions and the purity of the zeolite Na-P1 obtained.The quality of zeolites is a major determinant in the efficiency of toxic element removal from waste water. Preliminary experiments conducted using optimised zeolite Na-P1 obtained in this study with a cation exchange capacity of 4.11 meq/g showed a high percentage removal of Pb,Cd, Ni, Mn, V, As, B, Fe, Se, Mo Sr, Ba and Zn from process brine obtained from Emalahleni water reclamation plant.In summary, a pure phase of zeolite Na-P1 was obtained from South African class F fly ash feedstock at relatively mild temperature. The systematic approach, incorporating statistical design of experiments, developed in this study resulted in a better understanding regarding the relationships of synthesis parameters in the formation of zeolites from fly ash. The zeolite Na-P1 synthesized with a high cation exchange capacity was effective for removal of toxic elements from brine.
64

Příprava rekombinantních forem extracelulární domény myších leukocytárních receptorů z rodiny NKR-P1. / Preparation of recombinant forms of the extracellular part of mouse leukocyte receptors from NKR-P1 family.

Adámek, David January 2012 (has links)
Mouse NK cell receptors belonging to NKR-P1 family plays role in activation, inhibition and cytokine secretion by these cells. Aim of this thesis is preparation of extracellular parts of C57BL/6 mouse strain activating receptors mNKR-P1A and mNKR-P1C. Production vectors with coding sequences of both proteins were prepared. Next, optimization of production in E. coli was done and appropriate in vitro refolding and purification protocol were developed. Purified proteins were characterized by mass spectrometry and labeled by a fluorescent dye. Primary screening for potential ligand was performed. Further work will involve structural characterization of the receptors and identification of their ligands. These data may help to clarify the function of NK cells.
65

Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS

Illes, Peter, Rubini, Patrizia, Ulrich, Henning, Zhao, Yafei, Tang, Yong 17 April 2023 (has links)
Microglial cells, the resident macrophages of the central nervous system (CNS), exist in a process-bearing, ramified/surveying phenotype under resting conditions. Upon activation by cell-damaging factors, they get transformed into an amoeboid phenotype releasing various cell products including pro-inflammatory cytokines, chemokines, proteases, reactive oxygen/nitrogen species, and the excytotoxic ATP and glutamate. In addition, they engulf pathogenic bacteria or cell debris and phagocytose them. However, already resting/surveying microglia have a number of important physiological functions in the CNS; for example, they shield small disruptions of the blood–brain barrier by their processes, dynamically interact with synaptic structures, and clear surplus synapses during development. In neurodegenerative illnesses, they aggravate the original disease by a microglia-based compulsory neuroinflammatory reaction. Therefore, the blockade of this reaction improves the outcome of Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. The function of microglia is regulated by a whole array of purinergic receptors classified as P2Y12, P2Y6, P2Y4, P2X4, P2X7, A2A, and A3, as targets of endogenous ATP, ADP, or adenosine. ATP is sequentially degraded by the ecto-nucleotidases and 5′-nucleotidase enzymes to the almost inactive inosine as an end product. The appropriate selective agonists/antagonists for purinergic receptors as well as the respective enzyme inhibitors may profoundly interfere with microglial functions and reconstitute the homeostasis of the CNS disturbed by neuroinflammation.
66

Ultrasensitive Measurements of Magnetism in Carbon-based Materials

Scozzaro, Nicolas Joseph January 2016 (has links)
No description available.
67

The possibilities provided by subtitling to the SABC TV in the recognition and protection of language rights

Olivier, Jak 01 1900 (has links)
The degree to which the SABC (South African Broadcasting Corporation) as public broadcaster gives shape to its language policy and language mandate, against the background of an investigation of language rights, establishes the central problem statement of this research.It is widely acknowledged that it is difficult to define the concept of language rights. Although the language-sociological literature associates this concept with minority and cultural rights, it can also be seen as individual rights. According to the Constitution of the Republic of South Africa, 1996, it is clear that language rights should be seen as individual rights that can be exercised within a particular community. Although this dissertation provides an extensive juridical and language sociological explanation of the concept of language rights, the description by Judge Albie Sachs will be used as a working definition for this research. His division between the following four fundamental language rights, viz.: (i) the right to use your language; (ii) the right to develop your language; (iii) the right to be understood and to understand other languages as well as (iv) the right not to be discriminated against because of your language, provides a useful investigation instrument with which the degree to which the SABC-TV acknowledges and protects language rights can be measured.It is found that despite the policy documents on national and corporate level that has equal consideration and treatment of the diverse South African languages in mind, it still happens that the SABC-TV fails to give form to the language rights of individuals that belong to indigenous minority language groups in South Africa. Due to this, the research suggests that the extensive implementation of subtitles, as a form of screen translation that differs from lip synchronised dubbing, can make a significant contribution to the acknowledgement and protection of language rights by the SABC-TV.In addition to a discussion on what subtitles entail, the technical nature and specific parameters thereof, a feasibility study is included within which the affordability of this project for the SABC-TV is indicated. It is found that this form of screen translation is ideal for the South African situation because it is cheaper than both lip synchronised dubbing and the creation of new television programmes, but also because it can effectively be employed in regional broadcasts. Furthermore, the use of bilingual subtitles and pivot subtitles are also alternatives that may be considered. It is essential though that subtitles can indeed contribute to the way in which the SABC, as a public broadcaster, acknowledges and protects the fundamental language rights of the multitude of South Africans that belong to different language communities in South Africa. (Written in Afrikaans)
68

Central attention and visual-spatial attention : Electrophysiological investigations of early psychological refractory period multitasking interference

Brisson, Benoit January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
69

Central attention and visual-spatial attention : Electrophysiological investigations of early psychological refractory period multitasking interference

Brisson, Benoit January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
70

Nutrition and neurodevelopment of the preterm and term infant

Xanthy Hatzigeorgiou Unknown Date (has links)
Introduction Optimal nutrition is vital in the management of infants born preterm. Dietary fat in infancy is fundamental for the provision of energy for growth and development. Essential fatty acids, specifically Long Chain Polyunsaturated Fatty Acids (LC-PUFAs) such as docosahexaenoic acid (DHA), have been under investigation by several international research groups in the past decade. Essential fatty acids are critical in neurodevelopment as DHA is found in high proportions in structural lipids of cell membranes, particularly in the central nervous system (CNS). The accumulation of essential fatty acids and particularly DHA in the brain and retina occurs most rapidly during the perinatal period, therefore preterm infants are of particular concern (Singer, 2001). Current scientific consensus is that the optimum growth rate for preterm infants is equal to the in utero growth rate throughout the last trimester, however, failure to achieve the optimum intrauterine growth rate is common in preterm infants (Olhager and Forsum, 2003). Preterm infants require large amounts of energy and nutrients with which many infants are not provided or are not able to absorb, due to immature gastrointestinal and metabolic systems and other medical complications (Olhager and Forsum, 2003). There are a number of unresolved issues regarding optimal growth rate and total energy requirements (ER) for preterm infants. Hypotheses/Objectives This study is a “side study” to a double blind randomised controlled trial (RCT) of DHA supplementation in preterm infants. The hypothesis of this “side study” is that increased DHA during the neonatal period would increase total energy expenditure (TEE) and improve neurodevelopmental outcome. Specifically, at term postconceptual age (PCA) it was hypothesised that preterm infants receiving higher intake of DHA would have higher TEE’s due to the acceleration in brain maturation. Also, it was hypothesised that preterm infants receiving high levels of DHA would have TEE’s equivalent to term born infants due to their same brain maturation status. Other hypothesised effects of DHA supplementation include an accelerated maturation of the visual cortical pathways, and accelerated white matter (WM) tract development aiding in brain maturation. The first objective of this study was to measure TEE and ER in very preterm infants when they reached an age of 31-33 weeks post conceptional age (PCA). The effects of DHA supplementation on TEE, at simulated in utero levels, in very preterm infants (born < 33 weeks PCA), when assessed at term equivalent (40 weeks PCA) were studied. Another objective was to compare WM brain tissue volume at term PCA between two preterm groups and then with the term born infants. Visual latency was also compared between the two preterm infant groups and then with the term born infants. Methods TEE was measured using the doubly labelled water (DLW) method which is based on the differential elimination of 2H (deuterium) and 18O from the body subsequent to a loading dose of these isotopes. TEE was measured at the preterm age between 31-33 weeks PCA and again at term PCA. TEE measurements are made at term PCA in a term born control group. Brain assessment was by Magnetic Resonance Imaging and (MRI) and Visual Evoked Potential (VEP). Magnetic resonance imaging quantitatively measured brain volumes and WM. Visual evoked potential would provide information on visual latency and amplitude. Results The cohort consisted of 38 infants. The TEE of the very preterm infant group was measured at 31-33 weeks PCA. The mean (±standard deviation) (SD) TEE was calculated at 80(±27) kcal/kg/d, and using data in the literature for foetal energy accretion of 28kcal/kg/d, the mean ER was calculated to be 108(±27) kcal/kg/d. At term PCA TEE was calculated for the preterm DHA supplemented group to be 56(±19) kcal/kg/d and for the non-DHA supplemented group 70(±39) kcal/kg/d. These measurements were not statistically different. Flash VEP conducted on preterm given different amounts of DHA tested at term PCA found no statistically different measurements. When combining these results and comparing them to measurements of term born infants at term PCA, the right eye measurements showed that preterm infants had statistically greater latencies than term infants. When combining the left and right eye measurements the latencies no statistical significance was found. Amplitude was also not statistically significant between the groups. MRI measures at term PCA were not statistically different DHA supplemented and the non-DHA supplemented preterm infant group. When the preterm infant cohort was combined and compared to the term born infant group, the results showed that preterm infants imaged at term PCA had reduced WM development in a number of frontal lobe projections, and anterior and posterior commissarial pathways of the corpus callosum and corona radiata. Discussion The TEE and ER measurements in this study represent the largest preterm infant cohort to date. The ER values reported here are of value in allowing the calculation of appropriate feeding and nutritional strategies for preterm infants. Although no differences in TEE between the DHA and non DHA supplemented groups were found this may have been due to the small sample size. With regard to the latency outcomes, it can be speculated that if measurements were conducted at a later PCA the correlations may have been stronger and significant. Several other factors may have also affected the results, including alertness of the infant at the time of testing, thickness of the cranium, and other health factors could not be controlled for. This study contains the youngest cohort to be compared via Flash VEP. The MRI data did not find significant differences in brain volume and WM between the DHA supplemented and the non-DHA supplemented groups. The infant CNS is rapidly developing and there are multiple environmental factors which may have affected outcomes. The data did however find differences in WM development between the preterm and term infants. The reduced WM development found in the preterm infants compared to term born infants may provide some explanation for the correlation between preterm birth and poorer cognitive and functional outcomes. Larger studies which extend beyond the first months of life are recommended in order to investigate the long-term relationships between DHA supplementation, TEE and brain maturation.

Page generated in 0.0294 seconds